Personalised early detection and prevention of breast most cancers: ENVISION consensus assertion


  • Bray, F. et al. International most cancers statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J. Clin. 68, 394–424 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with medical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blows, F. M. et al. Subtyping of breast most cancers by immunohistochemistry to analyze a relationship between subtype and brief and long run survival: a collaborative evaluation of knowledge for 10,159 circumstances from 12 research. PLoS Med. 7, e1000279 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curtis, C. et al. The genomic and transcriptomic structure of two,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. R. et al. Associations of breast most cancers threat components with tumor subtypes: a pooled evaluation from the Breast Most cancers Affiliation Consortium research. J. Natl Most cancers Inst. 103, 250–263 (2011).

    PubMed 

    Google Scholar
     

  • Broeks, A. et al. Low penetrance breast most cancers susceptibility loci are related to particular breast tumor subtypes: findings from the Breast Most cancers Affiliation Consortium. Hum. Mol. Genet. 20, 3289–3303 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turkoz, F. P. et al. Affiliation between frequent threat components and molecular subtypes in breast most cancers sufferers. Breast 22, 344–350 (2013).

    PubMed 

    Google Scholar
     

  • Waks, A. G. & Winer, E. P. Breast most cancers therapy: a evaluation. JAMA 321, 288–300 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Most cancers Analysis UK. Breast most cancers incidence by age https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/incidence-invasive (2019).

  • Netherlands Most cancers Registry. Incidence of most cancers within the Netherlands http://www.dutchcancerfigures.nl/ (2019).

  • Nelson, H. D. et al. Threat components for breast most cancers for ladies aged 40 to 49 years: a scientific evaluation and meta-analysis. Ann. Intern. Med. 156, 635–648 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brinton, L., Gaudet, M. & Gierach, G. in Most cancers Epidemiology Prevention (eds Thun, M., Linet, M., Cerhan, J., Haiman, C. & Schottenfeld, D.) 861–888 (Oxford College Press, 2018).

  • Winters, S., Martin, C., Murphy, D. & Shokar, N. Ok. Breast most cancers epidemiology, prevention and screening. Prog. Mol. Biol. Transl Sci. 151, 1–32 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Hartmann, L. C. et al. Benign breast illness and the chance of breast most cancers. N. Engl. J. Med. 353, 229–237 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Moorthie, S. et al. Personalised Prevention in Breast Most cancers: the Coverage Panorama (College of Cambridge, 2017).

  • NICE. Familial Breast Most cancers: Classification, Care and Managing Breast Most cancers and Associated Dangers in Individuals with A Household Historical past of Breast Most cancers (NICE, 2013).

  • Owens, D. Ok. et al. Threat evaluation, genetic counseling, and genetic testing for BRCA-related most cancers. JAMA 322, 652 (2019).

    PubMed 

    Google Scholar
     

  • Alexander, F. E. et al. 14 years of follow-up from the Edinburgh randomised trial of breast-cancer screening. Lancet 353, 1903–1908 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Habbema, J. D., van Oortmarssen, G. J., van Putten, D. J., Lubbe, J. T. & van der Maas, P. J. Age-specific discount in breast most cancers mortality by screening: an evaluation of the outcomes of the Well being Insurance coverage Plan of Higher New York research. J. Natl Most cancers Inst. 77, 317–320 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Nystrom, L. et al. Lengthy-term results of mammography screening: up to date overview of the Swedish randomised trials. Lancet 359, 909–919 (2002).

    PubMed 

    Google Scholar
     

  • Miller, A. B., To, T., Baines, C. J. & Wall, C. The Canadian Nationwide Breast Screening Research-1: breast most cancers mortality after 11 to 16 years of follow-up. A randomized screening trial of mammography in ladies age 40 to 49 years. Ann. Intern. Med. 137, 305–312 (2002).

    PubMed 

    Google Scholar
     

  • Moss, S. M. et al. Impact of mammographic screening from age 40 years on breast most cancers mortality at 10 years’ follow-up: a randomised managed trial. Lancet 368, 2053–2060 (2006).

    PubMed 

    Google Scholar
     

  • Welch, H. G., Prorok, P. C., O’Malley, A. J. & Kramer, B. S. Breast-cancer tumor dimension, overdiagnosis, and mammography screening effectiveness. N. Engl. J. Med. 375, 1438–1447 (2016).

    PubMed 

    Google Scholar
     

  • Drukker, C. A. et al. Mammographic screening detects low-risk tumor biology breast cancers. Breast Most cancers Res. Deal with. 144, 103–111 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esserman, L., Shieh, Y. & Thompson, I. Rethinking screening for breast most cancers and prostate most cancers. JAMA 302, 1685–1692 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Pashayan, N., Morris, S., Gilbert, F. J. & Pharoah, P. D. P. Value-effectiveness and benefit-to-harm ratio of risk-stratified screening for breast most cancers a life-table mannequin. JAMA Oncol. 4, 1–7 (2018).


    Google Scholar
     

  • Trentham-Dietz, A. et al. Tailoring breast most cancers screening intervals by breast density and threat for ladies aged 50 years or older: collaborative modeling of screening outcomes. Ann. Intern. Med. 165, 700 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burton, H. et al. Public well being implications from COGS and potential for threat stratification and screening. Nat. Genet. 45, 349–351 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Horizon 2020. B-CAST. Breast most cancers stratification: understanding the determinants of threat and prognosis of molecular subtypes https://cordis.europa.eu/venture/rcn/193256/factsheet/en (2020).

  • Horizon 2020. BRIDGES. Breast most cancers threat after diagnostic gene sequencing https://cordis.europa.eu/venture/rcn/193315/factsheet/en (2019).

  • European Analysis Council. BRCA-ERC. Understanding most cancers growth in BRCA1/2 mutation carriers for improved Early detection and Threat Management https://cordis.europa.eu/venture/rcn/210990/factsheet/en (2017).

  • Horizon 2020. FORECEE. Feminine most cancers prediction utilizing cervical omics to individualise screening and prevention https://cordis.europa.eu/venture/rcn/193298/factsheet/en (2019).

  • Horizon 2020. MyPeBS. Worldwide randomized research evaluating customized, risk-stratified to straightforward breast most cancers screening in ladies aged 40-70 https://cordis.europa.eu/venture/rcn/212694/factsheet/en (2019).

  • WISDOM. The WISDOM research https://knowledge.safe.drive.com/portal/ (2020).

  • Horizon 2020. EU-TOPIA. EU-TOPIA: in the direction of improved screening for breast, cervical and colorectal most cancers in all of europe https://cordis.europa.eu/venture/rcn/193304/factsheet/en (2019).

  • GenomeQuébec. PERSPECTIVE I&I. Personalised threat evaluation for prevention and early detection of breast most cancers: integration and implementation http://www.genomequebec.com/211-en/venture/personalized-risk-assessment-for-prevention-and-early-detection-of-breast-cancer-integration-and-implementation/ (2020).

  • Forestall Breast Most cancers. PROCAS 2. Predicting the chance of most cancers at screening 2nd stage https://preventbreastcancer.org.uk/breast-cancer-research/research-projects/early-detection-screening/procas/ (2016).

  • Rainey, L. et al. Are we prepared for the problem of implementing risk-based breast most cancers screening and first prevention? Breast 39, 24–32 (2018).

    PubMed 

    Google Scholar
     

  • The Well being Basis. Proof Scan: Advanced Adaptive Methods (The Well being Basis, 2010).

  • Michailidou, Ok. et al. Affiliation evaluation identifies 65 new breast most cancers threat loci. Nature 551, 92–94 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milne, R. L. et al. Identification of ten variants related to threat of estrogen-receptor-negative breast most cancers. Nat. Genet. 49, 1767–1778 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Easton, D. F. et al. Gene-panel sequencing and the prediction of breast-cancer threat. N. Engl. J. Med. 372, 2243–2257 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudolph, A. et al. Joint associations of a polygenic threat rating and environmental threat components for breast most cancers within the Breast Most cancers Affiliation Consortium. Int. J. Epidemiol. 47, 526–536 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mavaddat, N. et al. Polygenic threat scores for prediction of breast most cancers and breast most cancers subtypes. Am. J. Hum. Genet. 104, 21–34 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, A. et al. BOADICEA: a complete breast most cancers threat prediction mannequin incorporating genetic and nongenetic threat components. Genet. Med. 21, 1708–1718 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Läll, Ok. et al. Polygenic prediction of breast most cancers: comparability of genetic predictors and implications for threat stratification. BMC Most cancers 19, 557 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choudhury, P. P. et al. Comparative validation of breast most cancers threat prediction fashions and projections for future threat stratification. J. Natl Most cancers Inst. 112, 278–285 (2020).


    Google Scholar
     

  • LaDuca, H. et al. A medical information to hereditary most cancers panel testing: analysis of gene-specific most cancers associations and sensitivity of genetic testing standards in a cohort of 165,000 high-risk sufferers. Genet. Med. 22, 407–415 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, M. Ok. et al. Age- and tumor subtype-specific breast most cancers threat estimates for CHEK2*1100delC carriers. J. Clin. Oncol. 34, 2750–2760 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foulkes, W. D. et al. Estrogen receptor standing in BRCA1- and BRCA2-related breast most cancers. Clin. Most cancers Res. 10, 2029–2034 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Fletcher, O. et al. Missense variants in ATM in 26,101 breast most cancers circumstances and 29,842 controls. Most cancers Epidemiol. Biomarkers Prev. 19, 2143–2151 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, P., Ma, N., Li, M., Tian, Q.-B. & Liu, D.-W. Useful variants in NBS1 and most cancers threat: proof from a meta-analysis of 60 publications with 111 particular person research. Mutagenesis 28, 683–697 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Weitzel, J. N. et al. Pathogenic and sure pathogenic variants in PALB2, CHEK2, and different recognized breast most cancers susceptibility genes amongst 1054 BRCA damaging Hispanics with breast most cancers. Most cancers 125, 2829–2836 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Parsons, M. T. et al. Giant scale multifactorial chance quantitative evaluation of BRCA1 and BRCA2 variants: an ENIGMA useful resource to help medical variant classification. Hum. Mutat. 40, 1557–1578 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleiblova, P. et al. Identification of deleterious germline CHEK2 mutations and their affiliation with breast and ovarian most cancers. Int. J. Most cancers 145, ijc.32385 (2019).


    Google Scholar
     

  • Boonen, R. A. C. M. et al. Useful evaluation of genetic variants within the high-risk breast most cancers susceptibility gene PALB2. Nat. Commun. 10, 5296 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, Ok. et al. Scientific validity evaluation of genes steadily examined on hereditary breast and ovarian most cancers susceptibility sequencing panels. Genet. Med. 21, 1497–1506 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Teschendorff, A. E. et al. DNA methylation outliers in regular breast tissue establish area defects which might be enriched in most cancers. Nat. Commun. 7, 10478 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curtius, Ok., Wright, N. A. & Graham, T. A. An evolutionary perspective on area cancerization. Nat. Rev. Most cancers 18, 19–32 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Genetically predicted ranges of DNA methylation biomarkers and breast most cancers threat: information from 228,951 ladies of European descent. J. Natl Most cancers Inst. 112, 295–304 (2020).

    PubMed 

    Google Scholar
     

  • Xu, Z., Sandler, D. P. & Taylor, J. A. Blood DNA methylation and breast most cancers: a potential case-cohort evaluation within the Sister research. J. Natl Most cancers Inst. 112, 87–94 (2020).

    PubMed 

    Google Scholar
     

  • Teschendorff, A. E. et al. Age-dependent DNA methylation of genes which might be suppressed in stem cells is a trademark of most cancers. Genome Res. 20, 440–446 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knower, Ok. C., To, S. Q., Leung, Y.-Ok., Ho, S.-M. & Clyne, C. D. Endocrine disruption of the epigenome: a breast most cancers hyperlink. Endocr. Relat. Most cancers 21, T33–T55 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levine, M. E. et al. Menopause accelerates organic ageing. Proc. Natl Acad. Sci. USA 113, 9327–9332 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Widschwendter, M. et al. Epigenome-based most cancers threat prediction: rationale, alternatives and challenges. Nat. Rev. Clin. Oncol. 15, 292–309 (2018).

    PubMed 

    Google Scholar
     

  • Bodelon, C. et al. Blood DNA methylation and breast most cancers threat: a meta-analysis of 4 potential cohort research. Breast Most cancers Res. 21, 62 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teschendorff, A. E. et al. An epigenetic signature in peripheral blood predicts lively ovarian most cancers. PLoS One 4, e8274 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Key, T. J. et al. Intercourse hormones and threat of breast most cancers in premenopausal ladies: a collaborative reanalysis of particular person participant information from seven potential research. Lancet Oncol. 14, 1009–1019 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Key, T. J. et al. Physique mass index, serum intercourse hormones, and breast most cancers threat in postmenopausal ladies. J. Natl Most cancers Inst. 95, 1218–1226 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Fourkala, E.-O. et al. Affiliation of serum intercourse steroid receptor bioactivity and intercourse steroid hormones with breast most cancers threat in postmenopausal ladies. Endocr. Relat. Most cancers 19, 137–147 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bau, D.-T., Mau, Y.-C., Ding, S.-L., Wu, P.-E. & Shen, C.-Y. DNA double-strand break restore capability and threat of breast most cancers. Carcinogenesis 28, 1726–1730 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Machella, N. et al. Double-strand breaks restore in lymphoblastoid cell strains from sisters discordant for breast most cancers from the New York website of the BCFR. Carcinogenesis 29, 1367–1372 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gail, M. H. et al. Projecting individualized chances of creating breast most cancers for white females who’re being examined yearly. J. Natl Most cancers Inst. 81, 1879–1886 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Tice, J. A. et al. Utilizing medical components and mammographic breast density to estimate breast most cancers threat: growth and validation of a brand new predictive mannequin. Ann. Intern. Med. 148, 337–347 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Closas, M., Gunsoy, N. B. & Chatterjee, N. Mixed associations of genetic and environmental threat components: implications for prevention of breast most cancers. J. Natl Most cancers Inst. 106, 1–6 (2014).


    Google Scholar
     

  • Maas, P. et al. Breast most cancers threat from modifiable and nonmodifiable threat components amongst white ladies in the US. JAMA Oncol. 2, 1295–1302 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chatterjee, N., Shi, J. & García-Closas, M. Growing and evaluating polygenic threat prediction fashions for stratified illness prevention. Nat. Rev. Genet. 17, 392–406 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tyrer, J., Duffy, S. W. & Cuzick, J. A breast most cancers prediction mannequin incorporating familial and private threat components. Stat. Med. 23, 1111–1130 (2004).

    PubMed 

    Google Scholar
     

  • Antoniou, A. C. et al. The BOADICEA mannequin of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br. J. Most cancers 98, 1457–1466 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmern, R. L. & Kroese, M. The analysis of genetic assessments. J. Public. Well being . 29, 246–250 (2007).


    Google Scholar
     

  • College of Cambridge. BCAC — The Breast Most cancers Affiliation Consortium http://bcac.ccge.medschl.cam.ac.uk/ (2020).

  • College of Cambridge. Centre for Most cancers Genetic Epidemiology. CIMBA — Consortium of Investigators of Modifiers of BRCA1/2 http://cimba.ccge.medschl.cam.ac.uk/ (2020).

  • Louro, J. et al. A scientific evaluation and high quality evaluation of individualised breast most cancers threat prediction fashions. Br. J. Most cancers 121, 76–85 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terry, M. B. et al. 10-year efficiency of 4 fashions of breast most cancers threat: a validation research. Lancet Oncol. 20, 504–517 (2019).

    PubMed 

    Google Scholar
     

  • Choudhury, P. P. et al. iCARE: An R package deal to construct, validate and apply absolute threat fashions. PLoS One 5, e0228198 (2020).


    Google Scholar
     

  • Good, A. A multi-dimensional mannequin of medical utility. Int. J. Qual. Well being Care 18, 377–382 (2006).

    PubMed 

    Google Scholar
     

  • Sanderson, S. et al. How can the analysis of genetic assessments be enhanced? Classes realized from the ACCE framework and evaluating genetic assessments in the UK. Genet. Med. 7, 495–500 (2005).

    PubMed 

    Google Scholar
     

  • Grosse, S. D. & Khoury, M. J. What’s the medical utility of genetic testing? Genet. Med. 8, 448–450 (2006).

    PubMed 

    Google Scholar
     

  • Garcia-Closas, M. et al. Confluence: uncovering breast most cancers genetics https://dceg.most cancers.gov/analysis/cancer-types/breast-cancer/confluence-study-project.pdf (2019)

  • Wainschtein, P. et al. Restoration of trait heritability from entire genome sequence information. bioRxiv https://doi.org/10.1101/588020 (2019).

    Article 

    Google Scholar
     

  • Yala, A., Lehman, C., Schuster, T., Portnoi, T. & Barzilay, R. A deep studying mammography-based mannequin for improved breast most cancers threat prediction. Radiology 292, 60–66 (2019).

    PubMed 

    Google Scholar
     

  • Arasu, V. A. et al. Inhabitants-based evaluation of the affiliation between magnetic resonance imaging background parenchymal enhancement and future major breast most cancers threat. J. Clin. Oncol. 37, 954–963 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malkov, S. et al. Mammographic texture and threat of breast most cancers by tumor kind and estrogen receptor standing. Breast Most cancers Res. 18, 122 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gastounioti, A., Conant, E. F. & Kontos, D. Past breast density: a evaluation on the advancing function of parenchymal texture evaluation in breast most cancers threat evaluation. Breast Most cancers Res. 18, 91 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. A novel and totally automated mammographic texture evaluation for threat prediction: outcomes from two case-control research. Breast Most cancers Res. 19, 114 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, T. L. et al. Predicting interval and screen-detected breast cancers from mammographic density outlined by totally different brightness thresholds. Breast Most cancers Res. 20, 152 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood check. Science 359, 926–930 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, J. C. M. et al. Liquid biopsies come of age: in the direction of implementation of circulating tumour DNA. Nat. Rev. Most cancers 17, 223–238 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Finest, M. G. et al. RNA-Seq of tumor-educated platelets allows blood-based pan-cancer, multiclass, and molecular pathway most cancers diagnostics. Most cancers Cell 28, 666–676 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eddy, D. M. et al. Mannequin transparency and validation: a report of the ISPOR-SMDM modeling good analysis practices activity drive — 7. Worth Well being 15, 843–850 (2012).

    PubMed 

    Google Scholar
     

  • Dagenais, G. R. et al. Variations in frequent illnesses, hospital admissions, and deaths in middle-aged adults in 21 international locations from 5 continents (PURE): a potential cohort research. Lancet 395, 785–794 (2020).

    PubMed 

    Google Scholar
     

  • Fulcher, J. et al. Efficacy and security of LDL-lowering remedy amongst women and men: meta-analysis of particular person information from 174 000 contributors in 27 randomised trials. Lancet 385, 1397–1405 (2015).

    PubMed 

    Google Scholar
     

  • Collaborative Group on Hormonal Elements in Breast Most cancers. Sort and timing of menopausal hormone remedy and breast most cancers threat: particular person participant meta-analysis of the worldwide epidemiological proof. Lancet 394, 1159–1168 (2019).

    PubMed Central 

    Google Scholar
     

  • Hamajima, N. et al. Alcohol, tobacco and breast most cancers — collaborative reanalysis of particular person information from 53 epidemiological research, together with 58,515 ladies with breast most cancers and 95,067 ladies with out the illness. Br. J. Most cancers 87, 1234–1245 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Bagnardi, V. et al. Alcohol consumption and site-specific most cancers threat: a complete dose–response meta-analysis. Br. J. Most cancers 112, 580–593 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Renehan, A. G., Tyson, M., Egger, M., Heller, R. F. & Zwahlen, M. Physique-mass index and incidence of most cancers: a scientific evaluation and meta-analysis of potential observational research. Lancet 371, 569–578 (2008).

    PubMed 

    Google Scholar
     

  • Cuzick, J. Progress in preventive remedy for most cancers: a memory and private viewpoint. Br. J. Most cancers 118, 1155–1161 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher, B. et al. Tamoxifen for prevention of breast most cancers: report of the Nationwide Surgical Adjuvant Breast and Bowel Challenge P-1 Research. J. Natl Most cancers Inst. 90, 1371–1388 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Cuzick, J. Aromatase inhibitors for breast most cancers prevention. J. Clin. Oncol. 23, 1636–1643 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Cuzick, J. et al. Anastrozole for prevention of breast most cancers in high-risk postmenopausal ladies (IBIS-II): a global, double-blind, randomised placebo-controlled trial. Lancet 383, 1041–1048 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Goss, P. E. et al. Exemestane for breast-cancer prevention in postmenopausal ladies. N. Engl. J. Med. 364, 2381–2391 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Cuzick, J. et al. First outcomes from the Worldwide Breast Most cancers Intervention Research (IBIS-I): a randomised prevention trial. Lancet 360, 817–824 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Cuzick, J. et al. Overview of the principle outcomes in breast-cancer prevention trials. Lancet 361, 296–300 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Powles, T. et al. Interim evaluation of the incidence of breast most cancers within the Royal Marsden Hospital tamoxifen randomised chemoprevention trial. Lancet 352, 98–101 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Veronesi, U. et al. Prevention of breast most cancers with tamoxifen: preliminary findings from the Italian randomised trial amongst hysterectomised ladies. Lancet 352, 93–97 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Powles, T. J., Ashley, S., Tidy, A., Smith, I. E. & Dowsett, M. Twenty-year follow-up of the Royal Marsden randomized, double-blinded tamoxifen breast most cancers prevention trial. J. Natl Most cancers Inst. 99, 283–290 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Cuzick, J. et al. Tamoxifen for prevention of breast most cancers: prolonged long-term follow-up of the IBIS-I breast most cancers prevention trial. Lancet Oncol. 16, 67–75 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogel, V. G. et al. Results of tamoxifen vs raloxifene on the chance of creating invasive breast most cancers and different illness outcomes: the NSABP research of tamoxifen and raloxifene (STAR) P-2 trial. JAMA 295, 2727–2741 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Vogel, V. G. et al. Replace of the Nationwide Surgical Adjuvant Breast and Bowel Challenge Research of Tamoxifen and Raloxifene (STAR) P-2 Trial: stopping breast most cancers. Most cancers Prev. Res. 3, 696–706 (2010).

    CAS 

    Google Scholar
     

  • Nelson, H. D., Smith, M. E. B., Griffin, J. C. & Fu, R. Use of medicines to scale back threat for major breast most cancers: a scientific evaluation for the U.S. Preventive Companies Process Power. Ann. Intern. Med. 158, 604 (2013).

    PubMed 

    Google Scholar
     

  • Owens, D. Ok. et al. Treatment use to scale back threat of breast most cancers: US Preventive Companies Process Power advice assertion. JAMA 322, 857–867 (2019).

    PubMed 

    Google Scholar
     

  • Armstrong, N., Ryder, S., Forbes, C., Ross, J. & Quek, R. G. A scientific evaluation of the worldwide prevalence of BRCA mutation in breast most cancers. Clin. Epidemiol. 11, 543–561 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heemskerk-Gerritsen, B. A. M. et al. Survival after bilateral risk-reducing mastectomy in wholesome BRCA1 and BRCA2 mutation carriers. Breast Most cancers Res. Deal with. 177, 723–733 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jakub, J. W. et al. Oncologic security of prophylactic nipple-sparing mastectomy in a inhabitants with BRCA mutations. JAMA Surg. 153, 123 (2018).

    PubMed 

    Google Scholar
     

  • Mota, B. S. et al. Nipple- and areola-sparing mastectomy for the therapy of breast most cancers. Cochrane Database Syst. Rev. 11, CD008932 (2016).

    PubMed 

    Google Scholar
     

  • Headon, H. L., Kasem, A. & Mokbel, Ok. The oncological security of nipple-sparing mastectomy: a scientific evaluation of the literature with a pooled evaluation of 12,358 procedures. Arch. Plast. Surg. 43, 328–338 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beral, V., Peto, R., Pirie, Ok. & Reeves, G. Menopausal hormone remedy and 20-year breast most cancers mortality. Lancet 394, 1139 (2019).

    PubMed 

    Google Scholar
     

  • Widschwendter, M. et al. The intercourse hormone system in carriers of BRCA1/2 mutations: a case-control research. Lancet Oncol. 14, 1226–1232 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Widschwendter, M. et al. Osteoprotegerin (OPG), the endogenous inhibitor of receptor activator of NF-kappaB ligand (RANKL), is dysregulated in BRCA mutation carriers. EBioMedicine 2, 1331–1339 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schramek, D. et al. Osteoclast differentiation issue RANKL controls growth of progestin-driven mammary most cancers. Nature 468, 98–102 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joshi, P. A. et al. Progesterone induces grownup mammary stem cell enlargement. Nature 465, 803–807 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez-Suarez, E. et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468, 103–107 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Tanos, T. et al. Progesterone/RANKL is a significant regulatory axis within the human breast. Sci. Transl Med. 5, 182ra55 (2013).

    PubMed 

    Google Scholar
     

  • Nolan, E. et al. RANK ligand as a possible goal for breast most cancers prevention in BRCA1-mutation carriers. Nat. Med. 22, 933–939 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Poole, A. J. et al. Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science 314, 1467–1470 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. J. et al. Folic acid complement use and breast most cancers threat in BRCA1 and BRCA2 mutation carriers: a case-control research. Breast Most cancers Res. Deal with. 174, 741–748 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Evans, D. G., Howell, S. J. & Howell, A. Personalised prevention in excessive threat people: managing hormones and past. Breast 39, 139–147 (2018).

    PubMed 

    Google Scholar
     

  • Gnant, M. et al. Adjuvant denosumab in postmenopausal sufferers with hormone receptor-positive breast most cancers (ABCSG-18): disease-free survival outcomes from a randomised, double-blind, placebo-controlled, part 3 trial. Lancet Oncol. 20, 339–351 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • European Medicines Company. European Union Scientific Trials Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-002505-35/AT (2018).

  • Sasieni, P. D., Duffy, S. W. & Cuzick, J. Ovarian most cancers screening: UKCTOCS trial. Lancet 387, 2602 (2016).

    PubMed 

    Google Scholar
     

  • Curtis, H. J., Walker, A. J. & Goldacre, B. Impression of NICE steering on tamoxifen prescribing in England 2011–2017: an interrupted time sequence evaluation. Br. J. Most cancers 118, 1268–1275 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuzick, J. et al. Tamoxifen-induced discount in mammographic density and breast most cancers threat discount: a nested case-control research. J. Natl Most cancers Inst. 103, 744–752 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Harvie, M. et al. Breast most cancers threat standing influences uptake, retention and efficacy of a weight reduction programme amongst breast most cancers screening attendees: two randomised managed feasibility trials. BMC Most cancers 19, 1089 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teras, L. R. et al. Sustained weight reduction and threat of breast most cancers in ladies ≥50 years: a pooled evaluation of potential information. J. Natl Most cancers Inst. https://doi.org/10.1093/jnci/djz226 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Kyu, H. H. et al. Bodily exercise and threat of breast most cancers, colon most cancers, diabetes, ischemic coronary heart illness, and ischemic stroke occasions: systematic evaluation and dose-response meta-analysis for the International Burden of Illness Research 2013. BMJ 354, i3857 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, W., Fensom, G. Ok., Reeves, G. Ok. & Key, T. J. Bodily exercise and breast most cancers threat: outcomes from the UK Biobank potential cohort. Br. J. Most cancers 122, 726–732 (2020)

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rainey, L. et al. The influence of alcohol consumption and bodily exercise on breast most cancers: the function of breast most cancers threat. Int. J. Most cancers https://doi.org/10.1002/ijc.32846 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • French, D. P., Howell, A. & Evans, D. G. Psychosocial problems with a inhabitants strategy to excessive genetic threat identification: behavioural, emotional and knowledgeable alternative points. Breast 37, 148–153 (2018).

    PubMed 

    Google Scholar
     

  • Albhert, T., Kiasuwa, R. & van den Bulcke, M. European information on high quality enchancment in complete most cancers management https://cancercontrol.eu/archived/uploads/pictures/Information/pdf/CanCon_Guide_FINAL_Web.pdf (2017)

  • Lesko, L. J., Zineh, I. & Huang, S.-M. What’s medical utility and why ought to we care? Clin. Pharmacol. Ther. 88, 729–733 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Rychetnik, L., Frommer, M., Hawe, P. & Shiell, A. Standards for evaluating proof on public well being interventions. J. Epidemiol. Neighborhood Well being 56, 119–127 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esserman, L. J. et al. The WISDOM research: breaking the impasse within the breast most cancers screening debate. NPJ Breast Most cancers 3, 34 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • US Nationwide Library of Drugs. Clinicaltrials.gov https://clinicaltrials.gov/ct2/present/NCT03672331 (2020)

  • Vachon, C. M. et al. The contributions of breast density and customary genetic variation to breast most cancers threat. J. Natl Most cancers Inst. 107, dju397 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shieh, Y. et al. Breast most cancers screening within the precision drugs period: risk-based screening in a population-based trial. J. Natl Most cancers Inst. 109, djw290 (2017).


    Google Scholar
     

  • Etzioni, R. D. & Thompson, I. M. What do the screening trials actually inform us and the place can we go from right here? Urol. Clin. North. Am. 41, 223–228 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Getaneh, A. M., Heijnsdijk, E. A. & de Koning, H. J. The function of modelling within the coverage determination making course of for most cancers screening: instance of prostate particular antigen screening. Public. Well being Res. Pract. 29, 2921912 (2019).

    PubMed 

    Google Scholar
     

  • Karlsson, A. et al. A pure historical past mannequin for planning prostate most cancers testing: calibration and validation utilizing Swedish registry information. PLoS One 14, e0211918 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lew, J.-B. et al. Advantages, harms and cost-effectiveness of most cancers screening in Australia: an summary of modelling estimates. Public Well being Res. Pract. 29, 29121913 (2019).

    PubMed 

    Google Scholar
     

  • Siebert, U. When ought to decision-analytic modeling be used within the financial analysis of well being care? Eur. J. Well being Econ. 4, 143–150 (2003).


    Google Scholar
     

  • Vilaprinyo, E. et al. Value-effectiveness and harm-benefit analyses of risk-based screening methods for breast most cancers. PLoS One 9, e86858 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Etzioni, R. et al. Limitations of basing screening insurance policies on screening trials. Med. Care 51, 295–300 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Etzioni, R. & Gulati, R. Recognizing the restrictions of most cancers overdiagnosis research: a primary step in the direction of overcoming them. J. Natl Most cancers Inst. 108, djv345 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weinstein, M. C. et al. Ideas of excellent apply for determination analytic modeling in health-care analysis: report of the ISPOR activity drive on good analysis practices — modeling research. Worth Well being 6, 9–17 (2003).

    PubMed 

    Google Scholar
     

  • Caro, J. J., Briggs, A. H., Siebert, U. & Kuntz, Ok. M. Modeling good analysis practices — overview. Med. Decis. Making 32, 667–677 (2012).

    PubMed 

    Google Scholar
     

  • Briggs, A. H. et al. Mannequin parameter estimation and uncertainty evaluation. Med. Decis. Making 32, 722–732 (2012).

    PubMed 

    Google Scholar
     

  • Hakama, M., Malila, N. & Dillner, J. Randomised well being companies research. Int. J. Most cancers 131, 2898–2902 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Ryan, M., Bate, A., Eastmond, C. J. & Ludbrook, A. Use of discrete alternative experiments to elicit preferences. Qual. Saf. Well being Care 10, i55–i60 (2001).


    Google Scholar
     

  • Mauskopf, J. A. et al. Ideas of excellent apply for funds influence evaluation: report of the ISPOR Process drive on good analysis practices — funds influence evaluation. Worth Well being 10, 336–347 (2007).

    PubMed 

    Google Scholar
     

  • Krop, I. et al. Use of biomarkers to information selections on adjuvant systemic remedy for ladies with early-stage invasive breast most cancers: American Society of Scientific Oncology medical apply guideline targeted replace. J. Clin. Oncol. 35, 2838–2847 (2017).

    PubMed 

    Google Scholar
     

  • Weiner, B. J. A principle of organizational readiness for change. Implement. Sci. 4, 67 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holt, D. T., Helfrich, C. D., Corridor, C. G. & Weiner, B. J. Are you prepared? How well being professionals can comprehensively conceptualize readiness for change. J. Gen. Intern. Med. 25, 50–55 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andermann, A. Revisting Wilson and Jungner within the genomic age: a evaluation of screening standards over the previous 40 years. Bull. World Well being Organ. 86, 317–319 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenberg-Wohl, S. et al. Personal payer participation in protection with proof growth: a case research. Well being Affairs Weblog https://www.healthaffairs.org/do/10.1377/hblog20170314.059181/full/ (2017).

  • Kotter, J. Main Change (Harvard Enterprise Press, 1996).

  • Knoster, T., Villa, R. & Thousand, J. in Restructuring for Caring and Efficient Schooling: Piecing the Puzzle collectively (eds Villa, R. & Hundreds, J.) 93–128 (Paul H. Brookes, 2000).

  • Lemke, A. A. & Harris-Wai, J. N. Stakeholder engagement in coverage growth: challenges and alternatives for human genomics. Genet. Med. 17, 949–957 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puzhko, S. et al. Well being professionals’ views on breast most cancers threat stratification: understanding analysis of threat versus screening for illness. Public. Well being Rev. 40, 2 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmeer, Ok. Stakeholder evaluation tips https://www.who.int/workforcealliance/data/toolkit/33.pdf (2019).

  • Wegwarth, O. et al. What do European ladies find out about their feminine most cancers dangers and most cancers screening? A cross-sectional on-line intervention survey in 5 European international locations. BMJ Open 8, e023789 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waller, J., Osborne, Ok. & Wardle, J. Enthusiasm for most cancers screening in Nice Britain: a common inhabitants survey. Br. J. Most cancers 112, 562–566 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Wegwarth, O. & Gigerenzer, G. Enhancing evidence-based practices via well being literacy — reply. JAMA Intern. Med. 174, 1413 (2014).

    PubMed 

    Google Scholar
     

  • McDowell, M., Rebitschek, F. G., Gigerenzer, G. & Wegwarth, O. A easy device for speaking the advantages and harms of well being interventions: a information for making a truth field. MDM Coverage Pract. 1, 1–10 (2016).


    Google Scholar
     

  • McDowell, M., Gigerenzer, G., Wegwarth, O. & Rebitschek, F. G. Impact of tabular and icon truth field codecs on comprehension of advantages and harms of prostate most cancers screening: a randomized trial. Med. Decis. Making 39, 41–56 (2018).


    Google Scholar
     

  • Steckelberg, A., Berger, B., Kopke, S., Heesen, C. & Muhlhauser, I. Standards for evidence-based affected person data. Z. Arztl. Fortbild. Qualitatssich. 99, 343–351 (2005).

    PubMed 

    Google Scholar
     

  • French, D. P., Cameron, E., Benton, J. S., Deaton, C. & Harvie, M. Can Speaking personalised illness threat promote wholesome behaviour change? A scientific evaluation of systematic evaluations. Ann. Behav. Med. 51, 718–729 (2017).

    PubMed 

    Google Scholar
     

  • Hollands, G. J. et al. The influence of speaking genetic dangers of illness on risk-reducing well being behaviour: systematic evaluation with meta-analysis. BMJ 352, i1102 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • French, D. P. et al. Psychological influence of offering ladies with personalised 10-year breast most cancers threat estimates. Br. J. Most cancers 118, 1648–1657 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sekhon, M., Cartwright, M. & Francis, J. J. Acceptability of healthcare interventions: an summary of evaluations and growth of a theoretical framework. BMC Well being Serv. Res. 17, 88 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, D. G. et al. Enchancment in threat prediction, early detection and prevention of breast most cancers within the NHS breast screening programme and household historical past clinics: a twin cohort research. Program. Grants Appl. Res. https://doi.org/10.3310/pgfar04110 (2016).

  • Rainey, L. et al. Girls’s perceptions of customized risk-based breast most cancers screening and prevention: a global focus group research. Psychooncology. 28, 1056–1062 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meisel, S. F. et al. Adjusting the frequency of mammography screening on the premise of genetic threat: attitudes amongst ladies within the UK. Breast 24, 237–241 (2015).

    PubMed 

    Google Scholar
     

  • Ghanouni, A. et al. Attitudes in the direction of risk-stratified breast most cancers screening amongst ladies in England: a cross-sectional survey. J. Med. Display. https://doi.org/10.1177/0969141319883662 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Keogh, L. A. et al. Client and clinician views on personalising breast most cancers prevention data. Breast 43, 39–47 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Lévesque, E., Hagan, J., Knoppers, B. M. & Simard, J. Organizational challenges to fairness within the supply of companies inside a brand new customized risk-based strategy to breast most cancers screening. N. Genet. Soc. 38, 38–59 (2019).


    Google Scholar
     

  • Chowdhury, S. et al. Do well being professionals want extra competencies for stratified most cancers prevention based mostly on genetic threat profiling? J. Pers. Med. 5, 191–212 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feero, W. G. & Inexperienced, E. D. Genomics schooling for well being care professionals within the twenty first century. JAMA 306, 989–990 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Kurian, A. W. et al. Gaps in incorporating germline genetic testing into therapy decision-making for early-stage breast most cancers. J. Clin. Oncol. 35, 2232–2239 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wegwarth, O., Schwartz, L. M., Woloshin, S., Gaissmaier, W. & Gigerenzer, G. Do physicians perceive most cancers screening statistics? A nationwide survey of major care physicians in the US. Ann. Intern. Med. 156, 340–349 (2012).

    PubMed 

    Google Scholar
     

  • Slade, I. & Burton, H. Getting ready clinicians for genomic drugs. Postgrad. Med. J. 92, 369–371 (2016).

    PubMed 

    Google Scholar
     

  • Lévesque, E. et al. Moral, authorized, and regulatory points for the implementation of omics-based threat prediction of girls’s most cancers: factors to contemplate. Public Well being Genomics 21, 37–44 (2018).

    PubMed 

    Google Scholar
     

  • Corridor, A. E. et al. Implementing risk-stratified screening for frequent cancers: a evaluation of potential moral, authorized and social points. J. Public Well being 36, 285–291 (2014).

    CAS 

    Google Scholar
     

  • Beauchamp, T. & Childress, J. Ideas of Biomedical Ethics. (Oxford College Press, 2013)

  • Maheswaran, R., Pearson, T., Jordan, H. & Black, D. Socioeconomic deprivation, journey distance, location of service, and uptake of breast most cancers screening in north Derbyshire, UK. J. Epidemiol. Neighborhood Well being 60, 208–212 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris, M. et al. Ethnicity, deprivation and screening: survival from breast most cancers amongst screening-eligible ladies within the West Midlands recognized from 1989 to 2011. Br. J. Most cancers 113, 548–555 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moutel, G. et al. Girls’s participation in breast most cancers screening in France — an moral strategy. BMC Med. Ethics 15, 64 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marmot, M. Truthful society, wholesome lives: the marmot evaluation; strategic evaluation of well being inequalities in England post-2010 http://www.instituteofhealthequity.org/resources-reports/fair-society-healthy-lives-the-marmot-review/fair-society-healthy-lives-full-report-pdf.pdf (2010).

  • Darquy, S., Moutel, G., Jullian, O., Barré, S. & Duchange, N. In direction of fairness in organised most cancers screening: the case of cervical most cancers screening in France. BMC Womens Well being 18, 192 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hersch, J. et al. Use of a choice assist together with data on overdetection to help knowledgeable alternative about breast most cancers screening: a randomised managed trial. Lancet 385, 1642–1652 (2015).

    PubMed 

    Google Scholar
     

  • Prince, A. E. R. Comparative views: regulating insurer use of genetic data. Eur. J. Hum. Genet. 27, 340–348 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Joly, Y., Feze, I. N., Tune, L. & Knoppers, B. M. Comparative approaches to genetic discrimination: chasing shadows? Developments Genet. 33, 299–302 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • HM Authorities and Affiliation of British Insurers. Code on Genetic Testing and Insurance coverage. (HM Authorities and Affiliation of British Insurers, 2018).

  • Lu, C. Y. et al. A proposed strategy to speed up proof era for genomic-based applied sciences within the context of a studying well being system. Genet. Med. 20, 390–396 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Landes, S. J., McBain, S. A. & Curran, G. M. An introduction to effectiveness-implementation hybrid designs. Psychiatry Res. 280, 112513 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Aunno, T., Hearld, L. & Alexander, J. A. Sustaining multistakeholder alliances. Well being Care Handle Rev. 44, 183–194 (2019).

    PubMed 

    Google Scholar
     

  • Hot Topics

    Related Articles