Rising advances in defining the molecular and therapeutic panorama of small-cell lung most cancers


  • Thomas, A. et al. Scientific and genomic traits of small cell lung most cancers in by no means people who smoke: outcomes from a retrospective multicenter cohort examine. Chest 158, 1723–1733 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varghese, A. M. et al. Small-cell lung cancers in sufferers who by no means smoked cigarettes. J. Thorac. Oncol. 9, 892–896 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. Survival modifications in sufferers with small cell lung most cancers and disparities between totally different sexes, socioeconomic statuses and ages. Sci. Rep. 7, 1339 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W. et al. Variations between superior giant cell neuroendocrine carcinoma and superior small cell lung most cancers: a propensity rating matching evaluation. J. Most cancers 14, 1541–1552 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. V. et al. Up to date total survival and PD-L1 subgroup evaluation of sufferers with extensive-stage small-cell lung most cancers handled with atezolizumab, carboplatin, and etoposide (IMpower133). J. Clin. Oncol. 39, 619–630 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paz-Ares, L. et al. Durvalumab, with or with out tremelimumab, plus platinum-etoposide in first-line remedy of extensive-stage small-cell lung most cancers: 3-year total survival replace from CASPIAN. ESMO Open. 7, 100408 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. V. et al. 5-year survival in sufferers with ES-SCLC handled with atezolizumab in IMpower133: imbrella a extension examine outcomes [abstract OA01.04]. J. Thorac. Oncol. 18, S44–S45 (2023).

    Article 

    Google Scholar
     

  • Rudin, C. M., Brambilla, E., Faivre-Finn, C. & Sage, J. Small-cell lung most cancers. Nat. Rev. Dis. Prim. 7, 3 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Thomas, A., Pattanayak, P., Szabo, E. & Pinsky, P. Traits and outcomes of small cell lung most cancers detected by CT screening. Chest 154, 1284–1290 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tune, P. et al. M3 muscarinic receptor antagonists inhibit small cell lung carcinoma progress and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. Most cancers Res. 67, 3936–3944 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedman, J. R. et al. Acetylcholine signaling system in development of lung cancers. Pharmacol. Ther. 194, 222–254 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soomro, Z. et al. Paraneoplastic syndromes in small cell lung most cancers. J. Thorac. Dis. 12, 6253–6263 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roth, B. J. et al. Randomized examine of cyclophosphamide, doxorubicin, and vincristine versus etoposide and cisplatin versus alternation of those two regimens in intensive small-cell lung most cancers: a part III trial of the Southeastern Most cancers Examine Group. J. Clin. Oncol. 10, 282–291 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sundstrøm, S. et al. Cisplatin and etoposide routine is superior to cyclophosphamide, epirubicin, and vincristine routine in small-cell lung most cancers: outcomes from a randomized part III trial with 5 years’ follow-up. J. Clin. Oncol. 20, 4665–4672 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, S. & Cheng, Y. Immunotherapy for extensive-stage small-cell lung most cancers: present panorama and future views. Entrance. Oncol. 13, 1142081 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torres-Durán, M. et al. Small-cell lung most cancers in never-smokers. ESMO Open. 6, 100059 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moffat, G. T., Wang, T. & Robinson, A. G. Small cell lung most cancers in gentle/by no means people who smoke – a task for molecular testing? J. Natl Compr. Canc Netw. 21, 336–339 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Marcoux, N. et al. EGFR-mutant adenocarcinomas that rework to small-cell lung most cancers and different neuroendocrine carcinomas: medical outcomes. J. Clin. Oncol. 37, 278–285 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quintanal-Villalonga, A. et al. Multi-omic evaluation of lung tumors defines pathways activated in neuroendocrine transformation. Most cancers Discov. 11, 3028–3047 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pleasance, E. D. et al. A small-cell lung most cancers genome with complicated signatures of tobacco publicity. Nature 463, 184–190 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response fee to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horn, L. et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung most cancers. N. Engl. J. Med. 379, 2220–2229 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hellmann, M. D. et al. Tumor mutational burden and efficacy of nivolumab monotherapy and together with ipilimumab in small-cell lung most cancers. Most cancers Cell 33, 853–861.e4 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doyle, A. et al. Markedly decreased expression of sophistication I histocompatibility antigens, protein, and mRNA in human small-cell lung most cancers. J. Exp. Med. 161, 1135–1151 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • George, J. et al. Complete genomic profiles of small cell lung most cancers. Nature 524, 47–53 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meuwissen, R. et al. Induction of small cell lung most cancers by somatic inactivation of each Trp53 and Rb1 in a conditional mouse mannequin. Most cancers Cell 4, 181–189 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Febres-Aldana, C. A. et al. Rb tumor suppressor in small cell lung most cancers: mixed genomic and IHC evaluation with an outline of a definite Rb-proficient subset. Clin. Most cancers Res. 28, 4702–4713 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sivakumar, S. et al. Integrative evaluation of a big real-world cohort of small cell lung most cancers identifies distinct genetic subtypes and insights into histologic transformation. Most cancers Discov. 13, 1572–1591 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, A. H. et al. Recurrent WNT pathway alterations are frequent in relapsed small cell lung most cancers. Nat. Commun. 9, 3787 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakre, N. et al. RICTOR amplification identifies a subgroup in small cell lung most cancers and predicts response to medicine concentrating on mTOR. Oncotarget 8, 5992–6002 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Schwendenwein, A. et al. Molecular profiles of small cell lung most cancers subtypes: therapeutic implications. Mol. Ther. Oncol. 20, 470–483 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Most cancers Genome Atlas Analysis Community. Complete molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

    Article 

    Google Scholar
     

  • Schram, A. M., Chang, M. T., Jonsson, P. & Drilon, A. Fusions in stable tumours: diagnostic methods, focused remedy, and purchased resistance. Nat. Rev. Clin. Oncol. 14, 735–748 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwakawa, R. et al. Genome-wide identification of genes with amplification and/or fusion in small cell lung most cancers. Genes Chromosomes Most cancers 52, 802–816 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudin, C. M. et al. Complete genomic evaluation identifies SOX2 as a ceaselessly amplified gene in small-cell lung most cancers. Nat. Genet. 44, 1111–1116 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ciampricotti, M. et al. RlfMycl gene fusion drives tumorigenesis and metastasis in a mouse mannequin of small cell lung most cancers. Most cancers Discov. 11, 3214–3229 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • der Hollander, J. et al. Aurora kinases A and B are up-regulated by Myc and are important for upkeep of the malignant state. Blood 116, 1498–1505 (2010).

    Article 

    Google Scholar
     

  • Dominguez-Sola, D. & Gautier, J. MYC and the management of DNA replication. Chilly Spring Harb. Perspect. Med. 4, a014423 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dauch, D. et al. A MYC–aurora kinase A protein complicated represents an actionable drug goal in p53-altered liver most cancers. Nat. Med. 22, 744–753 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sen, T. et al. CHK1 inhibition in small-cell lung most cancers produces single-agent exercise in biomarker-defined illness subsets and mixture exercise with cisplatin or olaparib. Most cancers Res. 77, 3870–3884 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byers, L. A. et al. A part II trial of prexasertib (LY2606368) in sufferers with extensive-stage small-cell lung most cancers. Clin. Lung Most cancers 22, 531–540 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Owonikoko, T. Okay. et al. Randomized part II examine of paclitaxel plus alisertib versus paclitaxel plus placebo as second-line remedy for SCLC: main and correlative biomarker analyses. J. Thorac. Oncol. 15, 274–287 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grunblatt, E. et al. MYCN drives chemoresistance in small cell lung most cancers whereas USP7 inhibition can restore chemosensitivity. Genes. Dev. 34, 1210–1226 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. A examine on totally different therapies and prognosis-related elements for 101 sufferers with SCLC and mind metastases. Most cancers Biol. Ther. 18, 670–675 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, N., Chu, Y. & Tune, Q. Mind metastasis in sufferers with small cell lung most cancers. Int. J. Gen. Med. 14, 10131–10139 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lord, C. J. & Ashworth, A. PARP inhibitors: artificial lethality within the clinic. Science 355, 1152–1158 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorscher, S. et al. Charge of pathogenic germline variants in sufferers with lung most cancers. JCO Summary. Oncol. 7, e2300190 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tlemsani, C. et al. Complete-exome sequencing reveals germline-mutated small cell lung most cancers subtype with favorable response to DNA repair-targeted therapies. Sci. Transl. Med. 13, eabc7488 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richards, S. et al. Requirements and tips for the interpretation of sequence variants: a joint consensus suggestion of the American School of Medical Genetics and Genomics and the Affiliation for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gazdar, A. F., Carney, D. N., Nau, M. M. & Minna, J. D. Characterization of variant subclasses of cell traces derived from small cell lung most cancers having distinctive biochemical, morphological, and progress properties. Most cancers Res. 45, 2924–2930 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Rudin, C. M. et al. Molecular subtypes of small cell lung most cancers: a synthesis of human and mouse mannequin knowledge. Nat. Rev. Most cancers 19, 289–297 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puri, S. et al. Actual-world multiomic characterization of small cell lung most cancers subtypes to disclose differential expression of clinically related biomarkers [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 8508 (2021).

    Article 

    Google Scholar
     

  • Qu, S. et al. Molecular subtypes of main small cell lung most cancers tumors and their associations with neuroendocrine and therapeutic markers. J. Thorac. Oncol. 17, 141–153 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eire, A. S. et al. MYC drives temporal evolution of small cell lung most cancers subtypes by reprogramming neuroendocrine destiny. Most cancers Cell 38, 60–78.e12 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Owonikoko, T. Okay. et al. YAP1 expression in SCLC defines a definite subtype with T-cell-inflamed phenotype. J. Thorac. Oncol. 16, 464–476 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baine, M. Okay. et al. SCLC subtypes outlined by ASCL1, NEUROD1, POU2F3, and YAP1: a complete immunohistochemical and histopathologic characterization. J. Thorac. Oncol. 15, 1823–1835 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Homosexual, C. M. et al. Patterns of transcription issue packages and immune pathway activation outline 4 main subtypes of SCLC with distinct therapeutic vulnerabilities. Most cancers Cell 39, 346–360.e7 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simpson, Okay. L. et al. A biobank of small cell lung most cancers CDX fashions elucidates inter- and intratumoral phenotypic heterogeneity. Nat. Most cancers 1, 437–451 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Y. et al. Identification of TAZ because the important molecular change in orchestrating SCLC phenotypic transition and metastasis. Natl Sci. Rev. 9, nwab2023 (2022).

    Article 

    Google Scholar
     

  • Tlemsani, C. et al. SCLC-CellMiner: a useful resource for small cell lung most cancers cell line genomics and pharmacology based mostly on genomic signatures. Cell Rep. 33, 108296 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polley, E. et al. Small cell lung most cancers display of oncology medicine, investigational brokers, and gene and microRNA expression. J. Natl Most cancers Inst. 108, djw122 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caeser, R. et al. MAPK pathway activation selectively inhibits ASCL1-driven small cell lung most cancers. iScience 24, 103224 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, J. M. et al. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung most cancers. Most cancers Cell 39, 1479–1496.e18 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Small cell lung most cancers tumors and preclinical fashions show heterogeneity of neuroendocrine phenotypes. Transl. Lung Most cancers Res. 7, 32–49 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balanis, N. G. et al. Pan-cancer convergence to a small-cell neuroendocrine phenotype that shares susceptibilities with hematological malignancies. Most cancers Cell 36, 17–34.e17 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. A genetically outlined illness mannequin reveals that urothelial cells can provoke divergent bladder most cancers phenotypes. Proc. Natl Acad. Sci. USA 117, 563–572 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, A. et al. Therapeutic concentrating on of ATR yields sturdy regressions in small cell lung cancers with excessive replication stress. Most cancers Cell 39, 566–579.e7 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lissa, D. et al. Heterogeneity of neuroendocrine transcriptional states in metastatic small cell lung cancers and patient-derived fashions. Nat. Commun. 13, 2023 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bebber, C. M. et al. Ferroptosis response segregates small cell lung most cancers (SCLC) neuroendocrine subtypes. Nat. Commun. 12, 2048 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. V. et al. IMpower133: gene expression (GE) evaluation in long-term survivors (LTS) with ES-SCLC handled with first-line carboplatin and etoposide (CE) ± atezolizumab (atezo) [abstract VP5-2021]. Ann. Oncol. 32, 1063–1065 (2021).

    Article 

    Google Scholar
     

  • Roper, N. et al. Notch signaling and efficacy of PD-1/PD-L1 blockade in relapsed small cell lung most cancers. Nat. Commun. 12, 3880 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nabet, B. Y. et al. Immune heterogeneity in small-cell lung most cancers and vulnerability to immune checkpoint blockade. Most cancers Cell 42, 429–443.e4 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saunders, L. R. et al. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci. Transl. Med. 7, 302ra136 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blackhall, F. et al. Efficacy and security of rovalpituzumab tesirine in contrast with topotecan as second-line remedy in DLL3-high SCLC: outcomes from the part 3 TAHOE examine. J. Thorac. Oncol. 16, 1547–1558 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaspers, J. E. et al. IL-18-secreting CAR T cells concentrating on DLL3 are extremely efficient in small cell lung most cancers fashions. J. Clin. Make investments. 133, e166028 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huehls, A. M., Coupet, T. A. & Sentman, C. L. Bispecific T-cell engagers for most cancers immunotherapy. Immunol. Cell Biol. 93, 290–296 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giffin, M. J. et al. AMG 757, a half-life prolonged, DLL3-targeted bispecific T-cell engager, exhibits excessive efficiency and sensitivity in preclinical fashions of small-cell lung most cancers. Clin. Most cancers Res. 27, 1526–1537 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paz-Ares, L. et al. Tarlatamab, a first-in-class DLL3-targeted bispecific T-cell engager, in recurrent small-cell lung most cancers: an open-label, part I examine. J. Clin. Oncol. 41, 2893–2903 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, M. J. et al. Tarlatamab for sufferers with beforehand handled small-cell lung most cancers. N. Engl. J. Med. 389, 2063–2075 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • FDA. FDA grants accelerated approval to tarlatamab-dlle for intensive stage small cell lung most cancers. https://www.fda.gov/medicine/resources-information-approved-drugs/fda-grants-accelerated-approval-tarlatamab-dlle-extensive-stage-small-cell-lung-cancer (2024).

  • Hipp, S. et al. A bispecific DLL3/CD3 IgG-like T-cell participating antibody induces antitumor responses in small cell lung most cancers. Clin. Most cancers Res. 26, 5258–5268 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudin, C. M. et al. Rising therapies concentrating on the delta-like ligand 3 (DLL3) in small cell lung most cancers. J. Hematol. Oncol. 16, 66 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hafezi, S. & Rahmani, M. Focusing on BCL-2 in most cancers: advances, challenges, and views. Cancers 13, 1292 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valko, Z. et al. Twin concentrating on of BCL-2 and MCL-1 within the presence of BAX breaks venetoclax resistance in human small cell lung most cancers. Br. J. Most cancers 128, 1850–1861 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, S. et al. Co-targeting BCL-XL and MCL-1 with DT2216 and AZD8055 synergistically inhibit small-cell lung most cancers progress with out inflicting on-target toxicities in mice. Cell Dying Discov. 9, 1 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paik, P. Okay. et al. A part II examine of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in relapsed small cell lung most cancers. Lung Most cancers 74, 481–485 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Rudin, C. M. et al. Randomized part II examine of carboplatin and etoposide with or with out the bcl-2 antisense oligonucleotide oblimersen for extensive-stage small-cell lung most cancers: CALGB 30103. J. Clin. Oncol. 26, 870–876 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chalishazar, M. D. et al. MYC-driven small-cell lung most cancers is metabolically distinct and susceptible to arginine depletion. Clin. Most cancers Res. 25, 5107–5121 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, H. et al. Small-molecule MYC inhibitors suppress tumor progress and improve immunotherapy. Most cancers Cell 36, 483–497.e15 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demma, M. J. et al. Omomyc reveals new mechanisms to inhibit the MYC oncogene. Mol. Cell. Biol. 39, e00248-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gavory, G. et al. Identification of MRT-2359 a potent, selective and orally bioavailable GSPT1-directed molecular glue degrader (MGD) for the remedy of cancers with Myc-induced translational habit [abstract]. Most cancers Res. 82 (Suppl. 12), 3929 (2022).

    Article 

    Google Scholar
     

  • Heeke, S. et al. Tumor- and circulating-free DNA methylation identifies clinically related small cell lung most cancers subtypes. Most cancers Cell 42, 225–237.e5 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y. H. et al. POU2F3 is a grasp regulator of a tuft cell-like variant of small cell lung most cancers. Genes. Dev. 32, 915–928 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiappori, A. A. et al. A randomized part II examine of linsitinib (OSI-906) versus topotecan in sufferers with relapsed small-cell lung most cancers. Oncologist 21, 1163–1164 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belani, C. P. et al. Vismodegib or cixutumumab together with customary chemotherapy for sufferers with extensive-stage small cell lung most cancers: a trial of the ECOG-ACRIN Most cancers Analysis Group (E1508). Most cancers 122, 2371–2378 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pietanza, M. C. et al. Randomized, double-blind, part II examine of temozolomide together with both veliparib or placebo in sufferers with relapsed-sensitive or refractory small-cell lung most cancers. J. Clin. Oncol. 36, 2386–2394 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farago, A. F. et al. Mixture olaparib and temozolomide in relapsed small-cell lung most cancers. Most cancers Discov. 9, 1372–1387 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McColl, Okay. et al. Reciprocal expression of INSM1 and YAP1 defines subgroups in small cell lung most cancers. Oncotarget 8, 73745–73756 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horie, M., Saito, A., Ohshima, M., Suzuki, H. I. & Nagase, T. YAP and TAZ modulate cell phenotype in a subset of small cell lung most cancers. Most cancers Sci. 107, 1755–1766 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wooten, D. J. et al. Techniques-level community modeling of small cell lung most cancers subtypes identifies grasp regulators and destabilizers. PLoS Comput. Biol. 15, e1007343 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peifer, M. et al. Integrative genome analyses determine key somatic driver mutations of small-cell lung most cancers. Nat. Genet. 44, 1104–1110 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whyte, W. A. et al. Grasp transcription elements and mediator set up super-enhancers at key cell identification genes. Cell 153, 307–319 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker, S. C. et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human illness danger variants. Proc. Natl Acad. Sci. USA 110, 17921–17926 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pozo, Okay. et al. ASCL1, NKX2-1, and PROX1 co-regulate subtype-specific genes in small-cell lung most cancers. iScience 24, 102953 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsherniak, A. et al. Defining a most cancers dependency map. Cell 170, 564–576.e16 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. J., Cantor, H. & Cosmopoulos, Okay. Overcoming immune checkpoint blockade resistance through EZH2 inhibition. Traits Immunol. 41, 948–963 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poirier, J. T. et al. DNA methylation in small cell lung most cancers defines distinct illness subtypes and correlates with excessive expression of EZH2. Oncogene 34, 5869–5878 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirk, N. A., Kim, Okay. B. & Park, Okay. S. Impact of chromatin modifiers on the plasticity and immunogenicity of small-cell lung most cancers. Exp. Mol. Med. 54, 2118–2127 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahadevan, N. R. et al. Intrinsic immunogenicity of small cell lung carcinoma revealed by its mobile plasticity. Most cancers Discov. 11, 1952–1969 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burr, M. L. et al. An evolutionarily conserved operate of polycomb silences the MHC class I antigen presentation pathway and permits immune evasion in most cancers. Most cancers Cell 36, 385–401.e8 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Augert, A. et al. Focusing on NOTCH activation in small cell lung most cancers by means of LSD1 inhibition. Sci. Sign. 12, eaau2922 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammad, H. P. et al. A DNA hypomethylation signature predicts antitumor exercise of LSD1 inhibitors in SCLC. Most cancers Cell 28, 57–69 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauer, T. M. et al. Section I, open-label, dose-escalation examine of the protection, pharmacokinetics, pharmacodynamics, and efficacy of GSK2879552 in relapsed/refractory SCLC. J. Thorac. Oncol. 14, 1828–1838 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiatt, J. B. et al. Inhibition of LSD1 with bomedemstat sensitizes small cell lung most cancers to immune checkpoint blockade and T-cell killing. Clin. Most cancers Res. 28, 4551–4564 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shukla, V. et al. ASXL3 is a novel pluripotency think about human respiratory epithelial cells and a possible therapeutic goal in small cell lung most cancers. Most cancers Res. 77, 6267–6281 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Z. et al. PAX9 determines epigenetic state transition and cell destiny in most cancers. Most cancers Res. 81, 4696–4708 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chao, Y. L. & Pecot, C. V. Focusing on epigenetics in lung most cancers. Chilly Spring Harb. Perspect. Med. 11, a038000 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sequist, L. V. et al. Genotypic and histological evolution of lung cancers buying resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ziller, M. J. et al. Charting a dynamic DNA methylation panorama of the human genome. Nature 500, 477–481 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varley, Okay. E. et al. Dynamic DNA methylation throughout numerous human cell traces and tissues. Genome Res. 23, 555–567 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubin, M. A., Bristow, R. G., Thienger, P. D., Dive, C. & Imielinski, M. Influence of lineage plasticity to and from a neuroendocrine phenotype on development and response in prostate and lung cancers. Mol. Cell 80, 562–577 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stine, Z. E., Walton, Z. E., Altman, B. J., Hsieh, A. L. & Dang, C. V. MYC, metabolism, and most cancers. Most cancers Discov. 5, 1024–1039 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cargill, Okay. R., Hasken, W. L., Homosexual, C. M. & Byers, L. A. Various vitality: breaking down the various metabolic options of lung cancers. Entrance. Oncol. 11, 757323 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Lee, I. et al. Single-agent gemcitabine in sufferers with resistant small-cell lung most cancers. Ann. Oncol. 12, 557–561 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Cargill, Okay. R. et al. Focusing on MYC-enhanced glycolysis for the remedy of small cell lung most cancers. Most cancers Metab. 9, 33 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mollaoglu, G. et al. MYC drives development of small cell lung most cancers to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Most cancers Cell 31, 270–285 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedersen, S. et al. Figuring out metabolic alterations in newly recognized small cell lung most cancers sufferers. Metab. Open. 12, 100127 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. Z. et al. Genomic and transcriptomic characterization of relapsed SCLC by means of speedy analysis post-mortem. JTO Clin. Res. Rep. 2, 100164 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, E. E. et al. Chemosensitive relapse in small cell lung most cancers proceeds by means of an EZH2-SLFN11 axis. Most cancers Cell 31, 286–299 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, J. S. et al. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung most cancers. Nature 545, 360–364 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdo Hassan, W. et al. Notch1 controls cell chemoresistance in small cell lung carcinoma cells. Thorac. Most cancers 7, 123–128 (2016).

    Article 

    Google Scholar
     

  • Kim, J. W., Ko, J. H. & Sage, J. DLL3 regulates Notch signaling in small cell lung most cancers. iScience 25, 105603 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ventola, C. L. Most cancers immunotherapy, half 1: present methods and brokers. Pharm. Ther. 42, 375–383 (2017).


    Google Scholar
     

  • Iclozan, C., Antonia, S., Chiappori, A., Chen, D. T. & Gabrilovich, D. Therapeutic regulation of myeloid-derived suppressor cells and immune response to most cancers vaccine in sufferers with intensive stage small cell lung most cancers. Most cancers Immunol. Immunother. 62, 909–918 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • George, J. et al. Genomic amplification of CD274 (PD-L1) in small-cell lung most cancers. Clin. Most cancers Res. 23, 1220–1226 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamilton, G. & Rath, B. Immunotherapy for small cell lung most cancers: mechanisms of resistance. Skilled. Opin. Biol. Ther. 19, 423–432 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Acheampong, E. et al. Tumour PD-L1 expression in small-cell lung most cancers: a scientific evaluate and meta-analysis. Cells 9, 2393 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pavan, A. et al. Immunotherapy in small-cell lung most cancers: from molecular guarantees to medical challenges. J. Immunother. Most cancers 7, 205 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paz-Ares, L. et al. Durvalumab ± tremelimumab + platinum-etoposide in extensive-stage small cell lung most cancers (CASPIAN): outcomes by PD-L1 expression and tissue tumor mutational burden. Clin. Most cancers Res. 30, 824–835 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peters, S. et al. Tremelimumab (T) + durvalumab (D) + chemotherapy (CT) in 1L metastatic NSCLC: outcomes by blood tumor mutational burden (bTMB) in POSEIDON [abstract]. Most cancers Res. 83 (Suppl. 8), CT080 (2023).

    Article 

    Google Scholar
     

  • Rudin, C. M. et al. Exploratory biomarker evaluation of the part 3 KEYNOTE-604 examine of pembrolizumab plus etoposide for extensive-stage SCLC [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 8503 (2023).

    Article 

    Google Scholar
     

  • Reck, M. et al. Ipilimumab together with paclitaxel and carboplatin as first-line remedy in extensive-disease-small-cell lung most cancers: outcomes from a randomized, double-blind, multicenter part 2 trial. Ann. Oncol. 24, 75–83 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reck, M. et al. Section III randomized trial of ipilimumab plus etoposide and platinum versus placebo plus etoposide and platinum in extensive-stage small-cell lung most cancers. J. Clin. Oncol. 34, 3740–3748 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paz-Ares, L. et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line remedy of extensive-stage small-cell lung most cancers (CASPIAN): a randomised, managed, open-label, part 3 trial. Lancet 394, 1929–1939 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ott, P. A. et al. Pembrolizumab in sufferers with extensive-stage small-cell lung most cancers: outcomes from the part Ib KEYNOTE-028 examine. J. Clin. Oncol. 35, 3823–3829 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudin, C. M. et al. Pembrolizumab or placebo plus etoposide and platinum as first-line remedy for extensive-stage small-cell lung most cancers: randomized, double-blind, part III KEYNOTE-604 examine. J. Clin. Oncol. 38, 2369–2379 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudin, C. M. et al. SKYSCRAPER-02: tiragolumab together with atezolizumab plus chemotherapy in untreated extensive-stage small-cell lung most cancers. J. Clin. Oncol. 42, 324–335 (2020).

    Article 

    Google Scholar
     

  • Senan, S. et al. Design and rationale for a part III, randomized, placebo-controlled trial of durvalumab with or with out tremelimumab after concurrent chemoradiotherapy for sufferers with limited-stage small-cell lung most cancers: the ADRIATIC examine. Clin. Lung Most cancers 21, e84–e88 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spigel, D. R. et al. ADRIATIC: Durvalumab (D) as consolidation remedy (tx) for sufferers (pts) with limited-stage small-cell lung most cancers (LS-SCLC)]summary]. J. Clin. Oncol. 42 (Suppl. 17), LBA5 (2024).

    Article 

    Google Scholar
     

  • Spigel, D. R. et al. 5-year survival outcomes from the PACIFIC trial: durvalumab after chemoradiotherapy in stage III non-small-cell lung most cancers. J. Clin. Oncol. 40, 1301–1311 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Y. et al. Benmelstobart with anlotinib plus chemotherapy as first-line remedy for ES-SCLC: a randomized, double-blind, part III trial. J. Thorac. Oncol. 18, S44 (2023).

    Article 

    Google Scholar
     

  • Ohe, Y. et al. BEAT-SC: a randomized part III examine of bevacizumab or placebo together with atezolizumab and platinum-based chemotherapy in sufferers with extensive-stage small cell lung most cancers (ES-SCLC) [abstract]. J. Clin. Oncol. 42 (Suppl. 16), 8001 (2024).

    Article 

    Google Scholar
     

  • Sen, T. et al. Mixture remedy of the oral CHK1 inhibitor, SRA737, and low-dose gemcitabine enhances the impact of programmed dying ligand 1 blockade by modulating the immune microenvironment in SCLC. J. Thorac. Oncol. 14, 2152–2163 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sen, T. et al. Focusing on AXL and mTOR pathway overcomes main and purchased resistance to WEE1 inhibition in small-cell lung most cancers. Clin. Most cancers Res. 23, 6239–6253 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sen, T. et al. Focusing on DNA harm restore in small cell lung most cancers and the biomarker panorama. Transl. Lung Most cancers Res. 7, 50–68 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taniguchi, H. et al. Focused therapies and biomarkers in small cell lung most cancers. Entrance. Oncol. 10, 741 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taniguchi, H. et al. WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Rep. 39, 110814 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sen, T. et al. Focusing on DNA harm response promotes antitumor immunity by means of sting-mediated T-cell activation in small cell lung most cancers. Most cancers Discov. 9, 646–661 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, R. et al. A part I/II trial of oral SRA737 (a Chk1 Inhibitor) given together with low-dose gemcitabine in sufferers with superior most cancers. Clin. Most cancers Res. 29, 331–340 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qu, T., Li, B. & Wang, Y. Focusing on CD47/SIRPα as a therapeutic technique, the place we’re and the place we’re headed. Biomark. Res. 10, 20 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomita, Y. et al. In small cell lung most cancers sufferers handled with RRx-001, a downregulator of CD47, decreased expression of PD-L1 on circulating tumor cells considerably correlates with medical profit. Transl. Lung Most cancers Res. 10, 274–278 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamada, T. et al. Genetically engineered humanized anti-ganglioside GM2 antibody in opposition to a number of organ metastasis produced by GM2-expressing small-cell lung most cancers cells. Most cancers Sci. 102, 2157–2163 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taniguchi, H. et al. Position of CD38 in anti-tumor immunity of small cell lung most cancers. Entrance. Immunol. 15, 1348982 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudin, C. M. et al. Scientific profit from immunotherapy in sufferers with SCLC is related to tumor capability for antigen presentation. J. Thorac. Oncol. 18, 1222–1232 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dowlati, A. et al. Immune checkpoint blockade final result in small-cell lung most cancers and its relationship with retinoblastoma mutation standing and performance. JCO Summary. Oncol. 6, e2200257 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wollenzien, H., Afeworki Tecleab, Y., Szczepaniak-Sloane, R., Restaino, A. & Kareta, M. S. Single-cell evolutionary evaluation reveals drivers of plasticity and mediators of chemoresistance in small cell lung most cancers. Mol. Most cancers Res. 21, 892–907 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, Y. et al. Single-cell transcriptomic profiling reveals the tumor heterogeneity of small-cell lung most cancers. Sign. Transduct. Goal. Ther. 7, 346 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stewart, C. A. et al. Single-cell analyses reveal elevated intratumoral heterogeneity after the onset of remedy resistance in small-cell lung most cancers. Nat. Most cancers 1, 423–436 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dowlati, A. et al. Scientific correlation of extensive-stage small-cell lung most cancers genomics. Ann. Oncol. 27, 642–647 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wildey, G. et al. Retinoblastoma expression and concentrating on by CDK4/6 inhibitors in small cell lung most cancers. Mol. Most cancers Ther. 22, 264–273 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman, N., Zhang, B., Byers, L. A. & Yap, T. A. The position of Schlafen 11 (SLFN11) as a predictive biomarker for concentrating on the DNA harm response. Br. J. Most cancers 124, 857–859 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zoppoli, G. et al. Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes most cancers cells to DNA-damaging brokers. Proc. Natl Acad. Sci. USA 109, 15030–15035 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lok, B. H. et al. PARP inhibitor exercise correlates with SLFN11 expression and demonstrates synergy with temozolomide in small cell lung most cancers. Clin. Most cancers Res. 23, 523–535 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdel Karim, N. F. et al. SWOG S1929: part II randomized examine of upkeep atezolizumab (A) versus atezolizumab + talazoparib (AT) in sufferers with SLFN11 optimistic intensive stage small cell lung most cancers (ES-SCLC) [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 8504 (2023).

    Article 

    Google Scholar
     

  • Ali, G. et al. Prevalence of delta-like protein 3 in a consecutive collection of surgically resected lung neuroendocrine neoplasms. Entrance. Oncol. 11, 729765 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wermke, M. et al. First-in-human dose-escalation trial of BI 764532, a delta-like ligand 3 (DLL3)/CD3 IgG-like T-cell engager in sufferers (pts) with DLL3-positive (DLL3+) small-cell lung most cancers (SCLC) and neuroendocrine carcinoma (NEC) [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 8502 (2023).

    Article 

    Google Scholar
     

  • Johnson, M. L. et al. Interim outcomes of an ongoing part 1/2a examine of HPN328, a tri-specific, half-life prolonged, DLL3-targeting, T-cell engager, in sufferers with small cell lung most cancers and different neuroendocrine cancers [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 8566 (2022).

    Article 

    Google Scholar
     

  • Wiedemeyer, W. R. et al. ABBV-011, a novel, calicheamicin-based antibody-drug conjugate, targets SEZ6 to eradicate small cell lung most cancers tumors. Mol. Most cancers Ther. 21, 986–998 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgensztern, D. et al. First-in-human examine of ABBV-011, a seizure-related homolog protein 6 (SEZ6)–concentrating on antibody-drug conjugate, in sufferers with small cell lung most cancers [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 3002 (2023).

    Article 

    Google Scholar
     

  • Lehman, J. M. et al. Somatostatin receptor 2 signaling promotes progress and tumor survival in small-cell lung most cancers. Int. J. Most cancers 144, 1104–1114 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dowlati, A. et al. Sacituzumab govitecan (SG) as second-line (2L) remedy for intensive stage small cell lung most cancers (ES-SCLC): preliminary outcomes from the part II TROPiCS-03 basket trial [abstract 1990MO]. Ann. Oncol. 34 (Suppl. 2), S1061–S1062 (2023).

    Article 

    Google Scholar
     

  • Johnson, M. et al. Ifinatamab deruxtecan (I-DXd; DS-7300) in sufferers with refractory SCLC: a subgroup evaluation of a part 1/2 examine. J. Thorac. Oncol. 18, S34–S55 (2023).

    Article 

    Google Scholar
     

  • Hou, J. M. et al. Circulating tumor cells, enumeration and past. Cancers 2, 1236–1250 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, J. M. et al. Scientific significance and molecular traits of circulating tumor cells and circulating tumor microemboli in sufferers with small-cell lung most cancers. J. Clin. Oncol. 30, 525–532 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Byers, L. A. & Rudin, C. M. Small cell lung most cancers: the place will we go from right here? Most cancers 121, 664–672 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hodgkinson, C. L. et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung most cancers. Nat. Med. 20, 897–903 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pizzutilo, E. G. et al. Liquid biopsy for small cell lung most cancers both de novo or reworked: systematic evaluate of various functions and meta-analysis. Cancers 13, 2265 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Luca, A. et al. Promising position of circulating tumor cells within the administration of SCLC. Cancers 13, 2029 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohan, S. et al. Profiling of circulating free DNA utilizing focused and genome-wide sequencing in sufferers with SCLC. J. Thorac. Oncol. 15, 216–230 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devarakonda, S. et al. Circulating tumor DNA profiling in small-cell lung most cancers identifies doubtlessly targetable alterations. Clin. Most cancers Res. 25, 6119–6126 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nong, J. et al. Writer correction: Circulating tumor DNA evaluation depicts subclonal structure and genomic evolution of small cell lung most cancers. Nat. Commun. 10, 552 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kilgour, E., Rothwell, D. G., Brady, G. & Dive, C. Liquid biopsy-based biomarkers of remedy response and resistance. Most cancers Cell 37, 485–495 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almodovar, Okay. et al. Longitudinal cell-free DNA evaluation in sufferers with small cell lung most cancers reveals dynamic insights into remedy efficacy and illness relapse. J. Thorac. Oncol. 13, 112–123 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Church, M., Carter, L. & Blackhall, F. Liquid biopsy in small cell lung most cancers – a path to improved medical care? Cells 9, 2586 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chemi, F. et al. cfDNA methylome profiling for detection and subtyping of small cell lung cancers. Nat. Most cancers 3, 1260–1270 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tivey, A., Church, M., Rothwell, D., Dive, C. & Prepare dinner, N. Circulating tumour DNA – trying past the blood. Nat. Rev. Clin. Oncol. 19, 600–612 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong, L. et al. Tumor-derived DNA from pleural effusion supernatant as a promising different to tumor tissue in genomic profiling of superior lung most cancers. Theranostics 9, 5532–5541 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaiswal, S. et al. Age-related clonal hematopoiesis related to adversarial outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mondelo-Macía, P. et al. Present standing and future views of liquid biopsy in small cell lung most cancers. Biomedicines 9, 48 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nong, J. et al. Circulating tumor DNA evaluation depicts subclonal structure and genomic evolution of small cell lung most cancers. Nat. Commun. 9, 3114 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iacobuzio-Donahue, C. A. et al. Most cancers biology as revealed by the analysis post-mortem. Nat. Rev. Most cancers 19, 686–697 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Megyesfalvi, Z. et al. Unfolding the secrets and techniques of small cell lung most cancers development: novel approaches and insights by means of speedy autopsies. Most cancers Cell 41, 1535–1540 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jereczek, B. et al. Post-mortem findings in small cell lung most cancers. Neoplasma 43, 133–137 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, A. et al. Durvalumab together with olaparib in sufferers with relapsed SCLC: outcomes from a part II examine. J. Thorac. Oncol. 14, 1447–1457 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drapkin, B. J. et al. Genomic and practical constancy of small cell lung most cancers patient-derived xenografts. Most cancers Discov. 8, 600–615 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lababede, O. & Meziane, M. A. The eighth version of TNM staging of lung most cancers: reference chart and diagrams. Oncologist 23, 844–848 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hot Topics

    Related Articles