Systematic characterization of the HOXA9 downstream targets in MLL-r leukemia by noncoding CRISPR screens


  • Pearson, J. C., Lemons, D. & McGinnis, W. Modulating Hox gene features throughout animal physique patterning. Nat. Rev. Genet 6, 893–904 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Innis, J. W. Function of HOX genes in human improvement. Curr. Opin. Pediatr. 9, 617–622 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krumlauf, R. Hox genes in vertebrate improvement. Cell 78, 191–201 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawrence, H. J., Sauvageau, G., Humphries, R. Ok. & Largman, C. The function of HOX homeobox genes in regular and leukemic hematopoiesis. Stem Cells 14, 281–291 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Oostveen, J., Bijl, J., Raaphorst, F., Walboomers, J. & Meijer, C. The function of homeobox genes in regular hematopoiesis and hematological malignancies. Leukemia 13, 1675–1690 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Argiropoulos, B. & Humphries, R. Ok. Hox genes in hematopoiesis and leukemogenesis. Oncogene 26, 6766–6776 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawrence, H. J. et al. Mice bearing a focused interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 89, 1922–1930 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alharbi, R. A., Pettengell, R., Pandha, H. S. & Morgan, R. The function of HOX genes in regular hematopoiesis and acute leukemia. Leukemia 27, 1000–1008 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andreeff, M. et al. HOX expression patterns determine a typical signature for favorable AML. Leukemia 22, 2041–2047 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drabkin, H. A. et al. Quantitative HOX expression in chromosomally outlined subsets of acute myelogenous leukemia. Leukemia 16, 186–195 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, L., Solar, J., Liu, F., Zhang, H. & Ma, Y. Increased expression ranges of the HOXA9 gene, intently related to MLL-PTD and EZH2 mutations, predict inferior end result in acute myeloid leukemia. Onco Targets Ther. 9, 711–722 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroon, E., Thorsteinsdottir, U., Mayotte, N., Nakamura, T. & Sauvageau, G. NUP98-HOXA9 expression in hemopoietic stem cells induces power and acute myeloid leukemias in mice. EMBO J. 20, 350–361 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faber, J. et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 113, 2375–2385 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milne, T. A. et al. A number of interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol. Cell 38, 853–863 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rozovskaia, T. et al. Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with the t(4: 11) abnormality. Oncogene 20, 874–878 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrando, A. A. et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 102, 262–268 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ayton, P. M. & Cleary, M. L. Transformation of myeloid progenitors by MLL oncoproteins relies on Hoxa7 and Hoxa9. Genes Dev. 17, 2298–2307 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernt, Ok. M. et al. MLL-Rearranged Leukemia Is Depending on Aberrant H3K79 Methylation by DOT1L. Most cancers Cell 20, 66–78 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. L. et al. Proton pump inhibitors selectively suppress MLL rearranged leukemia cells by way of disrupting MLL1-WDR5 protein-protein interplay. Eur. J. Med. Chem. 188, 112027 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yokoyama, A., Somervaille, T. & Cleary, M. L. The menin tumor suppressor protein is a vital oncogenic cofactor for MLL-associated leukemogenesis. Blood 106, 196a–196a (2005).

    Article 

    Google Scholar
     

  • Mereau, H. et al. Impairing MLL-fusion gene-mediated transformation by dissecting crucial interactions with the lens epithelium-derived development issue (LEDGF/p75). Leukemia 27, 1245–1253 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daigle, S. R. et al. Potent inhibition of DOT1L as remedy of MLL-fusion leukemia. Blood 122, 1017–1025 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, A. et al. Structural insights into inhibition of the bivalent menin-MLL interplay by small molecules in leukemia. Blood 120, 4461–4469 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borkin, D. et al. Pharmacologic inhibition of the Menin-MLL interplay blocks development of MLL leukemia in vivo. Most cancers Cell 27, 589–602 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hyle, J. et al. Acute depletion of CTCF straight impacts MYC regulation by lack of enhancer-promoter looping. Nucleic Acids Res. 47, 6699–6713 (2019).

  • Zhang, H. et al. Practical interrogation of HOXA9 regulome in MLLr leukemia by way of reporter-based CRISPR/Cas9 display screen. Elife 9. https://doi.org/10.7554/eLife.57858 (2020).

  • Li, W. et al. MAGeCK allows strong identification of important genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, M. J. et al. 13q12.2 deletions in acute lymphoblastic leukemia result in upregulation of FLT3 by enhancer hijacking. Blood 136, 946–956 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stam, R. W. et al. Prognostic significance of high-level FLT3 expression in MLL-rearranged toddler acute lymphoblastic leukemia. Blood 110, 2774–2775 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedders, H. et al. Constitutive Activation of FLT3 Is a Optimistic Prognostic Consider Infants with MLL-Rearranged Acute Lymphoblastic Leukemia. Blood 126. https://doi.org/10.1182/blood.V126.23.2681.2681 (2015).

  • Stam, R. W. et al. Focusing on FLT3 in major MLL-gene-rearranged toddler acute lymphoblastic leukemia. Blood 106, 2484–2490 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, G. G., Pasillas, M. P. & Kamps, M. P. Persistent transactivation by Meis1 replaces Hox operate in myeloid leukemogenesis fashions: Proof for co-occupancy of Meis1-Pbx and Hox-Pbx complexes on promoters of leukemia-associated genes. Mol. Cell Biol. 26, 3902–3916 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gwin, Ok., Frank, E., Bossou, A. & Medina, Ok. L. Hoxa9 regulates Flt3 in lymphohematopoietic progenitors. J. Immunol. 185, 6572–6583 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet 48, 1193–1203 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, L. et al. ENL hyperlinks histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature 543, 265–269 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pelish, H. E. et al. Mediator kinase inhibition additional prompts super-enhancer-associated genes in AML. Nature 526, 273 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunetti, L. et al. Mutant NPM1 Maintains the Leukemic State by HOX Expression. Most cancers Cell 34, 499 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armstrong, S. A. et al. Inhibition of FLT3 in MLL. Validation of a therapeutic goal recognized by gene expression based mostly classification. Most cancers Cell 3, 173–183 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, P. et al. FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with excessive ranges of FLT3 expression. Blood 105, 812–820 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stam, R. W. & Pieters, R. FLT3 Inhibitors as Therapeutic Brokers in MLL Rearranged Acute Lymphoblastic Leukemia. New Brokers for the Remedy of Acute Lymphoblastic Leukemia, 189–202. https://doi.org/10.1007/978-1-4419-8459-3_10 (2011).

  • Shimada, Ok., Bachman, J. A., Muhlich, J. L. & Mitchison, T. J. shinyDepMap, a device to determine targetable most cancers genes and their practical connections from Most cancers Dependency Map information. Elife 10. https://doi.org/10.7554/eLife.57116 (2021).

  • Friskes, A. et al. Double-strand break toxicity is chromatin context impartial. Nucleic Acids Res. 50, 9930–9947 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. C. et al. Goal residence of Cas9-sgRNA influences DNA double-strand break restore pathway selections in CRISPR/Cas9 genome enhancing. Genome Biol. 23, 165 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, J. et al. Tremendous-enhancer panorama reveals leukemia stem cell reliance on X-box binding protein 1 as a therapeutic vulnerability. Sci. Transl. Med. 13, eabh3462 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chavez, A. et al. Extremely environment friendly Cas9-mediated transcriptional programming. Nat. Strategies 12, 326–328 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complicated. Nature 517, 583–588 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, X. et al. Molecular Mechanisms of ARID5B-Mediated Genetic Susceptibility to Acute Lymphoblastic Leukemia. J. Natl Most cancers Inst. 114, 1287–1295 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y. et al. Identification and characterization of Hoxa9 binding websites in hematopoietic cells. Blood 119, 388–398 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, Y. et al. HOXA9 Reprograms the Enhancer Panorama to Promote Leukemogenesis. Most cancers Cell 34, 643–658 e645 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armstrong, S. A. et al. MLL translocations specify a definite gene expression profile that distinguishes a novel leukemia. Nat. Genet 30, 41–47 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmittgen, T. D. & Livak, Ok. J. Analyzing real-time PCR information by the comparative C(T) technique. Nat. Protoc. 3, 1101–1108 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. & Dewey, C. N. RSEM: correct transcript quantification from RNA-Seq information with or with out a reference genome. BMC Bioinforma. 12, 323 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Undertaking. Genome Res. 22, 1760–1774 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regulation, C. W., Chen, Y., Shi, W. & Smyth, G. Ok. voom: Precision weights unlock linear mannequin evaluation instruments for RNA-seq learn counts. Genome Biol. 15, R29 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set assortment. Cell Syst. 1, 417–425 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, L. Z. et al. Transcription issue MEF2D is required for the upkeep of MLL-rearranged acute myeloid leukemia. Blood Adv. 5, 4727–4740 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Differentiation of human pluripotent stem cells into neurons or cortical organoids requires transcriptional co-regulation by UTX and 53BP1. Nat. Neurosci. 22, 362–373 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landt, S. G. et al. ChIP-seq tips and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinz, S. et al. Easy Mixtures of Lineage-Figuring out Transcription Elements Prime cis-Regulatory Components Required for Macrophage and B Cell Identities. Mol. Cell 38, 576–589 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Quick gapped-read alignment with Bowtie 2. Nat. Strategies 9, 357–U354 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Mannequin-based Evaluation of ChIP-Seq (MACS). Genome Biol. 9. https://doi.org/10.1186/gb-2008-9-9-r137 (2008).

  • Quinlan, A. R. & Corridor, I. M. BEDTools: a versatile suite of utilities for evaluating genomic options. Bioinformatics 26, 841–842 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W. T., Rosenstiel, P. C. & Schulenburg, H. ABSSeq: a brand new RNA-Seq evaluation technique based mostly on modelling absolute expression variations. Bmc Genomics 17. https://doi.org/10.1186/s12864-016-2848-2 (2016).

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing information. Bioinformatics 31, 166–169 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barnett, Ok. R. et al. Epigenomic mapping in B-cell acute lymphoblastic leukemia identifies transcriptional regulators and noncoding variants selling distinct chromatin architectures. bioRxiv. https://doi.org/10.1101/2023.02.14.528493 (2023).

  • Xu, B. et al. Acute depletion of CTCF rewires genome-wide chromatin accessibility. Genome Biol. 22, 244 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godfrey, L. et al. DOT1L inhibition reveals a definite subset of enhancers depending on H3K79 methylation. Nat. Commun. 10, 2803 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prange, Ok. H. M. et al. MLL-AF9 and MLL-AF4 oncofusion proteins bind a definite enhancer repertoire and goal the RUNX1 program in 11q23 acute myeloid leukemia. Oncogene 36, 3346–3356 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarumoto, Y. et al. LKB1, Salt-Inducible Kinases, and MEF2C Are Linked Dependencies in Acute Myeloid Leukemia. Mol. Cell 69, 1017–1027 e1016 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Ok. et al. Noncoding Variants Join Enhancer Dysregulation with Nuclear Receptor Signaling in Hematopoietic Malignancies. Most cancers Discov. 10, 724–745 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blagitko-Dorfs, N. et al. Mixture remedy of acute myeloid leukemia cells with DNMT and HDAC inhibitors: predominant synergistic gene downregulation related to gene physique demethylation. Leukemia 33, 945–956 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oka, M. et al. Chromatin-bound CRM1 recruits SET-Nup214 and NPM1c onto HOX clusters inflicting aberrant HOX expression in leukemia cells. Elife 8. https://doi.org/10.7554/eLife.46667 (2019).

  • Hot Topics

    Related Articles