SMYD5 methylation of rpL40 hyperlinks ribosomal output to gastric most cancers


  • Robichaud, N., Sonenberg, N., Ruggero, D. & Schneider, R. J. Translational management in most cancers. Chilly Spring Harb. Perspect. Biol. 11, a032896 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovalski, J. R., Kuzuoglu-Ozturk, D. & Ruggero, D. Protein synthesis management in most cancers: selectivity and therapeutic concentrating on. EMBO J. 41, e109823 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, R. T. & Board, P. G. The human ubiquitin-52 amino acid fusion protein gene shares a number of structural options with mammalian ribosomal protein genes. Nucleic Acids Res. 19, 1035–1040 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgan, E. et al. The present and future incidence and mortality of gastric most cancers in 185 international locations, 2020-40: a population-based modelling research. eClinicalMedicine 47, 101404 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirata, Y., Noorani, A., Track, S., Wang, L. & Ajani, J. A. Early stage gastric adenocarcinoma: scientific and molecular landscapes. Nat. Rev. Clin. Oncol. 20, 453–469 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Manzanedo, I., Pereira, F., Perez-Viejo, E. & Serrano, A. Gastric most cancers with peritoneal metastases: present standing and prospects for therapy. Cancers 15, 1777 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhat, Okay. P., Umit Kaniskan, H., Jin, J. & Gozani, O. Epigenetics and past: concentrating on writers of protein lysine methylation to deal with illness. Nat. Rev. Drug. Discov. 20, 265–286 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, X. et al. Complete evaluation of histone modification-associated genes on differential gene expression and prognosis in gastric most cancers. Exp. Ther. Med. 18, 2219–2230 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Distinctive SMYD5 construction revealed by AlphaFold correlates with its purposeful divergence. Biomolecules 12, 783 (2022).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. SMYD5 catalyzes histone H3 lysine 36 trimethylation at promoters. Nat. Commun. 13, 3190 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stender, J. D. et al. Management of proinflammatory gene packages by regulated trimethylation and demethylation of histone H4K20. Mol. Cell 48, 28–38 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Husmann, D. & Gozani, O. Histone lysine methyltransferases in biology and illness. Nat. Struct. Mol. Biol. 26, 880–889 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afjehi-Sadat, L. & Garcia, B. A. Comprehending dynamic protein methylation with mass spectrometry. Curr. Opin. Chem. Biol. 17, 12–19 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stark, C. et al. BioGRID: a normal repository for interplay datasets. Nucleic Acids Res. 34, D535–D539 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williamson, N. A., Raliegh, J., Morrice, N. A. & Wettenhall, R. E. Put up-translational processing of rat ribosomal proteins. Ubiquitous methylation of Lys22 throughout the zinc-finger motif of RL40 (carboxy-terminal extension protein 52) and tissue-specific methylation of Lys4 in RL29. Eur. J. Biochem. 246, 786–793 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eastham, M. J., Pelava, A., Wells, G. R., Watkins, N. J. & Schneider, C. RPS27a and RPL40, that are produced as ubiquitin fusion proteins, usually are not important for p53 signalling. Biomolecules 13, 898 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Z. et al. Heterogeneous ribosomes preferentially translate distinct subpools of mRNAs genome-wide. Mol. Cell 67, 71–83.e7 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guimaraes, J. C. & Zavolan, M. Patterns of ribosomal protein expression specify regular and malignant human cells. Genome Biol. 17, 236 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferretti, M. B. & Karbstein, Okay. Does purposeful specialization of ribosomes actually exist? RNA 25, 521–538 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, S. C., MacDonald, C. C., Kellogg, M. Okay., Karamysheva, Z. N. & Karamyshev, A. L. Specialised ribosomes in well being and illness. Int. J. Mol. Sci. 24, 6334 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panda, A. et al. Tissue- and development-stage-specific mRNA and heterogeneous CNV signatures of human ribosomal proteins in regular and most cancers samples. Nucleic Acids Res. 48, 7079–7098 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, A. S., Burdeinick-Kerr, R. & Whelan, S. P. A ribosome-specialized translation initiation pathway is required for cap-dependent translation of vesicular stomatitis virus mRNAs. Proc. Natl Acad. Sci. USA 110, 324–329 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gandin, V. et al. Polysome fractionation and evaluation of mammalian translatomes on a genome-wide scale. J. Vis. Exp. 87, 51455 (2014).


    Google Scholar
     

  • Liu, S. et al. METTL13 methylation of eEF1A will increase translational output to advertise tumorigenesis. Cell 176, 491–504.e421 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, E. Okay., Clavarino, G., Ceppi, M. & Pierre, P. SUnSET, a nonradioactive methodology to observe protein synthesis. Nat. Strategies 6, 275–277 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwasaki, S. & Ingolia, N. T. The rising toolbox for protein synthesis research. Tendencies Biochem. Sci. 42, 612–624 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nielsen, P. J. & McConkey, E. H. Proof for management of protein synthesis in HeLa cells through the elongation price. J. Cell. Physiol. 104, 269–281 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oertlin, C. et al. Typically relevant transcriptome-wide evaluation of translation utilizing anota2seq. Nucleic Acids Res. 47, e70 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oertlin, C., Watt, Okay., Ristau, J. & Larsson, O. Anota2seq evaluation for transcriptome-wide atudies of mRNA translation. Strategies Mol. Biol. 2418, 243–268 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Truitt, M. L. & Ruggero, D. New frontiers in translational management of the most cancers genome. Nat. Rev. Most cancers 16, 288–304 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, H. J., Zhuang, L. & Fitzgerald, R. C. Present advances in understanding the molecular profile of hereditary diffuse gastric most cancers and its scientific implications. J. Exp. Clin. Most cancers Res. 42, 57 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gregory, S. N. & Davis, J. L. CDH1 and hereditary diffuse gastric most cancers: a story evaluate. Chin. Clin. Oncol. 12, 25 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Pihlak, R., Fong, C. & Starling, N. Focused therapies and creating precision drugs in gastric most cancers. Cancers 15, 3248 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seidlitz, T. et al. Mouse fashions of human gastric most cancers subtypes with stomach-specific CreERT2-mediated pathway alterations. Gastroenterology 157, 1599–1614.e2 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, H. H. & Chu, P. Immunohistochemical options of the gastrointestinal tract tumors. J. Gastrointest. Oncol. 3, 262–284 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, L. et al. Paracrine activation of MET promotes peritoneal carcinomatosis in scirrhous gastric most cancers. Most cancers Sci. 104, 1640–1646 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staudt, R. E., Carlson, R. D. & Snook, A. E. Concentrating on gastrointestinal cancers with chimeric antigen receptor (CAR)-T cell remedy. Most cancers Biol. Ther. 23, 127–133 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadelain, M., Riviere, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labanieh, L. & Mackall, C. L. CAR immune cells: design ideas, resistance and the subsequent technology. Nature 614, 635–648 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, C. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: section 1 trial interim outcomes. Nat. Med. 28, 1189–1198 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carpenito, C. et al. Management of enormous, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106, 3360–3365 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, J. et al. Mesothelin is a goal of chimeric antigen receptor T cells for treating gastric most cancers. J. Hematol. Oncol. 12, 18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jana, S. et al. Transcriptional–translational battle is a barrier to mobile transformation and most cancers development. Most cancers Cell 41, 853–870.e13 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sfakianos, A. P., Raven, R. M. & Willis, A. E. The pleiotropic roles of eIF5A in mobile life and its therapeutic potential in most cancers. Biochem. Soc. Trans. 50, 1885–1895 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, S. G. Protein methylation on the floor and buried deep: considering outdoors the histone field. Tendencies Biochem. Sci. 38, 243–252 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mealey-Farr, R. et al. Antibody toolkit to analyze eEF1A methylation dynamics in mRNA translation elongation. J. Biol. Chem. 299, 104747 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simsek, D. & Barna, M. An rising position for the ribosome as a nexus for post-translational modifications. Curr. Opin. Cell Biol. 45, 92–101 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, X., Ju, H. & Yang, W. An ego community evaluation method recognized vital biomarkers with an affiliation to development and metastasis of gastric most cancers. J. Cell. Biochem. 120, 15963–15970 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reynoird, N. et al. Coordination of stress indicators by the lysine methyltransferase SMYD2 promotes pancreatic most cancers. Genes Dev. 30, 772–785 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Aller, G. S. et al. Smyd3 regulates most cancers cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7, 340–343 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edmunds, J. W., Mahadevan, L. C. & Clayton, A. L. Dynamic histone H3 methylation throughout gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schotta, G. et al. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements within the mouse. Genes Dev. 22, 2048–2061 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagans, S. et al. The mobile lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Cell Host Microbe 7, 234–244 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luger, Okay., Rechsteiner, T. J. & Richmond, T. J. in Chromatin Protocols. Strategies in Molecular Biology, vol. 119 (ed. Becker P. B.) 1–16 (1999).

  • Zoabi, M. et al. Methyltransferase-like 21 C (METTL21C) methylates alanine tRNA synthetase at Lys-943 in muscle tissue. J. Biol. Chem. 295, 11822–11832 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baymaz, H. I., Spruijt, C. G. & Vermeulen, M. in Steady Isotope Labeling by Amino Acids in Cell Tradition (SILAC). Strategies Mol. Biol., vol. 1188 (ed. Warscheid, B.) 207–226 (2014).

  • Wingfield P. Protein precipitation utilizing ammonium sulfate. Curr. Protoc. Protein. Sci. Appendix 3:Appendix-3F (2001).

  • Cox, J. & Mann, M. MaxQuant allows excessive peptide identification charges, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bushnell, B. BBMap: A Quick, Correct, Splice-Conscious Aligner (Lawrence Berkeley Nationwide Lab, 2014).

  • Quast, C. et al. The SILVA ribosomal RNA gene database mission: improved knowledge processing and web-based instruments. Nucleic Acids Res. 41, D590–D596 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a quick spliced aligner with low reminiscence necessities. Nat. Strategies 12, 357–360 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, Y., Smyth, G. Okay. & Shi, W. The R package deal Rsubread is simpler, sooner, cheaper and higher for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pruitt, Okay. D. et al. RefSeq: an replace on mammalian reference sequences. Nucleic Acids Res. 42, D756–D763 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. Okay. edgeR: a Bioconductor package deal for differential expression evaluation of digital gene expression knowledge. Bioinformatics 26, 139–140 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray research. Nucleic Acids Res. 43, e47 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods—a Bioconductor package deal offering PCA strategies for incomplete knowledge. Bioinformatics 23, 1164–1167 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L., Wang, S. & Li, W. RSeQC: high quality management of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based method for deciphering genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mootha, V. Okay. et al. PGC-α-responsive genes concerned in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korotkevich, G. et al. Quick gene set enrichment evaluation. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).

  • Guan, B.-J. et al. A novel ISR program determines mobile responses to persistent stress. Mol. Cell 68, 885–900.e6 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mansour, F. H. & Pestov, D. G. Separation of lengthy RNA by agarose–formaldehyde gel electrophoresis. Anal. Biochem. 441, 18–20 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahman, S. & Zenklusen, D. in Imaging Gene Expresson. Strategies in Molecular Biology, vol. 1042 (ed. Shav-Tal, Y.) 33–46 (Humana Press, 2013).

  • Scott, D. D. et al. Nol12 is a multifunctional RNA binding protein on the nexus of RNA and DNA metabolism. Nucleic Acids Res. 45, 12509–12528 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, R. et al. Protein complicated prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  • The Most cancers Genome Atlas Analysis Community. Complete molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Gao, J. et al. Integrative evaluation of complicated most cancers genomics and scientific profiles utilizing the cBioPortal. Sci. Sign. 6, pl1 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerami, E. et al. The cBio most cancers genomics portal: an open platform for exploring multidimensional most cancers genomics knowledge. Most cancers Discov. 2, 401–404 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Mazur, P. Okay. et al. SMYD3 hyperlinks lysine methylation of MAP3K2 to Ras-driven most cancers. Nature 510, 283–287 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boussadia, O., Kutsch, S., Hierholzer, A., Delmas, V. & Kemler, R. E-cadherin is a survival issue for the lactating mouse mammary gland. Mech. Dev. 115, 53–62 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jonkers, J. et al. Synergistic tumor suppressor exercise of BRCA2 and p53 in a conditional mouse mannequin for breast most cancers. Nat. Genet. 29, 418–425 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lesche, R. et al. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 32, 148–149 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, X. et al. ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin transforming element BAF250a. Proc. Natl Acad. Sci. USA 105, 6656–6661 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic most cancers and its early detection within the mouse. Most cancers Cell 4, 437–450 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skarnes, W. C. et al. A conditional knockout useful resource for the genome-wide research of mouse gene operate. Nature 474, 337–342 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raymond, C. S. & Soriano, P. Excessive-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2, e162 (2007).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hot Topics

    Related Articles