Arnold, M. et al. World patterns and tendencies in colorectal most cancers incidence and mortality. Intestine 66, 683–691 (2017).
Chan, D. S. M. et al. Crimson and processed meat and colorectal most cancers incidence: meta-analysis of potential research. PLoS ONE 6, e20456 (2011).
Krämer, H. U., Schöttker, B., Raum, E. & Brenner, H. Sort 2 diabetes mellitus and colorectal most cancers: Meta-analysis on sex-specific variations. Eur. J. Most cancers 48, 1269–1282 (2012).
Kyrgiou, M. et al. Adiposity and most cancers at main anatomical websites: Umbrella evaluation of the literature. BMJ. https://doi.org/10.1136/bmj.j477 (2017).
Wiegering, A. et al. Improved survival of sufferers with colon most cancers detected by screening colonoscopy. Int. J. Colorectal Dis. 31, 1039–1045 (2016).
Benson, A. B. et al. Rectal most cancers, Model 2.2022, NCCN scientific follow tips in oncology. J. Natl. Compreh. Most cancers Netw. 20, 1139–1167 (2022).
Tsalikidis, C. et al. Predictive elements for anastomotic leakage following colorectal most cancers surgical procedure: The place are we and the place are we going?. Curr. Oncol. 30, 3111–3137 (2023).
Sciuto, A. et al. Predictive elements for anastomotic leakage after laparoscopic colorectal surgical procedure. World J. Gastroenterol. 24, 2247–2260 (2018).
Vilchez-Vargas, R. et al. Intestine microbial similarity in twins is pushed by shared surroundings and getting old. EBioMedicine 79, 104011 (2022).
Arumugam, M. et al. Enterotypes of the human intestine microbiome. Nature 473, 174–180 (2011).
Vasapolli, R. et al. Evaluation of transcriptionally energetic micro organism all through the gastrointestinal tract of wholesome people. Gastroenterology 157, 1081-1092.e3 (2019).
Cani, P. D. Human intestine microbiome: Hopes, threats and guarantees. Intestine 67, 1716–1725 (2018).
Heintz-Buschart, A. & Wilmes, P. Human intestine microbiome: Operate Issues. Tendencies Microbiol 26, 563–574 (2018).
Mima, Okay. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and affected person prognosis. Intestine 65, 1973–1980 (2016).
Bullman, S. et al. Evaluation of fusobacterium persistence and antibiotic response in colorectal most cancers. Science 358, 1443–1448 (2017).
Gershuni, V. M. & Friedman, E. S. The microbiome-host interplay as a possible driver of anastomotic leak. Curr. Gastroenterol. Rep. 21, 4 (2019).
Williamson, A. J. & Alverdy, J. C. Affect of the microbiome on anastomotic leak. Clin. Colon. Rectal. Surg. 34, 439–446 (2021).
Schulz, C. et al. The energetic bacterial assemblages of the higher Gi tract in people with and with out Helicobacter an infection. Intestine 67, 216–225 (2018).
Lehr, Okay. et al. Microbial composition of tumorous and adjoining gastric tissue is related to prognosis of gastric most cancers. Sci. Rep. 13, 4640 (2023).
Ohigashi, S. et al. Vital adjustments within the intestinal surroundings after surgical procedure in sufferers with colorectal most cancers. J. Gastrointest. Surg. 17, 1657–1664 (2013).
Lee, D.-S. et al. Threat elements for acquisition of multidrug-resistant micro organism in sufferers with anastomotic leakage after colorectal most cancers surgical procedure. Int. J. Colorectal Dis. 30, 497–504 (2015).
Akter, T. et al. Virulence and antibiotic-resistance genes in Enterococcus faecalis related to streptococcosis illness in fish. Sci. Rep. 13, 1551 (2023).
Tett, A. et al. The Prevotella copri advanced contains 4 distinct clades underrepresented in westernized populations. Cell. Host. Microbe 26, 666-679.e7 (2019).
Jernberg, C., Löfmark, S., Edlund, C. & Jansson, J. Okay. Lengthy-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1, 56–66 (2007).
Van Praagh, J. B., De Goffau, M. C., Harmsen, H. J. M. & Havenga, Okay. Response to touch upon ‘mucus microbiome of anastomotic tissue throughout surgical procedure has predictive worth for colorectal anastomotic leakage’. Ann. Surg. 269, E69–E71 (2019).
Agarwala, R. et al. Database sources of the nationwide heart for biotechnology data. Nucl. Acids Res. 44, D7–D19 (2016).
Levy, R. et al. Longitudinal evaluation reveals transition boundaries between dominant ecological states within the intestine microbiome. Proc. Natl. Acad. Sci. USA 117, 13839–13845 (2020).
Johnson, E. L., Heaver, S. L., Walters, W. A. & Ley, R. E. Microbiome and metabolic illness: Revisiting the bacterial phylum Bacteroidetes. J. Mol. Med. 95, 1–8 (2017).
Komen, N. et al. Polymerase chain response for Enterococcus faecalis in drain fluid: The primary screening take a look at for symptomatic colorectal anastomotic leakage. The appeal-study: Evaluation of parameters predictive for evident anastomotic leakage. Int. J. Colorectal Dis. 29, 15–21 (2014).
Huisman, D. E. et al. LekCheck: A potential examine to establish perioperative modifiable threat elements for anastomotic leakage in colorectal surgical procedure. Ann. Surg. 275, e189–e197 (2022).
World Medical Affiliation. World medical affiliation declaration of Helsinki. JAMA 310, 2191 (2013).
Vilchez-Vargas, R. et al. Profiling of the bacterial microbiota alongside the murine alimentary tract. Int. J. Mol. Sci. 23, 1783 (2022).
Lane, D. J. 16S/23S rRNA Sequencing. in Nucleic Acid Methods in Bacterial Systematic (eds. Stackebrandt, E. & Goodfellow, M.) 115–175 (Wiley, New York, 1991).
Camarinha-Silva, A. et al. Evaluating the anterior nare bacterial neighborhood of two discrete human populations utilizing Illumina amplicon sequencing. Environ. Microbiol. 16, 2939–2952 (2014).
Callahan, B. J. et al. DADA2: Excessive-resolution pattern inference from Illumina amplicon knowledge. Nat. Strategies 13, 581–583 (2016).
McMurdie, P. J. & Holmes, S. phyloseq: An R bundle for reproducible interactive evaluation and graphics of microbiome census knowledge. PLoS One 8, e61217 (2013).
Maidak, B. L. et al. The RDP (Ribosomal Database Mission). Nucl. Acids Res. 25, 109–110 (1997).
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for speedy project of rRNA sequences into the brand new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
Clarke, Okay. R. Non-parametric multivariate analyses of adjustments in neighborhood construction. Austral. Ecol. 18, 117–143 (1993).
Anderson, M. J. A brand new technique for non-parametric multivariate evaluation of variance. Austral. Ecol. 26, 32–46 (2001).
Clarke, Okay. R., Gorley, R., Sommerfield, P. J. & Warwick, R. M. Change in marine communities—An method to statistical evaluation and interpretation. (PRIMER-E Ltd, Plymouth, 2014).
Hothorn, T. & Hornik, Okay. exactRankTests: Actual Distributions for Rank and Permutation Assessments. R Package deal Model 0.8–35 Preprint at https://cran.r-project.org/bundle=exactRankTests (2022).
Kodikara, S., Ellul, S. & Lê-Cao, Okay.-A. Statistical challenges in longitudinal microbiome knowledge evaluation. Transient Bioinform 23, 273 (2022).
Shields-Cutler, R. R., Al-Ghalith, G. A., Yassour, M. & Knights, D. SplinectomeR permits group comparisons in longitudinal microbiome research. Entrance. Microbiol. 9, 785 (2018).
Oksanen, J. et al. Vegan: Group ecology bundle. R Package deal Model 2.6–2 Preprint at https://cran.r-project.org/bundle=vegan (2015).
Goslee, S. C. & City, D. L. The ecodist bundle for dissimilarity-based evaluation of ecological knowledge. J. Stat. Softw. 22, 1–19 (2007).
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, Okay. Cluster: Cluster evaluation fundamentals and extensions. R bundle model 2.1.3 Preprint at https://cran.r-project.org/bundle=cluster (2022).
Galtier, N., Gouy, M. & Gautier, C. SEAVIEW and PHYLO_WIN: Two graphic instruments for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 12, 543–548 (1996).
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: An internet software for phylogenetic tree show and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
Kartal, E. et al. A faecal microbiota signature with excessive specificity for pancreatic most cancers. Intestine 71, 1359–1372 (2022).