Cha H-R, Lee JH, Ponnazhagan S. Revisiting immunotherapy: a concentrate on prostate most cancers. Most cancers Res. 2020;80:1615–23.
Dorff TB, Narayan V, Forman SJ, Zang PD, Fraietta JA, June CH, et al. Novel redirected T–cell immunotherapies for superior prostate most cancers. Clin Most cancers Res. 2021;28:576–84.
Antonarakis ES, Park SH, Goh JC, Shin SJ, Lee JL, Mehra N, et al. Pembrolizumab plus olaparib for sufferers with beforehand handled and biomarker-unselected metastatic castration-resistant prostate most cancers: the randomized, open-label, part III KEYLYNK-010 trial. J Clin Oncol. 2023;41:3839.
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate most cancers. N. Engl J Med. 2010;363:411–22.
Hansen A, Massard C, Ott P, Haas N, Lopez J, Ejadi S, et al. Pembrolizumab for superior prostate adenocarcinoma: findings of the KEYNOTE-028 research. Ann Oncol. 2018;29:1807–13.
Antonarakis ES, Piulats JM, Gross-Goupil M, Goh J, Ojamaa Ok, Hoimes CJ, et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate most cancers: multicohort, open-label part II KEYNOTE-199 research. J Clin Oncol. 2020;38:395.
Shenderov E, Boudadi Ok, Fu W, Wang H, Sullivan R, Jordan A, et al. Nivolumab plus ipilimumab, with or with out enzalutamide, in AR-V7-expressing metastatic castration-resistant prostate most cancers: A phase-2 nonrandomized scientific trial. Prostate. 2021;81:326–38.
Sharma P, Pachynski RK, Narayan V, Flechon A, Gravis G, Galsky MD, et al. Preliminary outcomes from a part II research of nivolumab (NIVO) plus ipilimumab (IPI) for the remedy of metastatic castration-resistant prostate most cancers (mCRPC; CheckMate 650). J Clin Oncol. 2019;37. https://doi.org/10.1200/JCO.2019.37.7_suppl.142
Pachynski RK, Retz M, Goh JC, Burotto M, Gravis G, Castellano D, et al. CheckMate 9KD cohort A1 closing evaluation: Nivolumab (NIVO) + rucaparib for post-chemotherapy (CT) metastatic castration-resistant prostate most cancers (mCRPC). J Clin Oncol. 2021;39:5044–44.
Fizazi Ok, González Mella P, Castellano D, Minatta JN, Rezazadeh A, Shaffer DR, et al. CheckMate 9KD Arm B closing evaluation: Efficacy and security of nivolumab plus docetaxel for chemotherapy-naive metastatic castration-resistant prostate most cancers. Am Soc Clin Oncol. 2021;39. https://doi.org/10.1200/JCO.2021.39.6_suppl.12
Evan YY, Kolinsky MP, Berry WR, Retz M, Mourey L, Piulats JM, et al. Pembrolizumab plus docetaxel and prednisone in sufferers with metastatic castration-resistant prostate most cancers: long-term outcomes from the part 1b/2 KEYNOTE-365 cohort B research. Eur Urol. 2022;82:22–30.
Zarrabi KK, Narayan V, Mille PJ, Zibelman MR, Miron B, Bashir B, et al. Bispecific PSMA antibodies and CAR-T in metastatic castration-resistant prostate most cancers. Ther Adv Urol. 2023;15:17562872231182219.
Miller J, Zorko N, Merino A, Phung G, Khaw M, Howard P, et al. 755P B7H3-targeted tri-specific killer engagers ship IL-15 to NK cells however not T-cells, and particularly goal stable tumors as a pan-tumor antigen technique mediated by way of NK cells. Ann Oncol. 2022;33:S889.
Phung SK, Soignier Y, Zorko N, Nelson T, Walker J, Kennedy PP, et al. 1204 Enhancing NK cell perform within the ‘chilly’tumor microenvironment of prostate most cancers with a novel tri-specific Killer Engager towards prostate-specific membrane antigen (PSMA). J Immuno ther Most cancers. 2022;10. https://doi.org/10.1136/jitc-2022-SITC2022.120.
Carneiro B, Garmezy B, Hamm JT, Sanborn RE, Sensible-Draper T, Khoueiry AE-, et al. Summary CT275: Part 1 scientific replace of allogeneic invariant pure killer T cells (iNKTs), agenT-797, alone or together with pembrolizumab or nivolumab in sufferers with superior stable tumors. Most cancers Res. 2023;83:CT275–CT.
Zorko NA, Ryan CJ. Novel immune engagers and mobile therapies for metastatic castration-resistant prostate most cancers: can we take a BiTe or journey BiKEs, TriKEs, and CARs? Prostate Most cancers P D. 2021;24:986–96.
Kannan GS, Aquino-Lopez A, Lee DA. Pure killer cells in malignant hematology: a primer for the non-immunologist. Blood Rev. 2017;31:1–10.
Björkström NK, Ljunggren H-G, Sandberg JK. CD56 unfavourable NK cells: origin, perform, and function in persistent viral illness. Traits Immunol. 2010;31:401–6.
Barrow AD, Martin CJ, Colonna M. The pure cytotoxicity receptors in well being and illness. Entrance Immunol. 2019;10:909.
Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Features of pure killer cells. Nat Immunol. 2008;9:503–10.
Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of CAR-transduced pure killer cells in CD19-positive lymphoid tumors. N. Engl J Med. 2020;382:545–53.
Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: a promising mobile immunotherapy for most cancers. EBioMedicine. 2020;59:102975.
Romain G, Senyukov V, Rey-Villamizar N, Merouane A, Kelton W, Liadi I, et al. Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells. Blood, J Am Soc Hematol. 2014;124:3241–9.
Berrien-Elliott MM, Jacobs MT, Fehniger TA. Allogeneic pure killer cell remedy. Blood. 2023;141:856–68.
Myers JA, Miller JS. Exploring the NK cell platform for most cancers immunotherapy. Nat Rev Clin Oncol. 2021;18:85–100.
Wang C, Zhang Y, Gao W-Q. The evolving function of immune cells in prostate most cancers. Most cancers Lett. 2022;525:9–21.
Nazha B, Zhuang T, Wu S, Brown JT, Magee D, Carthon BC, et al. Complete genomic profiling of penile squamous cell carcinoma and the affect of human papillomavirus standing on immune-checkpoint inhibitor-related biomarkers. Most cancers. 2023;129:3884–93.
Testing Menu [Internet]. Caris Life Sciences. 2024 [cited 2024 Jan 2]. Obtainable from: https://www.carislifesciences.com/products-and-services/molecular-profiling/testing-menu/
Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq information. Genome Med. 2019;11:34.
Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of scientific final result in superior prostate most cancers. Proc Natl Acad Sci USA. 2019;116:11428–36.
Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative scientific genomics of superior prostate most cancers. Cell. 2015;161:1215–28.
Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, et al. Genomic hallmarks and structural variation in metastatic prostate most cancers. Cell. 2018;174:758–69 e9.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment evaluation: a knowledge-based strategy for deciphering genome-wide expression profiles. Proc Natl Acad Sci. 2005;102:15545–50.
Cózar B, Greppi M, Carpentier S, Narni-Mancinelli E, Chiossone L, Vivier E. Tumor-infiltrating pure killer cells. Most cancers Discov. 2021;11:34–44.
Wu Z, Chen H, Luo W, Zhang H, Li G, Zeng F, et al. The panorama of immune cells infiltrating in prostate most cancers. Entrance Oncol. 2020;10:517637.
Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An built-in TCGA pan-cancer scientific information useful resource to drive high-quality survival final result analytics. Cell 2018;173:400–16.e11.
Dal Pra A, Lalonde E, Sykes J, Warde F, Ishkanian A, Meng A, et al. TMPRSS2-ERG standing is just not prognostic following prostate most cancers radiotherapy: implications for fusion standing and DSB restore. Clin Most cancers Res. 2013;19:5202–9.
Kulda V, Topolcan O, Kucera R, Kripnerova M, Srbecka Ok, Hora M, et al. Prognostic significance of TMPRSS2-ERG fusion gene in prostate most cancers. Anticancer Res. 2016;36:4787–93.
Nam R, Sugar L, Yang W, Srivastava S, Klotz L, Yang L, et al. Expression of the TMPRSS2: ERG fusion gene predicts most cancers recurrence after surgical procedure for localised prostate most cancers. Br J most cancers. 2007;97:1690–5.
Semaan L, Mander N, Cher ML, Chinni SR. TMPRSS2-ERG fusions confer efficacy of enzalutamide in an in vivo bone tumor development mannequin. BMC most cancers. 2019;19:1–10.
Obradovic AZ, Dallos MC, Zahurak ML, Partin AW, Schaeffer EM, Ross AE, et al. T-Cell infiltration and adaptive treg resistance in response to androgen deprivation with or with out vaccination in localized prostate most cancers. Clin Most cancers Res. 2020;26:3182–92.
Erlandsson A, Carlsson J, Lundholm M, Fält A, Andersson SO, Andrén O, et al. M2 macrophages and regulatory T cells in deadly prostate most cancers. Prostate. 2019;79:363–9.
Spiegel A, Brooks MW, Houshyar S, Reinhardt F, Ardolino M, Fessler E, et al. Neutrophils suppress intraluminal NK cell–mediated tumor cell clearance and improve extravasation of disseminated carcinoma cells. Most cancers Discov. 2016;6:630–49.
Robertson MJ. Function of chemokines within the biology of pure killer cells. J Leukoc Biol. 2002;71:173–83.
Susek KH, Karvouni M, Alici E, Lundqvist A. The function of CXC chemokine receptors 1–4 on immune cells within the tumor microenvironment. Entrance Immunol. 2018;9:2159.
Tuong ZK, Loudon KW, Berry B, Richoz N, Jones J, Tan X, et al. Resolving the immune panorama of human prostate at a single-cell stage in well being and most cancers. Cell Rep. 2021;37:110132.
Hirz T, Mei S, Sarkar H, Kfoury Y, Wu S, Verhoeven BM, et al. Dissecting the immune suppressive human prostate tumor microenvironment by way of built-in single-cell and spatial transcriptomic analyses. Nat Commun. 2023;14:663.
Newman AM, Liu CL, Inexperienced MR, Gentles AJ, Feng W, Xu Y, et al. Sturdy enumeration of cell subsets from tissue expression profiles. Nat strategies. 2015;12:453–7.
Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach J, Fridman WH, et al. Complete analysis of transcriptome-based cell-type quantification strategies for immuno-oncology. Bioinformatics. 2019;35:i436–i45.

