Synthetic intelligence in neuro-oncology: advances and challenges in mind tumor prognosis, prognosis, and precision remedy


  • Mind tumors – classifications, signs, prognosis and coverings. https://www.aans.org/en/Sufferers/Neurosurgical-Circumstances-and-Remedies/Mind-Tumors.

  • Fan, Y. et al. Burden and tendencies of mind and central nervous system most cancers from 1990 to 2019 on the world, regional, and nation ranges. Arch. Public Well being 80, 209 (2022).

  • Ostrom, Q. T. et al. CBTRUs statistical report: major mind and different central nervous system tumors recognized in the USA in 2015-2019. Neuro. Oncol. 24, V1–V95 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • About Glioblastoma. https://braintumor.org/occasions/glioblastoma-awareness-day/about-glioblastoma/. Nationwide Mind Tumor Society.

  • Fekete, B. et al. What predicts survival in glioblastoma? A population-based research of adjustments in medical administration and end result. Entrance. Surg. 10, 1249366 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al Sharie, S., Abu Laban, D. & Al-Hussaini, M. Decoding diffuse midline gliomas: a complete overview of pathogenesis, prognosis and remedy. Cancers (Basel). 15, 4869 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acuña-Villaorduña, A., Baranda, J. C., Boehmer, J., Fashoyin-Aje, L. & Gore, S. D. Equitable entry to medical trials: how will we obtain it? Am. Soc. Clin. Oncol. Educ. B. https://doi.org/10.1200/edbk_389838 (2023).

  • Lamba, N. et al. Socioeconomic disparities related to MGMT promoter methylation testing for sufferers with glioblastoma. JAMA Oncol. 6, 1972–1974 (2020).

  • Porter, A. B., Wen, P. Y. & Polley, M.-Y. C. Molecular profiling in neuro-oncology: the place we’re, the place we’re heading, and the way we guarantee everybody can come alongside. Am. Soc. Clin. Oncol. Educ. B. https://doi.org/10.1200/edbk_389322 (2023).

  • Xiao, F. et al. Cerebrospinal fluid biomarkers for mind tumor detection: medical roles and present progress. Am. J. Transl. Res. 12, 1379–1396 (2020).

  • Villanueva-Meyer, J. E., Mabray, M. C. & Cha, S. Present medical mind tumor imaging. Neurosurgery 81, 397–415 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weinberg, B. et al. Nimg-23. Mind tumor reporting and knowledge system (bt-rads) and quantitative instruments to information its implementation. Neuro. Oncol. 21, vi166 (2019).

  • Atanasov, A. G. et al. First, do no hurt (gone flawed): total-scale evaluation of medical errors scientific literature. Entrance. Public Heal. 8, 558913 (2020).

    Article 

    Google Scholar
     

  • Aldape, Okay. et al. Challenges to curing major mind tumours. Nat. Rev. Clin. Oncol. 16, 509 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi, W. L. et al. Synthetic intelligence in most cancers imaging: medical challenges and purposes. CA. Most cancers J. Clin. 69, 127–157 (2019).

  • Dong, X. et al. 911 Anti-VEGF remedy improves EGFR-vIII-CAR-T cell supply and efficacy in syngeneic glioblastoma fashions in mice. J. Immunother. Most cancers 11, e005583 (2022).

  • Becker, A. P., Sells, B. E., Jaharul Haque, S. & Chakravarti, A. Tumor heterogeneity in glioblastomas: from gentle microscopy to molecular pathology. Cancers (Basel). 13, 1–25 (2021).

    Article 

    Google Scholar
     

  • Stone, J. B. & DeAngelis, L. M. Most cancers-treatment-induced neurotoxicity-focus on newer remedies. Nat. Rev. Clin. Oncol. 13, 92–105 (2016).

  • Monsour, R., Dutta, M., Mohamed, A. Z., Borkowski, A. & Viswanadhan, N.A. Neuroimaging within the period of synthetic intelligence: present purposes. Fed. Pract. 39, S14–S20 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Philip, A. Okay., Samuel, B. A., Bhatia, S., Khalifa, S. A. M. & El-Seedi, H. R. Synthetic intelligence and precision medication: a brand new frontier for the remedy of mind tumors. Life. 13, 24 (2023).

  • Dundar, T. T. et al. Machine learning-based surgical planning for neurosurgery: synthetic clever approaches to the skull. Entrance. Surg. 9, 863633 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mock, M., Edavettal, S., Langmead, C. & Russell, A. AI might help to hurry up drug discovery — however provided that we give it the appropriate knowledge. Nature 621, 467–470 (2023).

  • Qureshi, R. et al. AI in drug discovery and its medical relevance. Heliyon 9, e17575 (2023).

  • Pati, S. et al. Federated studying permits large knowledge for uncommon most cancers boundary detection. Nat. Commun. 13, 7346 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schork, N. J. Synthetic intelligence and personalised medication. Most cancers Deal with. Res. 178, 265 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uddin, M., Wang, Y. & Woodbury-Smith, M. Synthetic intelligence for precision medication in neurodevelopmental issues. npj Digit. Med. 2, 1–10 (2019).

    Article 

    Google Scholar
     

  • Hashimoto, D. A., Rosman, G., Rus, D. & Meireles, O. R. Synthetic intelligence in surgical procedure: guarantees and perils. Ann. Surg. 268, 70–76 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, R. J. et al. Algorithmic equity in synthetic intelligence for medication and healthcare. Nat. Biomed. Eng. 7, 719–742 (2023).

  • Thomasian, N. M., Eickhoff, C. & Adashi, E. Y. Advancing well being fairness with synthetic intelligence. J. Public Well being Coverage 42, 602–611 (2021).

  • Zheng, Y., Carrillo-Perez, F., Pizurica, M., Heiland, D. H. & Gevaert, O. Spatial mobile structure predicts prognosis in glioblastoma. Nat. Commun. 14, 4122 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. Radiological tumour classification throughout imaging modality and histology. Nat. Mach. Intell. 3, 787–798 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Figueiras, R. et al. Proton magnetic resonance spectroscopy in oncology: the fingerprints of most cancers? Diagn. Interv. Radiol. 22, 75–89 (2016).

  • Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a sample of illness development, and resemble levels in neurogenesis. Most cancers Cell 9, 157–173 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: a abstract. Neuro. Oncol. 23, 1231–1251 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alix-Panabières, C. & Pantel, Okay. Liquid biopsy: from discovery to medical utility. Most cancers Discov. 11, 858–873 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, H. et al. Cerebrospinal fluid-derived circulating tumor DNA is extra complete than plasma in NSCLC sufferers with leptomeningeal metastases no matter extracranial evolution. Heliyon 8, e12374 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lehner, Okay. R., Jiang, Okay., Rincon-Torroella, J., Perera, R. & Bettegowda, C. Cerebrospinal fluid biomarkers in pediatric mind tumors: a scientific overview. Neoplasia 35, 100852 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. et al. M3AE: multimodal illustration studying for mind tumor segmentation with lacking modalities. Proc. AAAI Conf. Artif. Intell. 37, 1657–1665 (2023).


    Google Scholar
     

  • Clark, Okay. et al. The most cancers imaging archive (TCIA): sustaining and working a public info repository. J. Digit. Imaging 26, 1045–1057 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menze, B. H. et al. The multimodal mind tumor picture segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Therapeutically relevant analysis to generate efficient remedies (TARGET) – NCI. https://www.most cancers.gov/ccg/analysis/genome-sequencing/goal.

  • GDC. https://portal.gdc.most cancers.gov/.

  • Welcome to the most cancers imaging archive – the most cancers imaging archive (TCIA). https://www.cancerimagingarchive.internet/.

  • Xia, M., Wang, J. & He, Y. BrainNet viewer: a community visualization instrument for human mind connectomics. PLoS One 8, e68910 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, L., Zhang, S., Chen, H. & Luo, L. Mind tumor segmentation and survival prediction utilizing multimodal MRI scans with deep studying. Entrance. Neurosci. 13, 810 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, X., Tustison, N. J., Patel, S. H. & Meyer, C. H. Mind tumor segmentation utilizing an ensemble of 3D U-nets and total survival prediction utilizing radiomic options. Entrance. Comput. Neurosci. 14, 25 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ZainEldin, H. et al. Mind tumor detection and classification utilizing deep studying and sine-cosine health gray wolf optimization. Bioengineering 10, 1–19 (2023).


    Google Scholar
     

  • Latif, G., Iskandar, D. N. F. A., Alghazo, J. & Butt, M. M. Mind MR picture classification for glioma tumor detection utilizing deep convolutional neural community options. Curr. Med. imaging 17, 56–63 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Saeedi, S., Rezayi, S., Keshavarz, H. & R. Niakan Kalhori, S. MRI-based mind tumor detection utilizing convolutional deep studying strategies and chosen machine studying strategies. BMC Med. Inform. Decis. Mak. 23, 16 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhandari, A., Koppen, J. & Agzarian, M. Convolutional neural networks for mind tumour segmentation. Insights Imaging 11, 77 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S., Ding, C. & Liu, M. Twin-force convolutional neural networks for correct mind tumor segmentation. Sample Recognit. 88, 90–100 (2019).

  • Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J. & Maier-Hein, Okay. H. nnU-Internet: a self-configuring methodology for deep learning-based biomedical picture segmentation. Nat. Strategies 18, 203–211 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steyaert, S. et al. Multimodal deep studying to foretell prognosis in grownup and pediatric mind tumors. Commun. Med. 3, 44 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamnitsas, Okay. et al. Environment friendly multi-scale 3D CNN with totally linked CRF for correct mind lesion segmentation. Med. Picture Anal. 36, 61–78 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Milletari, F., Navab, N. & Ahmadi, S. A. V-Internet: totally convolutional neural networks for volumetric medical picture segmentation. In: 2016 Fourth Worldwide Convention on 3D Imaginative and prescient (3DV), Stanford, CA, USA, 565–571 (2016).

  • https://www.most cancers.org/most cancers/varieties/brain-spinal-cord-tumors-adults/detection-diagnosis-staging/how-diagnosed.html Checks for Mind and Spinal Wire Tumors in Adults.

  • Nasrallah, M. P. et al. Molecular neuropathology in apply: medical profiling and integrative evaluation of molecular alterations in glioblastoma. Acad. Pathol. 6, 2374289519848353 (2019).

  • Afridi, M., Jain, A., Aboian, M. & Payabvash, S. Mind tumor imaging: purposes of synthetic intelligence. Semin. Ultrasound Ct. MR 43, 153–169 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellingson, B. M., Wen, P. Y., Van Den Bent, M. J. & Cloughesy, T. F. Execs and cons of present mind tumor imaging. Neuro. Oncol. 16, vii2 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghandour, F. et al. Presenting psychiatric and neurological signs and indicators of mind tumors earlier than prognosis: a scientific overview. Mind Sci. 11, 1–20 (2021).

    Article 

    Google Scholar
     

  • Grant, R. et al. Interventions to cut back the time to prognosis of mind tumours. Cochrane Database Syst. Rev. 9, CD013564 (2020).

    PubMed 

    Google Scholar
     

  • Iijima, Okay. et al. Microrecording and image-guided stereotactic biopsy of deep-seated mind tumors. J. Neurosurg. 123, 978–988 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Luo, Q., Li, Y., Luo, L. & Diao, W. Comparisons of the accuracy of radiation diagnostic modalities in mind tumor: a nonrandomized, nonexperimental, cross-sectional trial. Med. 97, e11256 (2018).

    Article 

    Google Scholar
     

  • Histed, S. N. et al. Overview of useful/ anatomic imaging in oncology. Nucl. Med. Commun. 33, 349 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riche, M. et al. Problems after frame-based stereotactic mind biopsy: a scientific overview. Neurosurg. Rev. 44, 301–307 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Keane, L., Cheray, M., Blomgren, Okay. & Joseph, B. Multifaceted microglia – key gamers in major mind tumour heterogeneity. Nat. Rev. Neurol. 17, 243–259 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Martucci, M. et al. Magnetic resonance imaging of major grownup mind tumors: state-of-the-art and future views. Biomedicines 11, 364 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B., Shi, H. & Wang, H. Machine studying and AI in most cancers prognosis, prediction, and remedy choice: a crucial strategy. J. Multidiscip. Healthc. 16, 1779–1791 (2023).

  • Bauer, A. H., Erly, W., Moser, F. G., Maya, M. & Nael, Okay. Differentiation of solitary mind metastasis from glioblastoma multiforme: a predictive multiparametric strategy utilizing mixed MR diffusion and perfusion. Neuroradiology 57, 697–703 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Voicu, I. P. et al. Differentiating solitary mind metastases from high-grade gliomas with MR: evaluating qualitative versus quantitative diagnostic methods. Radiol. Med. 127, 891–898 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunimatsu, A. et al. Texture evaluation in mind tumor MR imaging. Magn. Reson. Med. Sci. 21, 95–109 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Soni, X. N., Priya, S. & Bathla, X. G. Texture evaluation in cerebral gliomas: a overview of the literature. AJNR Am. J. Neuroradiol. 40, 928 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bharath, Okay., Kurtek, S., Rao, A. & Baladandayuthapani, V. Radiologic image-based statistical form evaluation of mind tumours. J. R. Stat. Soc. Ser. C. Appl. Stat. 67, 1357–1378 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajan, P. G. & Sundar, C. Mind tumor detection and segmentation by depth adjustment. J. Med. Syst. 43, 282 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kader et al. Mind tumor detection and classification on MR pictures by a deep wavelet auto-encoder mannequin. Diagnostics 11, 1589 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Nie, D. et al. Multi-channel 3D deep characteristic studying for survival time prediction of mind tumor sufferers utilizing multi-modal neuroimages. Sci. Rep. 9, 1–14 (2019).

    Article 

    Google Scholar
     

  • Srinivas, C. et al. Deep switch studying approaches in efficiency evaluation of mind tumor classification utilizing MRI pictures. J. Healthc. Eng. 2022, 3264367 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali, H. et al. The function of generative adversarial networks in mind MRI: a scoping overview. Insights Imaging 13, 98 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, W. et al. Multiparametric MRI-based radiomics mannequin for predicting H3 K27M mutant standing in diffuse midline glioma: a comparative research throughout totally different sequences and machine studying strategies. Entrance. Oncol. 12, 796583 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kihira, S. et al. Multiparametric MRI texture evaluation in prediction of glioma biomarker standing: added worth of MR diffusion. Neuro-Oncol. Adv. 3, vdab051 (2021).

    Article 

    Google Scholar
     

  • Schepke, E. et al. DNA methylation profiling improves routine prognosis of paediatric central nervous system tumours: a potential population-based research. Neuropathol. Appl. Neurobiol. 48, e12838 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hollon, T. et al. Synthetic-intelligence-based molecular classification of diffuse gliomas utilizing speedy, label-free optical imaging. Nat. Med. 29, 828–832 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. et al. Diffusion- and perfusion-weighted MRI radiomics mannequin could predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse decrease grade glioma. Eur. Radiol. 30, 2142–2151 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Solar, Z. et al. Prediction of IDH mutation standing of glioma primarily based on terahertz spectral knowledge. Spectrochim. Acta A Mol. Biomol. Spectrosc. 295, 122629 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajri, R., Nicod-Lalonde, M., Hottinger, A. F., Prior, J. O. & Dunet, V. Prediction of glioma grade and IDH standing utilizing 18F-FET PET/CT dynamic and multiparametric texture evaluation. Diagnostics 13, 2604 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, J. et al. Predicting 1p/19q co-deletion standing from magnetic resonance imaging utilizing deep studying in adult-type diffuse lower-grade gliomas: a discovery and validation research. Lab. Investig. 102, 154–159 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murdaugh, R. L. & Anastas, J. N. Making use of single cell multi-omic analyses to know remedy resistance in pediatric excessive grade glioma. Entrance. Pharmacol. 14, 1002296 (2023).

  • Kool, M. et al. Built-in genomics identifies 5 medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological options. PLoS One 3, e3088 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bender, Okay. et al. Excessive-grade astrocytoma with piloid options (HGAP): the Charité expertise with a brand new central nervous system tumor entity. J. Neurooncol. 153, 109–120 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vermeulen, C. et al. Extremely-fast deep-learned CNS tumour classification throughout surgical procedure. Neuro. Oncol. 622, 842–849 (2023).

  • Rees, J. H. Analysis and remedy in neuro-oncology: an oncological perspective. Br. J. Radiol. 84, S82–S89 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Mariotto, A. B. et al. Most cancers survival: an summary of measures, makes use of, and interpretation. J. Natl Most cancers Inst. Monogr. 2014, 145–186 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kickingereder, P. et al. Radiomic profiling of glioblastoma: figuring out an imaging predictor of affected person survival with improved efficiency over established medical and radiologic danger fashions. Radiology 280, 880–889 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Prasanna, P., Patel, J., Partovi, S., Madabhushi, A. & Tiwari, P. Radiomic options from the peritumoral mind parenchyma on treatment-naïve multi-parametric MR imaging predict lengthy versus short-term survival in glioblastoma multiforme: preliminary findings. Eur. Radiol. 27, 4198–4199 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kickingereder, P. et al. Radiomic subtyping improves illness stratification past key molecular, medical, and commonplace imaging traits in sufferers with glioblastoma. Neuro. Oncol. 20, 848–857 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. Y. et al. Radiomics in peritumoral non-enhancing areas: fractional anisotropy and cerebral blood quantity enhance prediction of native development and total survival in sufferers with glioblastoma. Neuroradiology 61, 1261–1272 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Li, G. et al. An MRI radiomics strategy to foretell survival and tumour-infiltrating macrophages in gliomas. Mind 145, 1151–1161 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iyer, S. et al. Novel MRI deformation-heterogeneity radiomic options are related to molecular subgroups and total survival in pediatric medulloblastoma: preliminary findings from a multi-institutional research. Entrance. Oncol. 12, 915143 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lengthy, H. et al. MRI radiomic options of peritumoral edema could predict the recurrence websites of glioblastoma multiforme. Entrance. Oncol. 12, 1042498 (2023).

  • Zhou, T. et al. Prediction of mind tumor recurrence location primarily based on multi-modal fusion and nonlinear correlation studying. Comput. Med. Imaging Graph. 106, 102218 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Śledzińska, P., Bebyn, M. G., Furtak, J., Kowalewski, J. & Lewandowska, M. A. Prognostic and predictive biomarkers in gliomas. Int. J. Mol. Sci. 22, 10373 (2021).

  • Wang, C., Zhu, X., Hong, J. C. & Zheng, D. Synthetic intelligence in radiotherapy remedy planning: current and future. Technol. Most cancers Res. Deal with. 18, https://doi.org/10.1177/1533033819873922 (2019).

  • Creasy, J. M. et al. Quantitative imaging options of pretreatment CT predict volumetric response to chemotherapy in sufferers with colorectal liver metastases. Eur. Radiol. 29, 458–467 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kawahara, D., Tang, X., Lee, C. Okay., Nagata, Y. & Watanabe, Y. Predicting the native response of metastatic mind tumor to gamma knife radiosurgery by radiomics with a machine studying methodology. Entrance. Oncol. 10, 569461 (2021).

  • Wang, Y. et al. The radiomic-clinical mannequin utilizing the SHAP methodology for assessing the remedy response of whole-brain radiotherapy: a multicentric research. Eur. Radiol. 32, 8737–8747 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Spatial heterogeneity of edema area uncovers survival-relevant habitat of Glioblastoma. Eur. J. Radiol. 154, 110423 (2022).

  • Do, D. T., Yang, M. R., Lam, L. H. T., Le, N. Q. Okay. & Wu, Y. W. Bettering MGMT methylation standing prediction of glioblastoma by way of optimizing radiomics options utilizing genetic algorithm-based machine studying strategy. Sci. Rep. 12, 13412 (2022).

  • Boehm, Okay. M. & Khosravi, P. Harnessing multimodal knowledge integration to advance precision oncology. 22, 114–126 (2022).

  • Cè, M. et al. Synthetic intelligence in mind tumor imaging: a step towards personalised medication. Curr. Oncol. 30, 2673–2701 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Midya, A., Chakraborty, J., Gönen, M., Do, R. Okay. G. & Simpson, A. L. Affect of CT acquisition and reconstruction parameters on radiomic characteristic reproducibility. J. Med. Imaging 5, 011020 (2018).

  • Zwanenburg, A. Radiomics in nuclear medication: robustness, reproducibility, standardization, and how one can keep away from knowledge evaluation traps and replication disaster. Eur. J. Nucl. Med. Mol. Imaging 46, 2638–2655 (2019).

  • Lambin, P. et al. Radiomics: the bridge between medical imaging and personalised medication. Nat. Rev. Clin. Oncol. 14, 749–762 (2017).

  • Park, J. E. et al. A scientific overview reporting high quality of radiomics analysis in neuro-oncology: towards medical utility and high quality enchancment utilizing high-dimensional imaging options. BMC Most cancers 20, 29 (2020).

  • Ambe, S. et al. Racial disparities in malignant major mind tumor survival in Texas from 1995 to 2013. Cureus 12, e11710 (2020)

  • Butterfield, J. T. et al. Racial disparities in suggestions for surgical resection of major mind tumours: a registry-based cohort evaluation. Lancet 400, 2063–2073 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Carrano, A., Juarez, J. J., Incontri, D., Ibarra, A. & Cazares, H. G. Intercourse-specific variations in glioblastoma. Cells 10, 1783 (2021).

  • Shreve, J. T., Khanani, S. A. & Haddad, T. C. Synthetic intelligence in oncology: present capabilities, future alternatives, and moral issues. Am. Soc. Clin. Oncol. Educ. B. 42, 1–10 (2022)

  • Naik, N. et al. Authorized and moral consideration in synthetic intelligence in healthcare: who takes duty? Entrance. Surg. 9, 862322 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amann, J., Blasimme, A., Vayena, E., Frey, D. & Madai, V. I. Explainability for synthetic intelligence in healthcare: a multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 20, 310 (2020).

  • Holzinger, A., Langs, G., Denk, H., Zatloukal, Okay. & Müller, H. Causability and explainability of synthetic intelligence in medication. Wiley Interdiscip. Rev. Knowledge Min. Knowl. Discov. 9, e1312 (2019).

  • DeYoe, E. A., Bandettini, P., Neitz, J., Miller, D. & Winans, P. Practical magnetic resonance imaging (FMRI) of the human mind. J. Neurosci. Strategies 54, 171–187 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Assaf, Y. & Pasternak, O. Diffusion tensor imaging (DTI)-based white matter mapping in mind analysis: a overview. J. Mol. Neurosci. 34, 51–61 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, N. M. et al. Knowledge constant deep inflexible MRI movement correction. https://arxiv.org/abs/2301.10365 (2023).

  • Chen, Z. et al. Deep studying for picture enhancement and correction in magnetic resonance imaging—state-of-the-art and challenges. J. Digit. Imaging 36, 204 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Han, Okay. et al. A survey on imaginative and prescient transformer. IEEE Trans. Sample Anal. Mach. Intell. 45, 87–110 (2022).

  • Asiri, A. A. et al. Exploring the facility of deep studying: fine-tuned imaginative and prescient transformer for correct and environment friendly mind tumor detection in MRI scans. Diagnostics 13, 2094 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, L. et al. A transformer-based generative adversarial community for mind tumor segmentation. Entrance. Neurosci. 16, 1054948 (2022).

  • Saueressig, C., Berkley, A., Kang, E., Munbodh, R. & Singh, R. Exploring graph-based neural networks for automated mind tumor segmentation. Lect. Notes Comput. Sci. 12611, 18–37 (2021).

    Article 

    Google Scholar
     

  • Ravinder, M. et al. Enhanced mind tumor classification utilizing graph convolutional neural community structure. Sci. Rep. 13, 1–22 (2023).

    Article 

    Google Scholar
     

  • Zeineldin, R. A. et al. Explainability of deep neural networks for MRI evaluation of mind tumors. Int. J. Comput. Help. Radiol. Surg. 17, 1673–1683 (2022).

  • Esmaeili, M., Vettukattil, R., Banitalebi, H., Krogh, N. R. & Geitung, J. T. Explainable synthetic intelligence for human-machine interplay in mind tumor localization. J. Pers. Med. 11, 1213 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogier du Terrail, J. et al. Federated studying for predicting histological response to neoadjuvant chemotherapy in triple-negative breast most cancers. Nat. Med. 29, 135–146 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nasrallah, M. P. et al. Machine studying for cryosection pathology predicts the 2021 WHO classification of glioma. Med 4, 526-540.e4 (2023).

  • Romano, M. F., Shih, L. C., Paschalidis, I. C., Au, R. & Kolachalama, V. B. Massive language fashions in neurology analysis and future apply. Neurology 101, 1058–1067 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hot Topics

    Related Articles