T cell dysfunction and therapeutic intervention in most cancers


  • Ehrlich, P. Ueber den jetzigen Stand der Karzinomforschung. Ned. Tijdschr. Genees. 53, 273–290 (1908).

  • Thomas, L. Mobile and Humoral Points of the Hypersenstive States (ed. Lawrence, H.) 529–532 (Hoeber-Harper, 1959).

  • Shankaran, V. et al. IFNγ and lymphocytes stop main tumour growth and form tumour immunogenicity. Nature 410, 1107–1111 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zehn, D. & Bevan, M. J. T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and trigger autoimmunity. Immunity 25, 261–270 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunet, J. F. et al. A brand new member of the immunoglobulin superfamily—CTLA-4. Nature 328, 267–270 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing results on the response of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wing, Ok. et al. CTLA-4 management over Foxp3+ regulatory T cell operate. Science 322, 271–275 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zappasodi, R. et al. CTLA-4 blockade drives lack of Treg stability in glycolysis-low tumours. Nature 591, 652–658 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishida, Y., Agata, Y., Shibahara, Ok. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell loss of life. EMBO J. 11, 3887–3895 (1992).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, H., Zhu, G., Tamada, Ok. & Chen, L. B7-H1, a 3rd member of the B7 household, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5, 1365–1369 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 member of the family results in unfavorable regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larkin, J. et al. Mixed nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woo, S. R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell operate to advertise tumoral immune escape. Most cancers Res. 72, 917–927 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, A. C., Joller, N. & Kuchroo, V. Ok. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialised features in immune regulation. Immunity 44, 989–1004 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated superior melanoma. N. Engl. J. Med. 386, 24–34 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muul, L. M., Spiess, P. J., Director, E. P. & Rosenberg, S. A. Identification of particular cytolytic immune responses in opposition to autologous tumor in people bearing malignant melanoma. J. Immunol. 138, 989–995 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mullard, A. FDA approves first tumour-infiltrating lymphocyte (TIL) remedy, bolstering hopes for cell therapies in strong cancers. Nat. Rev. Drug Discov. 23, 238 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robbins, P. F. et al. A pilot trial utilizing lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Most cancers Res. 21, 1019–1027 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Imai, C. et al. Chimeric receptors with 4-1BB signaling capability provoke potent cytotoxicity in opposition to acute lymphoblastic leukemia. Leukemia 18, 676–684 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krause, A. et al. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human main T lymphocytes. J. Exp. Med. 188, 619–626 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, D. J., Arany, Z., Baur, J. A., Epstein, J. A., & June, C. H. CAR T remedy past most cancers: the evolution of a residing drug. Nature 619, 707–715 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • June, C. H. & Sadelain, M. Chimeric antigen receptor remedy. N. Engl. J. Med. 379, 64–73 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. H. et al. Lengthy-term follow-up of CD19 CAR remedy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449–459 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maude, S. L. et al. Tisagenlecleucel in youngsters and younger adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez-Otero, P. et al. Ide-cel or normal regimens in relapsed and refractory a number of myeloma. N. Engl. J. Med. 388, 1002–1014 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zebley, C. C. et al. CD19-CAR T cells endure exhaustion DNA methylation programming in sufferers with acute lymphoblastic leukemia. Cell Rep. 37, 110079 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cappell, Ok. M. & Kochenderfer, J. N. Lengthy-term outcomes following CAR T cell remedy: what we all know thus far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albelda, S. M. CAR T cell remedy for sufferers with strong tumours: key classes to study and unlearn. Nat. Rev. Clin. Oncol. 21, 47–66 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Prinzing, B. et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor exercise. Sci. Transl. Med. 13, eabh0272 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell, M. et al. Modular chimeric cytokine receptors with leucine zippers improve the antitumour exercise of CAR T cells through JAK/STAT signalling. Nat. Biomed. Eng. 8, 380–396 (2023).

  • Wei, J. et al. Focusing on REGNASE-1 packages long-lived effector T cells for most cancers remedy. Nature 576, 471–476 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Repair, S. M., Jazaeri, A. A. & Hwu, P. Purposes of CRISPR genome enhancing to advance the following technology of adoptive cell therapies for most cancers. Most cancers Discov. 11, 560–574 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, M. J. et al. Most cancers vaccines: the following immunotherapy frontier. Nat. Most cancers 3, 911–926 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sellars, M. C., Wu, C. J. & Fritsch, E. F. Most cancers vaccines: constructing a bridge over troubled waters. Cell 185, 2770–2788 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zajac, A. J. et al. Viral immune evasion because of persistence of activated T cells with out effector operate. J. Exp. Med. 188, 2205–2213 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized utilizing soluble tetrameric main histocompatibility complicated class I–peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R. M. Virus persistence in acutely contaminated immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362, 758–761 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wherry, E. J., Blattman, J. N., Murali-Krishna, Ok., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and ends in distinct phases of useful impairment. J. Virol. 77, 4911–4927 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barber, D. L. et al. Restoring operate in exhausted CD8 T cells throughout continual viral an infection. Nature 439, 682–687 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pantaleo, G. & Koup, R. A. Correlates of immune safety in HIV-1 an infection: what we all know, what we don’t know, what we must always know. Nat. Med. 10, 806–810 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Letvin, N. L. & Walker, B. D. Immunopathogenesis and immunotherapy in AIDS virus infections. Nat. Med. 9, 861–866 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rehermann, B. & Nascimbeni, M. Immunology of hepatitis B virus and hepatitis C virus an infection. Nat. Rev. Immunol. 5, 215–229 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Day, C. L. et al. PD-1 expression on HIV-specific T cells is related to T-cell exhaustion and illness development. Nature 443, 350–354 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion throughout continual viral an infection. Immunity 27, 670–684 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zehn, D., Thimme, R., Lugli, E., de Almeida, G. P. & Oxenius, A. ‘Stem-like’ precursors are the fount to maintain persistent CD8+ T cell responses. Nat. Immunol. 23, 836–847 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamphorst, A. O. et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355, 1423–1427 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hui, E. et al. T cell costimulatory receptor CD28 is a main goal for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Youngblood, B. et al. Power virus an infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8+ T cells. Immunity 35, 400–412 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghoneim, H. E. et al. De novo epigenetic packages inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sen, D. R. et al. The epigenetic panorama of T cell exhaustion. Science 354, 1165–1169 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pauken, Ok. E. et al. Epigenetic stability of exhausted T cells limits sturdiness of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Philip, M. et al. Chromatin states outline tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tempo, L. et al. The epigenetic management of stemness in CD8+ T cell destiny dedication. Science 359, 177–186 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grey, S. M., Amezquita, R. A., Guan, T., Kleinstein, S. H. & Kaech, S. M. Polycomb repressive complicated 2-mediated chromatin repression guides effector CD8+ T cell terminal differentiation and lack of multipotency. Immunity 46, 596–608 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early throughout tumorigenesis. Immunity 45, 389–401 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sade-Feldman, M. et al. Defining T cell states related to response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pelka, Ok. et al. Spatially organized multicellular immune hubs in human colorectal most cancers. Cell 184, 4734–4752 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simoni, Y. et al. Bystander CD8+ T cells are plentiful and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoekstra, M. E. et al. Lengthy-distance modulation of bystander tumor cells by CD8+ T cell-secreted IFNγ. Nat. Most cancers 1, 291–301 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meier, S. L., Satpathy, A. T. & Wells, D. Ok. Bystander T cells in most cancers immunology and remedy. Nat. Most cancers 3, 143–155 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Im, S. J. et al. Defining CD8+ T cells that present the proliferative burst after PD-1 remedy. Nature 537, 417–421 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Utzschneider, D. T. et al. T cell issue 1-expressing memory-like CD8+ T cells maintain the immune response to continual viral infections. Immunity 45, 415–427 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor management in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor management and reply to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in continual viral an infection. Nature 571, 265–269 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan, O. et al. TOX transcriptionally and epigenetically packages CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in continual an infection. Nat. Immunol. 20, 890–901 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Q. et al. The primordial differentiation of tumor-specific reminiscence CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell 185, 4049–4066 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott, A. C. et al. TOX is a essential regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Search engine optimization, H. et al. TOX and TOX2 transcription elements cooperate with NR4A transcription elements to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsui, C. et al. MYB orchestrates T cell exhaustion and response to checkpoint inhibition. Nature 609, 354–360 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Im, S. J. et al. Traits and anatomic location of PD-1+TCF1+ stem-like CD8 T cells in continual viral an infection and most cancers. Proc. Natl Acad. Sci. USA 120, e2221985120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. H. et al. Human lung most cancers harbors spatially organized stem-immunity hubs related to response to immunotherapy. Nat. Immunol. 25, 644–658 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hudson, W. H. et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells throughout continual an infection. Immunity 51, 1043–1058 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beltra, J. C. et al. Developmental relationships of 4 exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic panorama management mechanisms. Immunity 52, 825–841 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahim, M. Ok. et al. Dynamic CD8+ T cell responses to most cancers immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes. Cell 186, 1127–1143 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eberhardt, C. S. et al. Useful HPV-specific PD-1+ stem-like CD8 T cells in head and neck most cancers. Nature 597, 279–284 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clean, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy in opposition to human most cancers. Science 370, 1328–1334 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansen, C. S. et al. An intra-tumoral area of interest maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vignali, P. D. A. et al. Hypoxia drives CD39-dependent suppressor operate in exhausted T cells to restrict antitumor immunity. Nat. Immunol. 24, 267–279 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfannenstiel, L. W. et al. Immune-checkpoint blockade opposes CD8+ T-cell suppression in human and murine most cancers. Most cancers Immunol. Res. 7, 510–525 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsushita, H. et al. Most cancers exome evaluation reveals a T-cell-dependent mechanism of most cancers immunoediting. Nature 482, 400–404 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anagnostou, V. et al. Evolution of neoantigen panorama throughout immune checkpoint blockade in non-small cell lung most cancers. Most cancers Discov. 7, 264–276 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michalek, R. D. et al. Leading edge: distinct glycolytic and lipid oxidative metabolic packages are important for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Ok. et al. T cell exit from quiescence and differentiation into TH2 cells rely upon Raptor–mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chapman, N. M. & Chi, H. Metabolic adaptation of lymphocytes in immunity and illness. Immunity 55, 14–30 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells uncovered to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Y. R. et al. Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. Nat. Immunol. 21, 1540–1551 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scharping, N. E. et al. Mitochondrial stress induced by steady stimulation underneath hypoxia quickly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siska, P. J. et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Perception 2, e93411 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 374–388 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. BATF regulates progenitor to cytolytic effector CD8+ T cell transition throughout continual viral an infection. Nat. Immunol. 22, 996–1007 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Search engine optimization, H. et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat. Immunol. 22, 983–995 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenes, M. et al. The mitochondrial pyruvate provider regulates reminiscence T cell differentiation and antitumor operate. Cell Metab. 34, 731–746 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Si, X. et al. Mitochondrial isocitrate dehydrogenase impedes CAR T cell operate by restraining antioxidant metabolism and histone acetylation. Cell Metab. 36, 176–192 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leone, R. D. et al. Glutamine blockade induces divergent metabolic packages to beat tumor immune evasion. Science 366, 1013–1021 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arner, E. N. & Rathmell, J. C. Metabolic programming and immune suppression within the tumor microenvironment. Most cancers Cell 41, 421–433 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, C. H. et al. Metabolic competitors within the tumor microenvironment is a driver of most cancers development. Cell 162, 1229–1241 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reinfeld, B. I. et al. Cell-programmed nutrient partitioning within the tumour microenvironment. Nature 593, 282–288 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, C. et al. SLC38A2 and glutamine signalling in cDC1s dictate anti-tumour immunity. Nature 620, 200–208 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geiger, R. et al. l-arginine modulates T cell metabolism and enhances survival and anti-tumor exercise. Cell 167, 829–842 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian, Y. et al. Most cancers SLC43A2 alters T cell methionine metabolism and histone methylation. Nature 585, 277–282 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rowe, J. H. et al. Formate supplementation enhances antitumor CD8+ T-cell health and efficacy of PD-1 blockade. Most cancers Discov. 13, 2566–2583 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lengthy, L. et al. CRISPR screens unveil sign hubs for nutrient licensing of T cell immunity. Nature 600, 308–313 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raynor, J. L. & Chi, H. Vitamins: sign 4 in T cell immunity. J. Exp. Med. 221, e20221839 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, T. et al. Inosine is an alternate carbon supply for CD8+-T-cell operate underneath glucose restriction. Nat. Metab. 2, 635–647 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klysz, D. D. et al. Inosine induces stemness options in CAR-T cells and enhances efficiency. Most cancers Cell 42, 266–282 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, H. et al. Trans-vaccenic acid reprograms CD8+ T cells and anti-tumour immunity. Nature 623, 1034–1043 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ringel, A. E. et al. Weight problems shapes metabolism within the tumor microenvironment to suppress anti-tumor immunity. Cell 183, 1848–1866 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zani, F. et al. The dietary sweetener sucralose is a unfavorable modulator of T cell-mediated responses. Nature 615, 705–711 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Model, A. et al. LDHA-associated lactic acid manufacturing blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24, 657–671 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, X. et al. Ldl cholesterol induces CD8+ T cell exhaustion within the tumor microenvironment. Cell Metab. 30, 143–156 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity 54, 1561–1577 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, X. et al. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector operate and impairs their antitumor potential. Cell Metab. 33, 1001–1012 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Y. et al. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. Nat. Immunol. 22, 746–756 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Ok. et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science 371, 405–410 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Notarangelo, G. et al. Oncometabolite d-2HG alters T cell metabolism to impair CD8+ T cell operate. Science 377, 1519–1529 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bunse, L. et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat. Med. 24, 1192–1203 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hicks, Ok. G. et al. Protein–metabolite interactomics of carbohydrate metabolism reveal regulation of lactate dehydrogenase. Science 379, 996–1003 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates particular metabolism pathways and impacts reminiscence growth in CAR T cells. Immunity 44, 380–390 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klein Geltink, R. I. et al. Metabolic conditioning of CD8+ effector T cells for adoptive cell remedy. Nat. Metab. 2, 703–716 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uhl, F. M. et al. Metabolic reprogramming of donor T cells enhances graft-versus-leukemia results in mice and people. Sci. Transl. Med. 12, eabb8969 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaccard, A. et al. Reductive carboxylation epigenetically instructs T cell differentiation. Nature 621, 849–856 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, H. et al. In vivo CRISPR screening reveals nutrient signaling processes underpinning CD8+ T cell destiny choices. Cell 184, 1245–1261 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, L. et al. A genome-scale gain-of-function CRISPR display in CD8 T cells identifies proline metabolism as a way to reinforce CAR-T remedy. Cell Metab. 34, 595–614 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canale, F. P. et al. Metabolic modulation of tumours with engineered micro organism for immunotherapy. Nature 598, 662–666 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, H., Chen, S. & Chi, H. Immunometabolism of CD8+ T cell differentiation in most cancers. Developments Most cancers https://doi.org/10.1016/j.trecan.2024.03.010 (2024).

  • Zhou, P. et al. Single-cell CRISPR screens in vivo map T cell destiny regulomes in most cancers. Nature 624, 154–163 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dahling, S. et al. Kind 1 typical dendritic cells keep and information the differentiation of precursors of exhausted T cells in distinct mobile niches. Immunity 55, 656–670 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Schenkel, J. M. et al. Typical sort I dendritic cells keep a reservoir of proliferative tumor-antigen particular TCF-1+ CD8+ T cells in tumor-draining lymph nodes. Immunity 54, 2338–2353 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanev, Ok. et al. Proliferation-competent Tcf1+ CD8 T cells in dysfunctional populations are CD4 T cell assist unbiased. Proc. Natl Acad. Sci. USA 116, 20070–20076 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zander, R. et al. CD4+ T cell assistance is required for the formation of a cytolytic CD8+ T cell subset that protects in opposition to continual an infection and most cancers. Immunity 51, 1028–1042 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, P. et al. Intratumor depletion of CD4+ cells unmasks tumor immunogenicity resulting in the rejection of late-stage tumors. J. Exp. Med. 201, 779–791 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jing, W., Gershan, J. A. & Johnson, B. D. Depletion of CD4 T cells enhances immunotherapy for neuroblastoma after syngeneic HSCT however compromises growth of antitumor immune reminiscence. Blood 113, 4449–4457 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. H. et al. Adoptive immunotherapy with transient anti-CD4 therapy enhances anti-tumor response by rising IL-18Rαhello CD8+ T cells. Nat. Commun. 12, 5314 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to most cancers. Nature 520, 692–696 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tay, R. E., Richardson, E. Ok. & Toh, H. C. Revisiting the function of CD4+ T cells in most cancers immunotherapy—new insights into outdated paradigms. Most cancers Gene Ther. 28, 5–17 (2021).

    CAS 

    Google Scholar
     

  • Yi, J. S., Du, M. & Zajac, A. J. An important function for interleukin-21 within the management of a continual viral an infection. Science 324, 1572–1576 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsaesser, H., Sauer, Ok. & Brooks, D. G. IL-21 is required to regulate continual viral an infection. Science 324, 1569–1572 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frohlich, A. et al. IL-21R on T cells is essential for sustained performance and management of continual viral an infection. Science 324, 1576–1580 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Hashimoto, M. et al. PD-1 mixture remedy with IL-2 modifies CD8+ T cell exhaustion program. Nature 610, 173–181 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, Q. et al. Traits of anti-CD19 CAR T cell infusion merchandise related to efficacy and toxicity in sufferers with giant B cell lymphomas. Nat. Med. 26, 1878–1887 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, G. M. et al. Integrative bulk and single-cell profiling of premanufacture T-cell populations reveals elements mediating long-term persistence of CAR T-cell remedy. Most cancers Discov. 11, 2186–2199 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell, M. & Gottschalk, S. Engineered cytokine signaling to enhance CAR T cell effector operate. Entrance. Immunol. 12, 684642 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurton, L. V. et al. Tethered IL-15 augments antitumor exercise and promotes a stem-cell reminiscence subset in tumor-specific T cells. Proc. Natl Acad. Sci. USA 113, E7788–E7797 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hinrichs, C. S. et al. IL-2 and IL-21 confer opposing differentiation packages to CD8+ T cells for adoptive immunotherapy. Blood 111, 5326–5333 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prinzing, B. et al. MyD88/CD40 signaling retains CAR T cells in a much less differentiated state. JCI Perception 5, e136093 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doan, A. E. et al. FOXO1 is a grasp regulator of reminiscence programming in CAR T cells. Nature 629, 211–218 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, J. D. et al. FOXO1 enhances CAR T cell stemness, metabolic health and efficacy. Nature 629, 201–210 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Z. et al. FOXP1 and KLF2 reciprocally regulate checkpoints of stem-like to effector transition in CAR T cells. Nat. Immunol. 25, 117–128 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Carnevale, J. et al. RASA2 ablation in T cells boosts antigen sensitivity and long-term operate. Nature 609, 174–182 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain, N. et al. Lack of TET2 uncouples proliferative and effector features in CAR T cells. Blood https://doi.org/10.1182/blood-2020-142957 (2020).

  • Jain, N. et al. TET2 guards in opposition to unchecked BATF3-induced CAR T cell growth. Nature 615, 315–322 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain, N. et al. Disruption of SUV39H1-mediated H3K9 methylation sustains CAR T cell operate. Most cancers Discov. 14, 142–157 (2023).

    Article 

    Google Scholar
     

  • Harrison, S. J. et al. CAR+ T-cell lymphoma put up ciltacabtagene autoleucel remedy for relapsed refractory a number of myeloma. Blood 142, 6939 (2023).

    Article 

    Google Scholar
     

  • Micklethwaite, Ok. P. et al. Investigation of product-derived lymphoma following infusion of piggyBac-modified CD19 chimeric antigen receptor T cells. Blood 138, 1391–1405 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Mellman, I., Chen, D. S., Powles, T. & Turley, S. J. The cancer-immunity cycle: indication, genotype, and immunotype. Immunity 56, 2188–2205 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soerens, A. G. et al. Useful T cells are able to supernumerary cell division and longevity. Nature 614, 762–766 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hot Topics

    Related Articles