Guan, X. Most cancers metastases: challenges and alternatives. Acta Pharm. Sin. B 5, 402–418 (2015).
Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).
Fidler, I. J. & Nicolson, G. L. Organ selectivity for implantation survival and progress of B16 melanoma variant tumor strains. J. Natl Most cancers Inst. 57, 1199–1202 (1976).
Paget, S. The distribution of secondary growths in most cancers of the breast. 1889. Most cancers Metast. Rev. 8, 98–101 (1989).
Paget, S. The distribution of secondary growths in most cancers of the breast. Lancet 133, 571–573 (1889).
Hart, I. R. & Fidler, I. J. Position of organ selectivity within the dedication of metastatic patterns of B16 melanoma. Most cancers Res. 40, 2281 (1980).
Welch, D. R. & Hurst, D. R. Defining the hallmarks of metastasis. Most cancers Res. 79, 3011–3027 (2019).
Liu, Y. & Cao, X. Traits and significance of the pre-metastatic area of interest. Most cancers Cell 30, 668–681 (2016).
Chin, A. R. & Wang, S. E. Most cancers tills the premetastatic discipline: mechanistic foundation and medical implications. Clin. Most cancers Res. 22, 3725–3733 (2016).
Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors provoke the pre-metastatic area of interest. Nature 438, 820–827 (2005).
Sleeman, J. P. The metastatic area of interest and stromal development. Most cancers Metast. Rev. 31, 429–440 (2012).
Hsu, Y. et al. Bone-marrow-derived cell-released extracellular vesicle miR-92a regulates hepatic pre-metastatic area of interest in lung most cancers. Oncogene 39, 739–753 (2020).
Guo, Y. et al. Results of exosomes on pre-metastatic area of interest formation in tumors. Mol. Most cancers 18, 39 (2019).
Wang, Y., Ding, Y., Guo, N. & Wang, S. MDSCs: key criminals of tumor pre-metastatic area of interest formation. Entrance. Immunol. 10, 172 (2019).
Giles, A. J. et al. Activation of hematopoietic stem/progenitor cells promotes immunosuppression throughout the pre-metastatic area of interest. Most cancers Res. 76, 1335–1347 (2016).
Parton, R. G. & Martin, S. Lipid droplets: a unified view of a dynamic organelle. Nat. Rev. Mol. Cell Biol. 7, 373–378 (2006).
Cruz, A. L. S., Barreto, E. D. A., Fazolini, N. P. B., Viola, J. P. B. & Bozza, P. T. Lipid droplets: platforms with a number of capabilities in most cancers hallmarks. Cell Dying Dis. 11, 105 (2020).
Thiam, A. R., Farese, J. R. V. & Walther, T. C. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 14, 775–786 (2013).
Itabe, H., Yamaguchi, T., Nimura, S. & Sasabe, N. Perilipins: a range of intracellular lipid droplet proteins. Lipids Well being Dis. 16, 83 (2017).
Aboumrad, M. H., Horn, R. J. & Superb, G. Lipid-secreting mammary carcinoma. Report of a case related to Paget’s illness of the nipple. Most cancers-Am. Most cancers Soc. 16, 521–525 (1963).
Wright, D. H. Lipid content material of malignant lymphomas. J. Clin. Pathol. 21, 643–649 (1968).
Accioly, M. T. et al. Lipid our bodies are reservoirs of cyclooxygenase-2 and websites of prostaglandin-E2 synthesis in colon most cancers cells. Most cancers Res. 68, 1732–1740 (2008).
Bozza, P. T. & Viola, J. P. B. Lipid droplets in irritation and most cancers. Prostaglandins Leukot. Essent. Fats. Acids (PLEFA) 82, 243–250 (2010).
Olzmann, J. A. & Carvalho, P. Dynamics and capabilities of lipid droplets. Nat. Rev. 20, 137–155 (2018).
den Brok, M. H., Raaijmakers, T. Ok., Collado-Camps, E. & Adema, G. J. Lipid droplets as immune modulators in myeloid cells. Developments Immunol. 39, 380–392 (2018).
Nath, A. & Chan, C. Genetic alterations in fatty acid transport and metabolism genes are related to metastatic development and poor prognosis of human cancers. Sci. Rep. -UK 6, 18669 (2016).
Shang, C. et al. LNMICC promotes nodal metastasis of cervical most cancers by reprogramming fatty acid metabolism. Most cancers Res. 78, 877–890 (2018).
Lengthy, A. P. et al. Lipid droplet de novo formation and fission are linked to the cell cycle in fission yeast. Visitors 13, 705–714 (2012).
Pol, A., Gross, S. P. & Parton, R. G. Overview: biogenesis of the multifunctional lipid droplet: lipids, proteins, and websites. J. Cell Biol. 204, 635 (2014).
Wilfling, F., Haas, J. T., Walther, T. C. & Farese, R. V. Jr Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29, 39–45 (2014).
Robenek, M. J. et al. Lipids partition caveolin‐1 from ER membranes into lipid droplets: updating the mannequin of lipid droplet biogenesis. FASEB J. 18, 866–868 (2004).
Murphy, D. J. & Vance, J. Mechanisms of lipid-body formation. Developments Biochem. Sci. 24, 109–115 (1999).
Robenek, H. et al. Adipophilin-enriched domains within the ER membrane are websites of lipid droplet biogenesis. J. Cell Sci. 119, 4215–4224 (2006).
Wan, H. C., Melo, R. C. N., Jin, Z., Dvorak, A. M. & Weller, P. F. Roles and origins of leukocyte lipid our bodies: proteomic and ultrastructural research. FASEB J. 21, 167–178 (2006).
Bozza, P. T., Magalhães, Ok. G. & Weller, P. F. Leukocyte lipid our bodies—biogenesis and capabilities in irritation. Biochim. Biophys. Acta (BBA) – Mol. Cell Biol. Lipids 1791, 540–551 (2009).
Suzuki, M., Shinohara, Y., Ohsaki, Y. & Fujimoto, T. Lipid droplets: dimension issues. Microscopy 60, S101–S116 (2011).
Yang, H., Galea, A., Sytnyk, V. & Crossley, M. Controlling the dimensions of lipid droplets: lipid and protein components. Curr. Opin. Cell Biol. 24, 509–516 (2012).
Berndt, N. et al. Characterization of lipid and lipid droplet metabolism in human HCC. Cells 8, 512 (2019).
Li, F. F. et al. Interplay with adipocytes induces lung adenocarcinoma A549 cell migration and tumor progress. Mol. Med. Rep. 18, 1973–1980 (2018).
Hinson, E. R. & Cresswell, P. The antiviral protein, viperin, localizes to lipid droplets by way of its N-terminal amphipathic alpha-helix. Proc. Natl Acad. Sci. USA 106, 20452–20457 (2009).
Prévost, C. et al. Mechanism and determinants of amphipathic helix-containing protein focusing on to lipid droplets. Dev. Cell. 44, 73–86 (2018).
Gong, J. et al. Fsp27 promotes lipid droplet progress by lipid alternate and switch at lipid droplet contact websites. J. Cell Biol. 195, 953–963 (2011).
Krahmer, N. et al. Phosphatidylcholine synthesis for lipid droplet growth is mediated by localized activation of CTP: phosphocholine cytidylyltransferase. Cell Metab. 14, 504–515 (2011).
Dvorak, A. M. et al. Lipid our bodies: cytoplasmic organelles vital to arachidonate metabolism in macrophages and mast cells. J. Immunol. 131, 2965–2976 (1983).
Weller, P. F., Ackerman, S. J., Nicholson-Weller, A. & Dvorak, A. M. Cytoplasmic lipid our bodies of human neutrophilic leukocytes. Am. J. Pathol. 135, 947–959 (1989).
Melo, R. C. N., Fabrino, D. L., Dias, F. F. & Parreira, G. G. Lipid our bodies: structural markers of inflammatory macrophages in innate immunity. Inflamm. Res. 55, 342–348 (2006).
Bose, D. et al. Inhibition of TGF-β induced lipid droplets switches M2 macrophages to M1 phenotype. Toxicol. Vitr. 58, 207–214 (2019).
Umamaheswaran, S., Dasari, S. Ok., Yang, P., Lutgendorf, S. Ok. & Sood, A. Ok. Stress, irritation, and eicosanoids: an rising perspective. Most cancers Metastasis Rev. 37, 203–211 (2018).
Wang, D. & DuBois, R. N. Eicosanoids and most cancers. Nat. Rev. Most cancers 10, 181–193 (2010).
Chen, L. et al. cPLA2α mediates TGF-β-induced epithelial–mesenchymal transition in breast most cancers by PI3k/Akt signaling. Cell Dying Dis. 8, e2728 (2017).
Yu, W. et al. Co-compartmentalization of MAP kinases and cytosolic phospholipase A2 at cytoplasmic arachidonate-rich lipid our bodies. Am. J. Pathol. 152, 759–769 (1998).
Wculek, S. Ok. & Malanchi, I. Neutrophils assist lung colonization of metastasis-initiating breast most cancers cells. Nature 528, 413–417 (2015).
McLemore, T. L. et al. Profiles of prostaglandin biosynthesis in regular lung and tumor tissue from lung most cancers sufferers. Most cancers Res. 48, 3140 (1988).
LIU, S. et al. Vascular endothelial progress issue performs a crucial position within the formation of the pre-metastatic area of interest by way of prostaglandin E2. Oncol. Rep. 32, 2477–2484 (2014).
Greenhough, A. et al. The COX-2/PGE2 pathway: key roles within the hallmarks of most cancers and adaptation to the tumour microenvironment. Carcinogenesis 30, 377–386 (2009).
Tunset, H. M., Feuerherm, A. J., Selvik, L. M., Johansen, B. & Moestue, S. A. Cytosolic phospholipase A2 alpha regulates TLR signaling and migration in metastatic 4T1 cells. Int. J. Mol. Sci. 20, 4800 (2019).
Melo, R. C. N. et al. Lipid our bodies in inflammatory cells: construction, perform, and present imaging strategies. J. Histochem. Cytochem. 59, 540–556 (2011).
Gupta, G. P. et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765–770 (2007).
Roulin, Ok. et al. The fatty acid-binding heterocomplex FA-p34 shaped by S100A8 and S100A9 is the main fatty acid service in neutrophils and translocates from the cytosol to the membrane upon stimulation. Exp. Cell Res. 247, 410–421 (1999).
Watanabe, A. et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic section. Nat. Cell Biol. 10, 1349–1355 (2008).
Tomita, T., Sakurai, Y., Ishibashi, S. & Maru, Y. Imbalance of Clara cell-mediated homeostatic irritation is concerned in lung metastasis. Oncogene 30, 3429–3439 (2011).
Kitamura, T., Qian, B. & Pollard, J. W. Immune cell promotion of metastasis. Nat. Rev. Immunol. 15, 73–86 (2015).
Liu, Y. & Cao, X. Immunosuppressive cells in tumor immune escape and metastasis. J. Mol. Med. 94, 509–522 (2016).
den Brok, M. H. et al. Saponin-based adjuvants induce cross-presentation in dendritic cells by intracellular lipid physique formation. Nat. Commun. 7, 13324 (2016).
Herber, D. L. et al. Lipid accumulation and dendritic cell dysfunction in most cancers. Nat. Med. 16, 880–886 (2010).
Zhang, Y. et al. Fatty acid-binding protein E-FABP restricts tumor progress by selling IFN-beta responses in tumor-associated macrophages. Most cancers Res. 74, 2986–2998 (2014).
Wright, H. J. et al. CDCP1 drives triple-negative breast most cancers metastasis by discount of lipid-droplet abundance and stimulation of fatty acid oxidation. Proc. Natl Acad. Sci. USA 114, E6556–E6565 (2017).
Lucenay, Ok. S. et al. Cyclin E associates with the lipogenic enzyme ATP-citrate lyase to allow malignant progress of breast most cancers cells. Most cancers Res. 76, 2406–2418 (2016).
Cotte, A. Ok. et al. Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet manufacturing helps colorectal most cancers chemoresistance. Nat. Commun. 9, 322 (2018).
Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol. 188, 21–28 (2011).
Hossain, F. et al. Inhibition of fatty acid oxidation modulates immunosuppressive capabilities of myeloid-derived suppressor cells and enhances most cancers therapies. Most cancers Immunol. Res. 3, 1236–1247 (2015).
Al-Khami, A. A. et al. Exogenous lipid uptake induces metabolic and useful reprogramming of tumor-associated myeloid-derived suppressor cells. OncoImmunology 6, e1344804 (2017).
Wu, H. et al. Oleate however not stearate induces the regulatory phenotype of myeloid suppressor cells. Sci. Rep.-UK 7, 7498 (2017).
Eisenblaetter, M. et al. Visualization of tumor-immune interplay—target-specific imaging of S100A8/A9 reveals pre-metastatic area of interest institution. Theranostics 7, 2392–2401 (2017).
He, Y. et al. Transitory presence of myeloid-derived suppressor cells in neonates is crucial for management of irritation. Nat. Med. 24, 224–231 (2018).
Prima, V., Kaliberova, L. N., Kaliberov, S., Curiel, D. T. & Kusmartsev, S. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc. Natl Acad. Sci. USA 114, 1117–1122 (2017).
Goc, J. et al. Dendritic cells in tumor-associated tertiary lymphoid buildings sign a Th1 cytotoxic immune contexture and license the optimistic prognostic worth of infiltrating CD8+ T cells. Most cancers Res. 74, 705–715 (2014).
Bougnères, L. et al. A task for lipid our bodies within the cross-presentation of phagocytosed antigens by MHC Class I in dendritic cells. Immunity 31, 232–244 (2009).
Stoth, M. et al. Splenectomy reduces lung metastases and tumoral and metastatic area of interest irritation. Int. J. Most cancers 145, 2509–2520 (2019).
Ogawa, F. et al. Prostanoid induces premetastatic area of interest in regional lymph nodes. J. Clin. Investig. 124, 4882–4894 (2014).
Ramakrishnan, R. et al. Oxidized lipids block antigen cross-presentation by dendritic cells in most cancers. J. Immunol. 192, 2920–2931 (2014).
Veglia, F. et al. Lipid our bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in most cancers. Nat. Commun. 8, 2116–2122 (2017).
Chen, X. W. et al. CYP4A in tumor-associated macrophages promotes pre-metastatic area of interest formation and metastasis. Oncogene 36, 5045–5057 (2017).
Wu, H. et al. Lipid droplet‐dependent fatty acid metabolism controls the immune suppressive phenotype of tumor‐related macrophages. EMBO Mol. Med. 11, e10698 (2019).
Zhang, Y. et al. Fatty acid-binding protein E-FABP restricts tumor progress by selling IFN-responses in tumor-associated macrophages. Most cancers Res. 74, 2986–2998 (2014).
Niu, Z. et al. Caspase-1 cleaves PPARγ for potentiating the pro-tumor motion of TAMs. Nat. Commun. 8, 766 (2017).
Li, S. et al. Lipopolysaccharide induces irritation and facilitates lung metastasis in a breast most cancers mannequin by way of the prostaglandin E2-EP2 pathway. Mol. Med. Rep. 11, 4454–4462 (2015).
Seguin, F. et al. The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16-F10 melanomas. Br. J. Most cancers 107, 977–987 (2012).
Li, Y. et al. Lipid droplets might lay a spacial basis for vasculogenic mimicry formation in hepatocellular carcinoma. Med. Hypotheses 83, 56–59 (2014).
Kukla, M. et al. Affiliation between liver steatosis and angiogenesis in continual hepatitis C. Pol. J. Pathol. 61, 154–160 (2010).
Ju, R. J. et al. Liposomes, modified with PTD (HIV-1) peptide, containing epirubicin and celecoxib, to focus on vasculogenic mimicry channels in invasive breast most cancers. Biomaterials 35, 7610–7621 (2014).
Borin, T., Angara, Ok., Rashid, M., Achyut, B. & Arbab, A. Arachidonic acid metabolite as a novel therapeutic goal in breast most cancers metastasis. Int. J. Mol. Sci. 18, 2661 (2017).
Huang, Y. et al. Pulmonary vascular destabilization within the premetastatic section facilitates lung metastasis. Most cancers Res. 69, 7529–7537 (2009).
Bovay, E. et al. A number of roles of lymphatic vessels in peripheral lymph node improvement. J. Exp. Med. 215, 2760–2777 (2018).
Ye, Y., Liu, S., Wu, C. & Solar, Z. TGFβ modulates inflammatory cytokines and progress components to create premetastatic microenvironment and stimulate lung metastasis. J. Mol. Histol. 46, 365–375 (2015).
Wong, B. W. et al. The position of fatty acid β-oxidation in lymphangiogenesis. Nature 542, 49–54 (2017).
Bastos, D. C. et al. Results of fatty acid synthase inhibitors on lymphatic vessels: an in vitro and in vivo examine in a melanoma mannequin. Lab. Investig. 97, 194–206 (2017).
Lala, P. Ok., Nandi, P. & Majumder, M. Roles of prostaglandins in tumor-associated lymphangiogenesis with particular reference to breast most cancers. Most cancers Metast. Rev. 37, 369–384 (2018).
Nandi, P. et al. PGE2 promotes breast cancer-associated lymphangiogenesis by activation of EP4 receptor on lymphatic endothelial cells. BMC Most cancers 17, 11 (2017).
Xin, X. et al. Concentrating on COX-2 and EP4 to regulate tumor progress, angiogenesis, lymphangiogenesis and metastasis to the lungs and lymph nodes in a breast most cancers mannequin. Lab. Investig. 92, 1115–1128 (2012).
Boschi, F., Rizzatti, V., Zamboni, M. & Sbarbati, A. Fashions of lipid droplets progress and fission in adipocyte cells. Exp. Cell Res. 336, 253–262 (2015).
Jung, J. I. et al. Excessive-fat diet-induced weight problems will increase lymphangiogenesis and lymph node metastasis within the B16F10 melanoma allograft mannequin: roles of adipocytes and M2-macrophages. Int. J. Most cancers 136, 258–270 (2015).
Gao, Y. et al. Metastasis organotropism: redefining the congenial soil. Dev. Cell 49, 375–391 (2019).
Pascual, G. et al. Concentrating on metastasis-initiating cells by the fatty acid receptor CD36. Nature 541, 41–45 (2016).
Ladanyi, A. et al. Adipocyte-induced CD36 expression drives ovarian most cancers development and metastasis. Oncogene 37, 2285–2301 (2018).
Chkourko Gusky, H., Diedrich, J., MacDougald, O. A. & Podgorski, I. Omentum and bone marrow: how adipocyte-rich organs create tumour microenvironments conducive for metastatic development. Obes. Rev. 17, 1015–1029 (2016).
Suetsugu, A. et al. Imaging the interplay of pancreatic most cancers and stellate cells within the tumor microenvironment throughout metastasis. Anticancer Res. 35, 2545 (2015).
Thomas, D. & Radhakrishnan, P. Pancreatic stellate cells: the important thing orchestrator of the pancreatic tumor microenvironment. Adv. Exp. Med. Biol. 1234, 57 (2020).
Hata, T. et al. Fatty acid–mediated stromal reprogramming of pancreatic stellate cells induces irritation and fibrosis that fuels pancreatic most cancers. Pancreas 46, 1259–1266 (2017).
Mikuriya, Y. et al. Fatty liver creates a pro-metastatic microenvironment for hepatocellular carcinoma by activation of hepatic stellate cells. Int. J. Most cancers 136, E3–E13 (2015).
Shah, T., Wildes, F., Kakkad, S., Artemov, D. & Bhujwalla, Z. M. Lymphatic endothelial cells actively regulate prostate most cancers cell invasion. NMR Biomed. 29, 904–911 (2016).
Deep, G. et al. Exosomes secreted by prostate most cancers cells underneath hypoxia promote matrix metalloproteinases exercise at pre-metastatic niches. Mol. Carcinog. 59, 323–332 (2020).
Costa-Silva, B. et al. Pancreatic most cancers exosomes provoke pre-metastatic area of interest formation within the liver. Nat. Cell Biol. 17, 816–826 (2015).
Corbet, C. et al. TGFβ2-induced formation of lipid droplets helps acidosis-driven EMT and the metastatic spreading of most cancers cells. Nat. Commun. 11, 454 (2020).
Thews, O. & Riemann, A. Tumor pH and metastasis: a malignant course of past hypoxia. Most cancers Metast. Rev. 38, 113–129 (2019).
Hoshino, A. et al. Tumour exosome integrins decide organotropic metastasis. Nature 527, 329 (2015).
Li, J. et al. An omega-3 polyunsaturated fatty acid spinoff, 18-HEPE, protects in opposition to CXCR4-associated melanoma metastasis. Carcinogenesis 39, 1380–1388 (2018).
Pan, M., Hou, M., Chang, H. & Hung, W. Cyclooxygenase-2 up-regulates CCR7 by way of EP2/EP4 receptor signaling pathways to boost lymphatic invasion of breast most cancers cells. J. Biol. Chem. 283, 11155–11163 (2008).
Panigrahy, D. et al. Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. J. Clin. Investig. 122, 178–191 (2012).
Sosnoski, D. M., Norgard, R. J., Grove, C. D., Foster, S. J. & Mastro, A. M. Dormancy and progress of metastatic breast most cancers cells in a bone-like microenvironment. Clin. Exp. Metast. 32, 335–344 (2015).
Zhang, C., Li, J., Lan, L. & Cheng, J. Quantification of lipid metabolism in dwelling cells by the dynamics of lipid droplets measured by stimulated raman scattering imaging. Anal. Chem. 89, 4502–4507 (2017).
Li, J. et al. Abrogating ldl cholesterol esterification suppresses progress and metastasis of pancreatic most cancers. Oncogene 35, 6378–6388 (2016).
Lee, H. J. et al. Ldl cholesterol esterification inhibition suppresses prostate most cancers metastasis by impairing the Wnt/β-catenin pathway. Mol. Most cancers Res. 16, 974–985 (2018).
Carvalho, M. A. et al. Fatty acid synthase inhibition with Orlistat promotes apoptosis and reduces cell progress and lymph node metastasis in a mouse melanoma mannequin. Int. J. Most cancers 123, 2557–2565 (2008).

