The intestine microbiome-prostate most cancers crosstalk is modulated by dietary polyunsaturated long-chain fatty acids


  • Golombos, D. M. et al. The function of intestine microbiome within the pathogenesis of prostate most cancers: a potential, pilot examine. Urology 111, 122–128 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Liss, M. A. et al. Metabolic biosynthesis pathways recognized from fecal microbiome related to prostate most cancers. Eur. Urol. 74, 575–582 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porter, C. M., Shrestha, E., Peiffer, L. B. & Sfanos, Ok. S. The microbiome in prostate irritation and prostate most cancers. Prostate Most cancers Prostatic Dis. 21, 345–354 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daisley, B. A. et al. Abiraterone acetate preferentially enriches for the intestine commensal Akkermansia muciniphila in castrate-resistant prostate most cancers sufferers. Nat. Commun. 11, 4822 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sfanos, Ok. S. et al. Compositional variations in gastrointestinal microbiota in prostate most cancers sufferers handled with androgen axis-targeted therapies. Prostate Most cancers Prostatic Dis. 21, 539–548 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. Ok. M. et al. A cross-sectional examine on intestine microbiota in prostate most cancers sufferers with prostatectomy or androgen deprivation remedy. Prostate Most cancers Prostatic Dis https://doi.org/10.1038/s41391-021-00360-1 (2021).

  • Pernigoni, N. et al. Commensal micro organism promote endocrine resistance in prostate most cancers by androgen biosynthesis. Science 374, 216–224 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cani, P. D. Human intestine microbiome: hopes, threats and guarantees. Intestine 67, 1716–1725 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Routy, B. et al. Intestine microbiome influences efficacy of PD-1-based immunotherapy towards epithelial tumors. Science 359, 91–97 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Clinton, S. Ok., Giovannucci, E. L. & Hursting, S. D. The World Most cancers Analysis Fund/American Institute for most cancers analysis third knowledgeable report on eating regimen, vitamin, bodily exercise, and most cancers: influence and future instructions. J. Nutr. 150, 663–671 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Richman, E. L. et al. Fats consumption after prognosis and threat of deadly prostate most cancers and all-cause mortality. JAMA Intern Med 173, 1318–1326 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez-Guryn, Ok. et al. Small gut microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 23, 458–469.e455 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semova, I. et al. Microbiota regulate intestinal absorption and metabolism of fatty acids within the zebrafish. Cell Host Microbe 12, 277–288 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anhe, F. F. et al. Sort 2 diabetes influences bacterial tissue compartmentalisation in human weight problems. Nat. Metab. 2, 233–242 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Chang, S. N. et al. Excessive animal fats consumption enhances prostate most cancers development and reduces glutathione peroxidase 3 expression in early levels of TRAMP mice. Prostate 74, 1266–1277 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Labbé, D. P. et al. PTP1B deficiency permits the flexibility of a high-fat eating regimen to drive the invasive character of PTEN-deficient prostate cancers. Most cancers Res 76, 3130–3135 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labbé, D. P. et al. Excessive-fat eating regimen fuels prostate most cancers development by rewiring the metabolome and amplifying the MYC program. Nat. Commun. 10, 4358 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gevariya, N. et al. Omega-3 fatty acids lower prostate most cancers development related to an anti-tumor immune response in eugonadal and castrated mice. Prostate 79, 9–20 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Dietary supplementation of alpha-linolenic acid induced conversion of n-3 LCPUFAs and diminished prostate most cancers progress in a mouse mannequin. Lipids Well being Dis. 16, 136 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berquin, I. M. et al. Modulation of prostate most cancers genetic threat by omega-3 and omega-6 fatty acids. J. Clin. Make investments 117, 1866–1875 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robitaille, Ok. A section IIb randomized placebo-controlled trial testing a long-chain omega-3 fatty acid MAG-EPA dietary complement on prostate most cancers proliferation. Commun. Med. 18, 64 (2023).


    Google Scholar
     

  • Morris, E. Ok. et al. Selecting and utilizing variety indices: insights for ecological functions from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeJong, T. A comparability of three variety indices based mostly on their elements of richness and evenness. Oikos 26, 222–227 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Hofman, M. S. et al. Prostate-specific membrane antigen PET-CT in sufferers with high-risk prostate most cancers earlier than curative-intent surgical procedure or radiotherapy (proPSMA): a potential, randomised, multicentre examine. Lancet 395, 1208–1216 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klingenberg, S. et al. (68)Ga-PSMA PET/CT for major lymph node and distant metastasis nm staging of high-risk prostate most cancers. J. Nucl. Med 62, 214–220 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ku, S. Y. et al. Rb1 and Trp53 cooperate to suppress prostate most cancers lineage plasticity, metastasis, and antiandrogen resistance. Science 355, 78–83 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labbé, D. P. et al. TOP2A and EZH2 present early detection of an aggressive prostate most cancers subgroup. Clin. Most cancers Res 23, 7072–7083 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyquist, M. D. et al. Mixed TP53 and RB1 loss promotes prostate most cancers resistance to a spectrum of therapeutics and confers vulnerability to replication stress. Cell Rep. 31, 107669 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamid, A. A. et al. Compound genomic alterations of TP53, PTEN, and RB1 tumor suppressors in localized and metastatic prostate most cancers. Eur. Urol. 76, 89–97 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langille, M. G. et al. Predictive useful profiling of microbial communities utilizing 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moussa, H. et al. Omega-3 Fatty Acids Survey in Males below Lively Surveillance for Prostate Most cancers: from Consumption to Prostate Tissue Stage. Vitamins 11, https://doi.org/10.3390/nu11071616 (2019).

  • Moreel, X. et al. Prostatic and dietary omega-3 fatty acids and prostate most cancers development throughout energetic surveillance. Most cancers Prev. Res (Philos.) 7, 766–776 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Watt, M. J. et al. Suppressing fatty acid uptake has therapeutic results in preclinical fashions of prostate most cancers. Sci Transl Med 11, https://doi.org/10.1126/scitranslmed.aau5758 (2019).

  • Pelser, C., Mondul, A. M., Hollenbeck, A. R. & Park, Y. Dietary fats, fatty acids, and threat of prostate most cancers within the NIH-AARP eating regimen and well being examine. Most cancers Epidemiol. Biomark. Prev. 22, 697–707 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Bidu, C. et al. The transplantation of omega3 PUFA-altered intestine microbiota of fat-1 mice to wild-type littermates prevents weight problems and related metabolic problems. Diabetes 67, 1512–1523 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaliannan, Ok., Wang, B., Li, X. Y., Kim, Ok. J. & Kang, J. X. A number-microbiome interplay mediates the opposing results of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci. Rep. 5, 11276 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guertin, M. H. et al. Results of concentrated long-chain omega-3 polyunsaturated fatty acid supplementation earlier than radical prostatectomy on prostate most cancers proliferation, irritation, and high quality of life: examine protocol for a section IIb, randomized, double-blind, placebo-controlled trial. BMC Most cancers 18, 64 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper, C. S. et al. Evaluation of the genetic phylogeny of multifocal prostate most cancers identifies a number of unbiased clonal expansions in neoplastic and morphologically regular prostate tissue. Nat. Genet 47, 367–372 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Epstein, J. I., Amin, M. B., Reuter, V. E. & Humphrey, P. A. Up to date gleason grading of prostatic carcinoma: an replace with dialogue on sensible points to implement the 2014 worldwide society of urological pathology (ISUP) consensus convention on gleason grading of prostatic carcinoma. Am. J. Surg. Pathol. 41, e1–e7 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Epstein, J. I. et al. The 2014 worldwide society of urological pathology (ISUP) consensus convention on gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a brand new grading system. Am. J. Surg. Pathol. 40, 244–252 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Epstein, J. I. et al. A recent prostate most cancers grading system: a validated various to the gleason rating. Eur. Urol. 69, 428–435 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Hennes, D. et al. The modified Worldwide Society of Urological Pathology system improves concordance between biopsy and prostatectomy tumour grade. BJU Int 128, 45–51 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Nunzio, C. et al. The brand new Epstein gleason rating classification considerably reduces upgrading in prostate most cancers sufferers. Eur. J. Surg. Oncol. 44, 835–839 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Corcoran, N. M. et al. Improve in Gleason rating between prostate biopsies and pathology following radical prostatectomy considerably impacts upon the chance of biochemical recurrence. BJU Int 108, E202–E210 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Fan, Y. & Pedersen, O. Intestine microbiota in human metabolic well being and illness. Nat. Rev. Microbiol 19, 55–71 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coutzac, C. et al. Systemic brief chain fatty acids restrict antitumor impact of CTLA-4 blockade in hosts with most cancers. Nat. Commun. 11, 2168 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsushita, M. et al. Intestine microbiota-derived short-chain fatty acids promote prostate most cancers progress through IGF-1 signaling. Most cancers Res https://doi.org/10.1158/0008-5472.CAN-20-4090 (2021).

  • Riquelme, E. et al. Tumor microbiome variety and composition affect pancreatic most cancers outcomes. Cell 178, 795–806.e712 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emami, N. & Diamandis, E. P. New insights into the useful mechanisms and scientific functions of the kallikrein-related peptidase household. Mol. Oncol. 1, 269–287 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamasaki, Ok. et al. Kallikrein-mediated proteolysis regulates the antimicrobial results of cathelicidins in pores and skin. FASEB J. 20, 2068–2080 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edstrom, A. M. et al. The key bactericidal exercise of human seminal plasma is zinc-dependent and derived from fragmentation of the semenogelins. J. Immunol. 181, 3413–3421 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Muytjens, C. M., Vasiliou, S. Ok., Oikonomopoulou, Ok., Prassas, I. & Diamandis, E. P. Putative capabilities of tissue kallikrein-related peptidases in vaginal fluid. Nat. Rev. Urol. 13, 596–607 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edstrom Hagerwall, A. M. et al. beta-Microseminoprotein endows put up coital seminal plasma with potent candidacidal exercise by a calcium- and pH-dependent mechanism. PLoS Pathog. 8, e1002625 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heidler, S. et al. The correlation of prostate quantity and prostate-specific antigen ranges with optimistic bacterial prostate tissue cultures. Urology 115, 151–156 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Foster, B. A., Gingrich, J. R., Kwon, E. D., Madias, C. & Greenberg, N. M. Characterization of prostatic epithelial cell strains derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) mannequin. Most cancers Res 57, 3325–3330 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Fassarella, M. et al. Intestine microbiome stability and resilience: elucidating the response to perturbations with a view to modulate. Intestine well being Intestine 70, 595–605 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Costea, P. I. et al. Enterotypes within the panorama of intestine microbial neighborhood composition. Nat. Microbiol 3, 8–16 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ericsson, A. C. et al. Results of vendor and genetic background on the composition of the fecal microbiota of inbred mice. PLoS One 10, e0116704 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manzano, R. G., Catalan-Latorre, A. & Brugarolas, A. RB1 and TP53 co-mutations correlate strongly with genomic biomarkers of response to immunity checkpoint inhibitors in urothelial bladder most cancers. BMC Most cancers 21, 432 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, X. et al. Phosphorylated RB promotes most cancers immunity by inhibiting NF-kappaB activation and PD-L1 expression. Mol. Cell 73, 22–35.e26 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gevariya, N. et al. Omega-3 eicosapentaenoic acid reduces prostate tumor vascularity. Mol. Most cancers Res. 19, 516–527 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menni, C. et al. Omega-3 fatty acids correlate with intestine microbiome variety and manufacturing of N-carbamylglutamate in center aged and aged girls. Sci. Rep. 7, 11079 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, T. A. & Ley, R. E. The function of the microbiota in human genetic adaptation. Science 370, https://doi.org/10.1126/science.aaz6827 (2020).

  • Miyamoto, J. et al. Intestine microbiota confers host resistance to weight problems by metabolizing dietary polyunsaturated fatty acids. Nat. Commun. 10, 4007 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watson, H. et al. A randomised trial of the impact of omega-3 polyunsaturated fatty acid dietary supplements on the human intestinal microbiota. Intestine 67, 1974–1983 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vijay, A., Astbury, S., Le Roy, C., Spector, T. D. & Valdes, A. M. The prebiotic results of omega-3 fatty acid supplementation: a six-week randomised intervention trial. Intestine Microbes 13, 1–11 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ribeiro-Vidal, H. et al. Antimicrobial Exercise of EPA and DHA towards Oral Pathogenic Micro organism Utilizing an In Vitro Multi-Species Subgingival Biofilm Mannequin. Vitamins 12, https://doi.org/10.3390/nu12092812 (2020).

  • Coraca-Huber, D. C., Steixner, S., Wurm, A. & Nogler, M. Antibacterial and anti-biofilm exercise of Omega-3 polyunsaturated fatty acids towards periprosthetic joint infections-isolated multi-drug resistant strains. Biomedicines 9, https://doi.org/10.3390/biomedicines9040334 (2021).

  • Motta, J. P., Wallace, J. L., Buret, A. G., Deraison, C. & Vergnolle, N. Gastrointestinal biofilms in well being and illness. Nat. Rev. Gastroenterol. Hepatol. 18, 314–334 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gopalakrishnan, V. et al. Intestine microbiome modulates response to anti-PD-1 immunotherapy in melanoma sufferers. Science 359, 97–103 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Akrami, M. et al. Circulation of gut-preactivated naive CD8(+) T cells enhances antitumor immunity in B cell-defective mice. Proc. Natl Acad. Sci. USA 117, 23674–23683 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schluter, J. et al. An affiliation between the intestine microbiota and immune cell dynamics in people. BioRxiv https://doi.org/10.1101/618256 (2020).

  • Louis, P., Maintain, G. L. & Flint, H. J. The intestine microbiota, bacterial metabolites and colorectal most cancers. Nat. Rev. Microbiol 12, 661–672 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irrazabal, T., Belcheva, A., Girardin, S. E., Martin, A. & Philpott, D. J. The multifaceted function of the intestinal microbiota in colon most cancers. Mol. Cell 54, 309–320 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okumura, S. et al. Intestine micro organism recognized in colorectal most cancers sufferers promote tumourigenesis through butyrate secretion. Nat. Commun. 12, 5674 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davidsson, S. et al. CD4 helper T cells, CD8 cytotoxic T cells, and FOXP3(+) regulatory T cells with respect to deadly prostate most cancers. Mod. Pathol. 26, 448–455 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flammiger, A. et al. Excessive tissue density of FOXP3+ T cells is related to scientific final result in prostate most cancers. Eur. J. Most cancers 49, 1273–1279 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anhe, F. F. et al. A polyphenol-rich cranberry extract protects from diet-induced weight problems, insulin resistance and intestinal irritation in affiliation with elevated Akkermansia spp. inhabitants within the intestine microbiota of mice. Intestine 64, 872–883 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chong, J., Liu, P., Zhou, G. & Xia, J. Utilizing MicrobiomeAnalyst for complete statistical, useful, and meta-analysis of microbiome information. Nat. Protoc. 15, 799–821 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical evaluation of taxonomic and useful profiles. Bioinformatics 30, 3123–3124 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hot Topics

    Related Articles