Robichaud, N., Sonenberg, N., Ruggero, D. & Schneider, R. J. Translational management in most cancers. Chilly Spring Harb. Perspect. Biol. 11, a032896 (2019).
Kovalski, J. R., Kuzuoglu-Ozturk, D. & Ruggero, D. Protein synthesis management in most cancers: selectivity and therapeutic concentrating on. EMBO J. 41, e109823 (2022).
Baker, R. T. & Board, P. G. The human ubiquitin-52 amino acid fusion protein gene shares a number of structural options with mammalian ribosomal protein genes. Nucleic Acids Res. 19, 1035–1040 (1991).
Morgan, E. et al. The present and future incidence and mortality of gastric most cancers in 185 international locations, 2020-40: a population-based modelling research. eClinicalMedicine 47, 101404 (2022).
Hirata, Y., Noorani, A., Track, S., Wang, L. & Ajani, J. A. Early stage gastric adenocarcinoma: scientific and molecular landscapes. Nat. Rev. Clin. Oncol. 20, 453–469 (2023).
Manzanedo, I., Pereira, F., Perez-Viejo, E. & Serrano, A. Gastric most cancers with peritoneal metastases: present standing and prospects for therapy. Cancers 15, 1777 (2023).
Bhat, Okay. P., Umit Kaniskan, H., Jin, J. & Gozani, O. Epigenetics and past: concentrating on writers of protein lysine methylation to deal with illness. Nat. Rev. Drug. Discov. 20, 265–286 (2021).
Meng, X. et al. Complete evaluation of histone modification-associated genes on differential gene expression and prognosis in gastric most cancers. Exp. Ther. Med. 18, 2219–2230 (2019).
Zhang, Y. et al. Distinctive SMYD5 construction revealed by AlphaFold correlates with its purposeful divergence. Biomolecules 12, 783 (2022).
Zhang, Y. et al. SMYD5 catalyzes histone H3 lysine 36 trimethylation at promoters. Nat. Commun. 13, 3190 (2022).
Stender, J. D. et al. Management of proinflammatory gene packages by regulated trimethylation and demethylation of histone H4K20. Mol. Cell 48, 28–38 (2012).
Husmann, D. & Gozani, O. Histone lysine methyltransferases in biology and illness. Nat. Struct. Mol. Biol. 26, 880–889 (2019).
Afjehi-Sadat, L. & Garcia, B. A. Comprehending dynamic protein methylation with mass spectrometry. Curr. Opin. Chem. Biol. 17, 12–19 (2013).
Stark, C. et al. BioGRID: a normal repository for interplay datasets. Nucleic Acids Res. 34, D535–D539 (2006).
Williamson, N. A., Raliegh, J., Morrice, N. A. & Wettenhall, R. E. Put up-translational processing of rat ribosomal proteins. Ubiquitous methylation of Lys22 throughout the zinc-finger motif of RL40 (carboxy-terminal extension protein 52) and tissue-specific methylation of Lys4 in RL29. Eur. J. Biochem. 246, 786–793 (1997).
Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).
Eastham, M. J., Pelava, A., Wells, G. R., Watkins, N. J. & Schneider, C. RPS27a and RPL40, that are produced as ubiquitin fusion proteins, usually are not important for p53 signalling. Biomolecules 13, 898 (2023).
Shi, Z. et al. Heterogeneous ribosomes preferentially translate distinct subpools of mRNAs genome-wide. Mol. Cell 67, 71–83.e7 (2017).
Guimaraes, J. C. & Zavolan, M. Patterns of ribosomal protein expression specify regular and malignant human cells. Genome Biol. 17, 236 (2016).
Ferretti, M. B. & Karbstein, Okay. Does purposeful specialization of ribosomes actually exist? RNA 25, 521–538 (2019).
Miller, S. C., MacDonald, C. C., Kellogg, M. Okay., Karamysheva, Z. N. & Karamyshev, A. L. Specialised ribosomes in well being and illness. Int. J. Mol. Sci. 24, 6334 (2023).
Panda, A. et al. Tissue- and development-stage-specific mRNA and heterogeneous CNV signatures of human ribosomal proteins in regular and most cancers samples. Nucleic Acids Res. 48, 7079–7098 (2020).
Lee, A. S., Burdeinick-Kerr, R. & Whelan, S. P. A ribosome-specialized translation initiation pathway is required for cap-dependent translation of vesicular stomatitis virus mRNAs. Proc. Natl Acad. Sci. USA 110, 324–329 (2013).
Gandin, V. et al. Polysome fractionation and evaluation of mammalian translatomes on a genome-wide scale. J. Vis. Exp. 87, 51455 (2014).
Liu, S. et al. METTL13 methylation of eEF1A will increase translational output to advertise tumorigenesis. Cell 176, 491–504.e421 (2019).
Schmidt, E. Okay., Clavarino, G., Ceppi, M. & Pierre, P. SUnSET, a nonradioactive methodology to observe protein synthesis. Nat. Strategies 6, 275–277 (2009).
Iwasaki, S. & Ingolia, N. T. The rising toolbox for protein synthesis research. Tendencies Biochem. Sci. 42, 612–624 (2017).
Nielsen, P. J. & McConkey, E. H. Proof for management of protein synthesis in HeLa cells through the elongation price. J. Cell. Physiol. 104, 269–281 (1980).
Oertlin, C. et al. Typically relevant transcriptome-wide evaluation of translation utilizing anota2seq. Nucleic Acids Res. 47, e70 (2019).
Oertlin, C., Watt, Okay., Ristau, J. & Larsson, O. Anota2seq evaluation for transcriptome-wide atudies of mRNA translation. Strategies Mol. Biol. 2418, 243–268 (2022).
Truitt, M. L. & Ruggero, D. New frontiers in translational management of the most cancers genome. Nat. Rev. Most cancers 16, 288–304 (2016).
Lim, H. J., Zhuang, L. & Fitzgerald, R. C. Present advances in understanding the molecular profile of hereditary diffuse gastric most cancers and its scientific implications. J. Exp. Clin. Most cancers Res. 42, 57 (2023).
Gregory, S. N. & Davis, J. L. CDH1 and hereditary diffuse gastric most cancers: a story evaluate. Chin. Clin. Oncol. 12, 25 (2023).
Pihlak, R., Fong, C. & Starling, N. Focused therapies and creating precision drugs in gastric most cancers. Cancers 15, 3248 (2023).
Seidlitz, T. et al. Mouse fashions of human gastric most cancers subtypes with stomach-specific CreERT2-mediated pathway alterations. Gastroenterology 157, 1599–1614.e2 (2019).
Wong, H. H. & Chu, P. Immunohistochemical options of the gastrointestinal tract tumors. J. Gastrointest. Oncol. 3, 262–284 (2012).
Zhao, L. et al. Paracrine activation of MET promotes peritoneal carcinomatosis in scirrhous gastric most cancers. Most cancers Sci. 104, 1640–1646 (2013).
Staudt, R. E., Carlson, R. D. & Snook, A. E. Concentrating on gastrointestinal cancers with chimeric antigen receptor (CAR)-T cell remedy. Most cancers Biol. Ther. 23, 127–133 (2022).
Sadelain, M., Riviere, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).
Labanieh, L. & Mackall, C. L. CAR immune cells: design ideas, resistance and the subsequent technology. Nature 614, 635–648 (2023).
Qi, C. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: section 1 trial interim outcomes. Nat. Med. 28, 1189–1198 (2022).
Carpenito, C. et al. Management of enormous, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106, 3360–3365 (2009).
Lv, J. et al. Mesothelin is a goal of chimeric antigen receptor T cells for treating gastric most cancers. J. Hematol. Oncol. 12, 18 (2019).
Jana, S. et al. Transcriptional–translational battle is a barrier to mobile transformation and most cancers development. Most cancers Cell 41, 853–870.e13 (2023).
Sfakianos, A. P., Raven, R. M. & Willis, A. E. The pleiotropic roles of eIF5A in mobile life and its therapeutic potential in most cancers. Biochem. Soc. Trans. 50, 1885–1895 (2022).
Clarke, S. G. Protein methylation on the floor and buried deep: considering outdoors the histone field. Tendencies Biochem. Sci. 38, 243–252 (2013).
Mealey-Farr, R. et al. Antibody toolkit to analyze eEF1A methylation dynamics in mRNA translation elongation. J. Biol. Chem. 299, 104747 (2023).
Simsek, D. & Barna, M. An rising position for the ribosome as a nexus for post-translational modifications. Curr. Opin. Cell Biol. 45, 92–101 (2017).
Tian, X., Ju, H. & Yang, W. An ego community evaluation method recognized vital biomarkers with an affiliation to development and metastasis of gastric most cancers. J. Cell. Biochem. 120, 15963–15970 (2019).
Reynoird, N. et al. Coordination of stress indicators by the lysine methyltransferase SMYD2 promotes pancreatic most cancers. Genes Dev. 30, 772–785 (2016).
Van Aller, G. S. et al. Smyd3 regulates most cancers cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7, 340–343 (2012).
Edmunds, J. W., Mahadevan, L. C. & Clayton, A. L. Dynamic histone H3 methylation throughout gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008).
Schotta, G. et al. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements within the mouse. Genes Dev. 22, 2048–2061 (2008).
Pagans, S. et al. The mobile lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Cell Host Microbe 7, 234–244 (2010).
Luger, Okay., Rechsteiner, T. J. & Richmond, T. J. in Chromatin Protocols. Strategies in Molecular Biology, vol. 119 (ed. Becker P. B.) 1–16 (1999).
Zoabi, M. et al. Methyltransferase-like 21 C (METTL21C) methylates alanine tRNA synthetase at Lys-943 in muscle tissue. J. Biol. Chem. 295, 11822–11832 (2020).
Baymaz, H. I., Spruijt, C. G. & Vermeulen, M. in Steady Isotope Labeling by Amino Acids in Cell Tradition (SILAC). Strategies Mol. Biol., vol. 1188 (ed. Warscheid, B.) 207–226 (2014).
Wingfield P. Protein precipitation utilizing ammonium sulfate. Curr. Protoc. Protein. Sci. Appendix 3:Appendix-3F (2001).
Cox, J. & Mann, M. MaxQuant allows excessive peptide identification charges, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
Bushnell, B. BBMap: A Quick, Correct, Splice-Conscious Aligner (Lawrence Berkeley Nationwide Lab, 2014).
Quast, C. et al. The SILVA ribosomal RNA gene database mission: improved knowledge processing and web-based instruments. Nucleic Acids Res. 41, D590–D596 (2013).
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a quick spliced aligner with low reminiscence necessities. Nat. Strategies 12, 357–360 (2015).
Liao, Y., Smyth, G. Okay. & Shi, W. The R package deal Rsubread is simpler, sooner, cheaper and higher for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).
Pruitt, Okay. D. et al. RefSeq: an replace on mammalian reference sequences. Nucleic Acids Res. 42, D756–D763 (2013).
Robinson, M. D., McCarthy, D. J. & Smyth, G. Okay. edgeR: a Bioconductor package deal for differential expression evaluation of digital gene expression knowledge. Bioinformatics 26, 139–140 (2009).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray research. Nucleic Acids Res. 43, e47 (2015).
Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods—a Bioconductor package deal offering PCA strategies for incomplete knowledge. Bioinformatics 23, 1164–1167 (2007).
Wang, L., Wang, S. & Li, W. RSeQC: high quality management of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012).
Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based method for deciphering genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
Mootha, V. Okay. et al. PGC-α-responsive genes concerned in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).
Korotkevich, G. et al. Quick gene set enrichment evaluation. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).
Guan, B.-J. et al. A novel ISR program determines mobile responses to persistent stress. Mol. Cell 68, 885–900.e6 (2017).
Mansour, F. H. & Pestov, D. G. Separation of lengthy RNA by agarose–formaldehyde gel electrophoresis. Anal. Biochem. 441, 18–20 (2013).
Rahman, S. & Zenklusen, D. in Imaging Gene Expresson. Strategies in Molecular Biology, vol. 1042 (ed. Shav-Tal, Y.) 33–46 (Humana Press, 2013).
Scott, D. D. et al. Nol12 is a multifunctional RNA binding protein on the nexus of RNA and DNA metabolism. Nucleic Acids Res. 45, 12509–12528 (2017).
Evans, R. et al. Protein complicated prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).
The Most cancers Genome Atlas Analysis Community. Complete molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).
Gao, J. et al. Integrative evaluation of complicated most cancers genomics and scientific profiles utilizing the cBioPortal. Sci. Sign. 6, pl1 (2013).
Cerami, E. et al. The cBio most cancers genomics portal: an open platform for exploring multidimensional most cancers genomics knowledge. Most cancers Discov. 2, 401–404 (2012).
Mazur, P. Okay. et al. SMYD3 hyperlinks lysine methylation of MAP3K2 to Ras-driven most cancers. Nature 510, 283–287 (2014).
Boussadia, O., Kutsch, S., Hierholzer, A., Delmas, V. & Kemler, R. E-cadherin is a survival issue for the lactating mouse mammary gland. Mech. Dev. 115, 53–62 (2002).
Jonkers, J. et al. Synergistic tumor suppressor exercise of BRCA2 and p53 in a conditional mouse mannequin for breast most cancers. Nat. Genet. 29, 418–425 (2001).
Lesche, R. et al. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 32, 148–149 (2002).
Gao, X. et al. ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin transforming element BAF250a. Proc. Natl Acad. Sci. USA 105, 6656–6661 (2008).
Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic most cancers and its early detection within the mouse. Most cancers Cell 4, 437–450 (2003).
Skarnes, W. C. et al. A conditional knockout useful resource for the genome-wide research of mouse gene operate. Nature 474, 337–342 (2011).
Raymond, C. S. & Soriano, P. Excessive-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2, e162 (2007).