Siegel, R. L., Giaquinto, A. N. & Jemal, A. Most cancers statistics, 2024. CA Most cancers J. Clin. 74, 12–49. https://doi.org/10.3322/caac.21820 (2024).
Xia, C. et al. Most cancers statistics in China and United States, 2022: Profiles, traits, and determinants. Chin. Med. J. (Engl.) 135, 584–590. https://doi.org/10.1097/cm9.0000000000002108 (2022).
Non-small Cell Lung Most cancers Collaborative Group. Chemotherapy in non-small cell lung most cancers: A meta-analysis utilizing up to date knowledge on particular person sufferers from 52 randomised medical trials. BMJ 311, 899–909 (1995).
Spiro, S. G. & Silvestri, G. A. 100 years of lung most cancers. Am. J. Respir. Crit. Care Med. 172, 523–529. https://doi.org/10.1164/rccm.200504-531OE (2005).
Gridelli, C. Does chemotherapy have a job as palliative remedy for unfit or aged sufferers with non-small-cell lung most cancers?. Lung Most cancers 38(Suppl 2), S45-50. https://doi.org/10.1016/s0169-5002(02)00357-4 (2002).
Lynch, T. J. et al. Activating mutations within the epidermal progress issue receptor underlying responsiveness of non-small-cell lung most cancers to gefitinib. N. Engl. J. Med. 350, 2129–2139. https://doi.org/10.1056/NEJMoa040938 (2004).
Paez, J. G. et al. EGFR mutations in lung most cancers: Correlation with medical response to gefitinib remedy. Science 304, 1497–1500. https://doi.org/10.1126/science.1099314 (2004).
Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957. https://doi.org/10.1056/NEJMoa0810699 (2009).
Lin, W. C. et al. Gefitinib as front-line remedy in Chinese language sufferers with superior non-small-cell lung most cancers. Lung Most cancers 54, 193–199. https://doi.org/10.1016/j.lungcan.2006.07.013 (2006).
Ettinger, D. S. et al. NCCN Pointers® insights: Non-small cell lung most cancers, model 2.2023. J. Natl. Compr. Most cancers Netw. 21, 340–350. https://doi.org/10.6004/jnccn.2023.0020 (2023).
Soda, M. et al. Identification of the remodeling EML4-ALK fusion gene in non-small-cell lung most cancers. Nature 448, 561–566. https://doi.org/10.1038/nature05945 (2007).
El-Deeb, I. M., Yoo, Ok. H. & Lee, S. H. ROS receptor tyrosine kinase: A brand new potential goal for anticancer medicine. Med. Res. Rev. 31, 794–818. https://doi.org/10.1002/med.20206 (2011).
Brose, M. S. et al. BRAF and RAS mutations in human lung most cancers and melanoma. Most cancers Res. 62, 6997–7000 (2002).
Schneider, P. M. et al. Differential expression of the c-erbB-2 gene in human small cell and non-small cell lung most cancers. Most cancers Res. 49, 4968–4971 (1989).
Solomon, B. J. et al. First-line crizotinib versus chemotherapy in ALK-positive lung most cancers. N. Engl. J. Med. 371, 2167–2177. https://doi.org/10.1056/NEJMoa1408440 (2014).
Wolf, J. et al. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung most cancers. N. Engl. J. Med. 383, 944–957. https://doi.org/10.1056/NEJMoa2002787 (2020).
Hirsch, F. R. et al. Lung most cancers: Present therapies and new focused remedies. Lancet 389, 299–311. https://doi.org/10.1016/s0140-6736(16)30958-8 (2017).
Solomon, B. J. et al. RET solvent entrance mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies. J. Thorac. Oncol. 15, 541–549. https://doi.org/10.1016/j.jtho.2020.01.006 (2020).
Vikis, H. et al. EGFR-T790M is a uncommon lung most cancers susceptibility allele with enhanced kinase exercise. Most cancers Res. 67, 4665–4670. https://doi.org/10.1158/0008-5472.Can-07-0217 (2007).
Rosell, R. et al. Screening for epidermal progress issue receptor mutations in lung most cancers. N. Engl. J. Med. 361, 958–967. https://doi.org/10.1056/NEJMoa0904554 (2009).
D’Angelo, S. P. et al. Incidence of EGFR exon 19 deletions and L858R in tumor specimens from males and cigarette people who smoke with lung adenocarcinomas. J. Clin. Oncol. 29, 2066–2070. https://doi.org/10.1200/jco.2010.32.6181 (2011).
Harrison, P. T., Vyse, S. & Huang, P. H. Uncommon epidermal progress issue receptor (EGFR) mutations in non-small cell lung most cancers. Semin. Most cancers Biol. 61, 167–179. https://doi.org/10.1016/j.semcancer.2019.09.015 (2020).
Most cancers Genome Atlas Analysis Community. Complete molecular profiling of lung adenocarcinoma. Nature 511, 543–550. https://doi.org/10.1038/nature13385 (2014).
Vyse, S. & Huang, P. H. Concentrating on EGFR exon 20 insertion mutations in non-small cell lung most cancers. Sign Transduct. Goal Ther. 4, 5. https://doi.org/10.1038/s41392-019-0038-9 (2019).
Fang, W. et al. EGFR exon 20 insertion mutations and response to osimertinib in non-small-cell lung most cancers. BMC Most cancers 19, 595. https://doi.org/10.1186/s12885-019-5820-0 (2019).
Remon, J., Hendriks, L. E. L., Cardona, A. F. & Besse, B. EGFR exon 20 insertions in superior non-small cell lung most cancers: A brand new historical past begins. Most cancers Deal with. Rev. 90, 102105. https://doi.org/10.1016/j.ctrv.2020.102105 (2020).
Hou, J. et al. EGFR exon 20 insertion mutations in superior non-small-cell lung most cancers: Present standing and views. Biomark. Res. 10, 21. https://doi.org/10.1186/s40364-022-00372-6 (2022).
Meador, C. B., Sequist, L. V. & Piotrowska, Z. Concentrating on EGFR exon 20 insertions in non-small cell lung most cancers: Latest advances and medical updates. Most cancers Discov. 11, 2145–2157. https://doi.org/10.1158/2159-8290.Cd-21-0226 (2021).
Floc’h, N. et al. Antitumor exercise of osimertinib, an irreversible mutant-selective EGFR tyrosine kinase inhibitor, in NSCLC harboring EGFR exon 20 insertions. Mol. Most cancers Ther. 17, 885–896. https://doi.org/10.1158/1535-7163.Mct-17-0758 (2018).
Hirano, T. et al. In vitro modeling to find out mutation specificity of EGFR tyrosine kinase inhibitors towards clinically related EGFR mutants in non-small-cell lung most cancers. Oncotarget 6, 38789–38803. https://doi.org/10.18632/oncotarget.5887 (2015).
Kim, T. M. et al. 1529P—Part II examine of osimertinib in NSCLC sufferers with EGFR exon 20 insertion mutation: A multicenter trial of the Korean Most cancers Examine Group (LU17–19). Ann. Oncol. 30, v628. https://doi.org/10.1093/annonc/mdz260.051 (2019).
van Veggel, B. et al. Osimertinib remedy for sufferers with EGFR exon 20 mutation optimistic non-small cell lung most cancers. Lung Most cancers 141, 9–13. https://doi.org/10.1016/j.lungcan.2019.12.013 (2020).
Yasuda, H. et al. A section I/II examine of osimertinib in EGFR exon 20 insertion mutation-positive non-small cell lung most cancers. Lung Most cancers 162, 140–146. https://doi.org/10.1016/j.lungcan.2021.10.006 (2021).
Piotrowska, Z., Wang, Y., Sequist, L. V. & Ramalingam, S. S. ECOG-ACRIN 5162: A section II examine of osimertinib 160 mg in NSCLC with EGFR exon 20 insertions. J. Clin. Oncol. 38, 9513–9513 (2020).
Zwierenga, F. et al. Excessive dose osimertinib in sufferers with superior stage EGFR exon 20 mutation-positive NSCLC: Outcomes from the section 2 multicenter POSITION20 trial. Lung Most cancers 170, 133–140. https://doi.org/10.1016/j.lungcan.2022.06.012 (2022).
Robichaux, J. P. et al. Mechanisms and medical exercise of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung most cancers. Nat. Med. 24, 638–646. https://doi.org/10.1038/s41591-018-0007-9 (2018).
Elamin, Y. Y. et al. Poziotinib for EGFR exon 20-mutant NSCLC: Medical efficacy, resistance mechanisms, and affect of insertion location on drug sensitivity. Most cancers Cell 40, 754-767.e756. https://doi.org/10.1016/j.ccell.2022.06.006 (2022).
Sacher, A., Le, X., Cornelissen, R., Shum, E. & Garassino, M. C. 36MO Security, tolerability and preliminary efficacy of poziotinib with twice day by day technique in EGFR/HER2 Exon 20 mutant non-small cell lung most cancers. Ann. Oncol. 32, S15 (2021).
Le, X. et al. Summary CT081: Poziotinib exercise and sturdiness of responses in beforehand handled EGFR exon 20 NSCLC sufferers—A Part 2 examine. Most cancers Res. 80, CT081. https://doi.org/10.1158/1538-7445.Am2020-ct081 (2020).
Riely, G. J. et al. Exercise and security of mobocertinib (TAK-788) in beforehand handled non-small cell lung most cancers with EGFR exon 20 insertion mutations from a section I/II trial. Most cancers Discov. 11, 1688–1699. https://doi.org/10.1158/2159-8290.Cd-20-1598 (2021).
Zhou, C. et al. Remedy outcomes and security of mobocertinib in platinum-pretreated sufferers with EGFR exon 20 insertion-positive metastatic non-small cell lung most cancers: A section 1/2 open-label nonrandomized medical trial. JAMA Oncol. 7, e214761. https://doi.org/10.1001/jamaoncol.2021.4761 (2021).
Markham, A. Mobocertinib: First approval. Medication 81, 2069–2074. https://doi.org/10.1007/s40265-021-01632-9 (2021).
Rosa, Ok. Takeda to voluntarily withdraw mobocertinib for EGFR exon 20 insertion+ NSCLC. https://www.onclive.com/view/takeda-to-voluntarily-withdraw-mobocertinib-for-egfr-exon-20-insertion-nsclc (2023).
Yu, H. A. et al. Part (Ph) 1/2a examine of CLN-081 in sufferers (pts) with NSCLC with EGFR exon 20 insertion mutations (Ins20). J. Clin. Oncol. 40, 9007–9007. https://doi.org/10.1200/JCO.2022.40.16_suppl.9007 (2022).
Conroy, R. Investigators launch section 3 zipalertinib combo trial in EGFR+ NSCLC. Most cancers Netw. (2023).
Cho, B. C. et al. 1497PJNJ-61186372 (JNJ-372), an EGFR-cMET bispecific antibody, in superior non-small cell lung most cancers (NSCLC): An replace on section I outcomes. Ann. Oncol. https://doi.org/10.1093/annonc/mdy292.118 (2018).
Moores, S. L. et al. A novel bispecific antibody concentrating on EGFR and cMet is efficient towards EGFR inhibitor-resistant lung tumors. Most cancers Res. 76, 3942–3953 (2016).
Yun, J., Lee, S. H., Kim, S. Y., Jeong, S. Y. & Cho, B. C. Antitumor exercise of amivantamab (JNJ-61186372), an EGFR-cMet bispecific antibody, in numerous fashions of EGFR exon 20 insertion-driven NSCLC. Most cancers Discov. 10, CD-20-0116 (2020).
Park, Ok. et al. Amivantamab in EGFR exon 20 insertion-mutated non–small-cell lung most cancers progressing on platinum chemotherapy: Preliminary outcomes from the CHRYSALIS section I examine. J. Clin. Oncol. 39, 3391–3402. https://doi.org/10.1200/jco.21.00662 (2021).
Syed, Y. Y. Amivantamab: First approval. Medication 81, 1349–1353. https://doi.org/10.1007/s40265-021-01561-7 (2021).
Vyse, S. & Huang, P. H. Amivantamab for the remedy of EGFR exon 20 insertion mutant non-small cell lung most cancers. Skilled Rev. Anticancer Ther. 22, 3–16. https://doi.org/10.1080/14737140.2022.2016397 (2022).
Zhou, C. et al. Amivantamab plus chemotherapy in NSCLC with EGFR exon 20 insertions. N. Engl. J. Med. 389, 2039–2051. https://doi.org/10.1056/NEJMoa2306441 (2023).
Wang, M. et al. Sunvozertinib, a selective EGFR inhibitor for beforehand handled non-small cell lung most cancers with EGFR exon 20 insertion mutations. Most cancers Discov. 12, 1676–1689. https://doi.org/10.1158/2159-8290.Cd-21-1615 (2022).
Wang, M. et al. Sunvozertinib for the remedy of NSCLC with EGFR Exon20 insertion mutations: The primary pivotal examine outcomes. J. Clin. Oncol. 41, 9002–9002. https://doi.org/10.1200/JCO.2023.41.16_suppl.9002 (2023).
Xu, Y. et al. Efficacy and security of sunvozertinib in remedy naïve NSCLC sufferers with EGFR exon20 insertion mutations. J. Clin. Oncol. 41, 9073–9073. https://doi.org/10.1200/JCO.2023.41.16_suppl.9073 (2023).
Dhillon, S. Sunvozertinib: First approval. Medication 83, 1629–1634. https://doi.org/10.1007/s40265-023-01959-5 (2023).
Han, B. et al. OA03.04 A section 1b examine of furmonertinib, an oral, mind penetrant, selective EGFR inhibitor, in sufferers with superior NSCLC with EGFR exon 20 insertions. J. Thorac. Oncol. 18, S49. https://doi.org/10.1016/j.jtho.2023.09.033 (2023).
Zhang, S. S. & Ou, S.-H.I. Highlight on furmonertinib (Alflutinib, AST2818). The Swiss Military Knife (del19, L858R, T790M, exon 20 insertions, “uncommon-G719X, S768I, L861Q”) among the many third-generation EGFR TKIs?. Lung Most cancers Targets Ther. 13, 67–73 (2022).
Rebuzzi, S. E. et al. Novel rising molecular targets in non-small cell lung most cancers. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22052625 (2021).
Russo, A. et al. New targets in lung most cancers (excluding EGFR, ALK, ROS1). Curr. Oncol. Rep. 22, 48. https://doi.org/10.1007/s11912-020-00909-8 (2020).
Ou, S. H. et al. Exercise of crizotinib (PF02341066), a twin mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung most cancers affected person with de novo MET amplification. J. Thorac. Oncol. 6, 942–946. https://doi.org/10.1097/JTO.0b013e31821528d3 (2011).
Pfizer’s XALKORI®(Crizotinib) Receives FDA Breakthrough Remedy Designation in Two New Indications/Pfizer. Accessible on- line (2018).
Chiari, R. et al. ROS1-rearranged non-small-cell lung most cancers is related to a excessive fee of venous thromboembolism: Evaluation from a section II, potential, multicenter, two-arms trial (METROS). Clin. Lung Most cancers 21, 15–20. https://doi.org/10.1016/j.cllc.2019.06.012 (2020).
Drilon, A. et al. Antitumor exercise of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat. Med. 26, 47–51. https://doi.org/10.1038/s41591-019-0716-8 (2020).
Moro-Sibilot, D. et al. Crizotinib in c-MET- or ROS1-positive NSCLC: Outcomes of the AcSé section II trial. Ann. Oncol. 30, 1985–1991. https://doi.org/10.1093/annonc/mdz407 (2019).
Dong, Y., Xu, J., Solar, B., Wang, J. & Wang, Z. MET-targeted therapies and medical outcomes: A scientific literature assessment. Mol. Diagn. Ther. 26, 203–227. https://doi.org/10.1007/s40291-021-00568-w (2022).
Recondo, G., Che, J., Jänne, P. A. & Awad, M. M. Concentrating on MET dysregulation in most cancers. Most cancers Discov. 10, 922–934. https://doi.org/10.1158/2159-8290.Cd-19-1446 (2020).
Wu, Y. L. et al. Part Ib/II examine of capmatinib (INC280) plus gefitinib after failure of epidermal progress issue receptor (EGFR) inhibitor remedy in sufferers with EGFR-mutated, MET factor-dysregulated non-small-cell lung most cancers. J. Clin. Oncol. 36, 3101–3109. https://doi.org/10.1200/jco.2018.77.7326 (2018).
Schuler, M. et al. Molecular correlates of response to capmatinib in superior non-small-cell lung most cancers: Medical and biomarker outcomes from a section I trial. Ann. Oncol. 31, 789–797. https://doi.org/10.1016/j.annonc.2020.03.293 (2020).
Seto, T. et al. Capmatinib in Japanese sufferers with MET exon 14 skipping-mutated or MET-amplified superior NSCLC: GEOMETRY mono-1 examine. Most cancers Sci. 112, 1556–1566. https://doi.org/10.1111/cas.14826 (2021).
Dagogo-Jack, I. et al. A section 2 examine of capmatinib in sufferers with MET-altered lung most cancers beforehand handled with a MET inhibitor. J. Thorac. Oncol. 16, 850–859. https://doi.org/10.1016/j.jtho.2021.01.1605 (2021).
Engstrom, L. D. et al. Glesatinib displays antitumor exercise in lung most cancers fashions and sufferers harboring MET Exon 14 mutations and overcomes mutation-mediated resistance to kind I MET inhibitors in nonclinical fashions. Clin. Most cancers Res. 23, 6661–6672. https://doi.org/10.1158/1078-0432.Ccr-17-1192 (2017).
Markham, A. Tepotinib: First approval. Medication 80, 829–833. https://doi.org/10.1007/s40265-020-01317-9 (2020).
Le, X. et al. Tepotinib efficacy and security in sufferers with MET exon 14 skipping NSCLC: Outcomes in affected person subgroups from the VISION examine with relevance for medical apply. Clin. Most cancers Res. 28, 1117–1126. https://doi.org/10.1158/1078-0432.Ccr-21-2733 (2022).
Wu, Y. L. et al. Tepotinib plus gefitinib in sufferers with EGFR-mutant non-small-cell lung most cancers with MET overexpression or MET amplification and bought resistance to earlier EGFR inhibitor (INSIGHT examine): An open-label, section 1b/2, multicentre, randomised trial. Lancet Respir. Med. 8, 1132–1143. https://doi.org/10.1016/s2213-2600(20)30154-5 (2020).
Smit, E. F. et al. INSIGHT 2: A section II examine of tepotinib plus osimertinib in MET-amplified NSCLC and first-line osimertinib resistance. Future Oncol. 18, 1039–1054. https://doi.org/10.2217/fon-2021-1406 (2022).
Markham, A. Savolitinib: First approval. Medication 81, 1665–1670. https://doi.org/10.1007/s40265-021-01584-0 (2021).
Lu, S. et al. As soon as-daily savolitinib in Chinese language sufferers with pulmonary sarcomatoid carcinomas and different non-small-cell lung cancers harbouring MET exon 14 skipping alterations: A multicentre, single-arm, open-label, section 2 examine. Lancet Respir. Med. 9, 1154–1164. https://doi.org/10.1016/s2213-2600(21)00084-9 (2021).
Hartmaier, R. J. et al. Osimertinib + savolitinib to beat acquired MET-mediated resistance in epidermal progress issue receptor-mutated, MET-amplified non-small cell lung most cancers: TATTON. Most cancers Discov. 13, 98–113. https://doi.org/10.1158/2159-8290.Cd-22-0586 (2023).
Brazel, D. & Nagasaka, M. Highlight on amivantamab (JNJ-61186372) for EGFR exon 20 insertions optimistic non-small cell lung most cancers. Lung Most cancers (Auckl) 12, 133–138. https://doi.org/10.2147/lctt.S337861 (2021).
Krebs, M. et al. Amivantamab in sufferers with NSCLC with MET exon 14 skipping mutation: Up to date outcomes from the CHRYSALIS examine. J. Clin. Oncol. 40, 9008–9008. https://doi.org/10.1200/JCO.2022.40.16_suppl.9008 (2022).
Lu, S. et al. Summary CT034: Part II examine of SCC244 in NSCLC sufferers harboring MET exon 14 skipping (METex14) mutations (GLORY examine). Most cancers Res. 82, CT034. https://doi.org/10.1158/1538-7445.Am2022-ct034 (2022).
Reckamp, Ok. L. et al. Part II trial of cabozantinib plus erlotinib in sufferers with superior epidermal progress issue receptor (EGFR)-mutant non-small cell lung most cancers with progressive illness on epidermal progress issue receptor tyrosine kinase inhibitor remedy: A California Most cancers Consortium Part II trial (NCI 9303). Entrance. Oncol. 9, 132. https://doi.org/10.3389/fonc.2019.00132 (2019).
Yan, S. B. et al. MET-targeting antibody (emibetuzumab) and kinase inhibitor (merestinib) as single agent or together in a most cancers mannequin bearing MET exon 14 skipping. Investig. New Medication 36, 536–544. https://doi.org/10.1007/s10637-017-0545-x (2018).
Park, Ok. et al. Part I outcomes of S49076 plus gefitinib in sufferers with EGFR TKI-resistant non-small cell lung most cancers harbouring MET/AXL dysregulation. Lung Most cancers 155, 127–135. https://doi.org/10.1016/j.lungcan.2021.03.012 (2021).
Fujino, T., Suda, Ok. & Mitsudomi, T. Rising MET tyrosine kinase inhibitors for the remedy of non-small cell lung most cancers. Skilled Opin. Emerg. Medication 25, 229–249. https://doi.org/10.1080/14728214.2020.1791821 (2020).
Goldman, J. W. et al. Part 1/1b examine of telisotuzumab vedotin (Teliso-V) + osimertinib (Osi), after failure on prior Osi, in sufferers with superior, c-Met overexpressing, EGFR-mutated non-small cell lung most cancers (NSCLC). J. Clin. Oncol. 40, 9013–9013. https://doi.org/10.1200/JCO.2022.40.16_suppl.9013 (2022).
Cardarella, S. et al. Medical, pathologic, and biologic options related to BRAF mutations in non-small cell lung most cancers. Clin. Most cancers Res. 19, 4532–4540. https://doi.org/10.1158/1078-0432.Ccr-13-0657 (2013).
Rodak, O., Peris-Díaz, M. D., Olbromski, M., Podhorska-Okołów, M. & Dzięgiel, P. Present panorama of non-small cell lung most cancers: Epidemiology, histological classification, focused therapies, and immunotherapy. Cancers https://doi.org/10.3390/cancers13184705 (2021).
Dankner, M., Rose, A. A. N., Rajkumar, S., Siegel, P. M. & Watson, I. R. Classifying BRAF alterations in most cancers: New rational therapeutic methods for actionable mutations. Oncogene 37, 3183–3199. https://doi.org/10.1038/s41388-018-0171-x (2018).
Hyman, D. M. et al. Vemurafenib in a number of nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373, 726–736. https://doi.org/10.1056/NEJMoa1502309 (2015).
Planchard, D. et al. Dabrafenib in sufferers with BRAF(V600E)-positive superior non-small-cell lung most cancers: A single-arm, multicentre, open-label, section 2 trial. Lancet Oncol. 17, 642–650. https://doi.org/10.1016/s1470-2045(16)00077-2 (2016).
Planchard, D. et al. Part 2 examine of dabrafenib plus trametinib in sufferers with BRAF V600E-mutant metastatic NSCLC: Up to date 5-year survival charges and genomic evaluation. J. Thorac. Oncol. 17, 103–115. https://doi.org/10.1016/j.jtho.2021.08.011 (2022).
Swalduz, A. et al. Efficacy of dabrafenib-trametinib mixture in BRAF V600E-mutated metastatic non–small cell lung most cancers: Outcomes of the IFCT-2004 BLaDE cohort. J. Clin. Oncol. 40, 9082–9082. https://doi.org/10.1200/JCO.2022.40.16_suppl.9082 (2022).
Saha, D. et al. Concentrating on rearranged throughout transfection in most cancers: A perspective on small-molecule inhibitors and their medical improvement. J. Med. Chem. 64, 11747–11773. https://doi.org/10.1021/acs.jmedchem.0c02167 (2021).
Yoh, Ok. et al. Vandetanib in sufferers with beforehand handled RET-rearranged superior non-small-cell lung most cancers (LURET): An open-label, multicentre section 2 trial. Lancet Respir. Med. 5, 42–50. https://doi.org/10.1016/s2213-2600(16)30322-8 (2017).
Gautschi, O. et al. Concentrating on RET in sufferers with RET-rearranged lung cancers: Outcomes from the worldwide, multicenter RET Registry. J. Clin. Oncol. 35, 1403–1410. https://doi.org/10.1200/jco.2016.70.9352 (2017).
Gainor, J. F. et al. Pralsetinib for RET fusion-positive non-small-cell lung most cancers (ARROW): A multi-cohort, open-label, section 1/2 examine. Lancet Oncol. 22, 959–969. https://doi.org/10.1016/s1470-2045(21)00247-3 (2021).
Griesinger, F. et al. Security and efficacy of pralsetinib in RET fusion-positive non-small-cell lung most cancers together with as first-line remedy: Replace from the ARROW trial. Ann. Oncol. https://doi.org/10.1016/j.annonc.2022.08.002 (2022).
Drilon, A. et al. Selpercatinib in sufferers with RET fusion-positive non-small-cell lung most cancers: Up to date security and efficacy from the registrational LIBRETTO-001 section I/II Trial. J. Clin. Oncol. https://doi.org/10.1200/jco.22.00393 (2022).
Subbiah, V. et al. Intracranial efficacy of selpercatinib in RET fusion-positive non-small cell lung cancers on the LIBRETTO-001 Trial. Clin. Most cancers Res. 27, 4160–4167. https://doi.org/10.1158/1078-0432.Ccr-21-0800 (2021).
Drilon, A. et al. 506P – TPX-0046 is a novel and potent RET/SRC inhibitor for RET-driven cancers. Ann. Oncol. 30, v190–v191. https://doi.org/10.1093/annonc/mdz244.068 (2019).
Turning Level Therapeutics Proclaims Preliminary Medical Information From Part 1/2 SWORD-1 Examine of RET Inhibitor TPX-0046. https://firstwordpharma.com/story/5266393 (2021).
Schoffski, P. et al. BOS172738, a extremely potent and selective RET inhibitor, for the remedy of RET-altered tumors together with RET-fusion+ NSCLC and RET-mutant MTC: Part 1 examine outcomes. J. Clin. Oncol. 39, 3008–3008. https://doi.org/10.1200/JCO.2021.39.15_suppl.3008 (2021).
Suzuki, M. et al. HER2 gene mutations in non-small cell lung carcinomas: Concurrence with Her2 gene amplification and Her2 protein expression and phosphorylation. Lung Most cancers 87, 14–22. https://doi.org/10.1016/j.lungcan.2014.10.014 (2015).
Hynes, N. E. & Stern, D. F. The biology of erbB-2/neu/HER-2 and its function in most cancers. Biochim. Biophys. Acta 1198, 165–184. https://doi.org/10.1016/0304-419x(94)90012-4 (1994).
Swain, S. M., Shastry, M. & Hamilton, E. Concentrating on HER2-positive breast most cancers: Advances and future instructions. Nat. Rev. Drug Discov. 22, 101–126. https://doi.org/10.1038/s41573-022-00579-0 (2023).
La Salvia, A., Lopez-Gomez, V. & Garcia-Carbonero, R. HER2-targeted remedy: An rising technique in superior colorectal most cancers. Skilled Opin. Investig. Medication 28, 29–38. https://doi.org/10.1080/13543784.2019.1555583 (2019).
Arcila, M. E. et al. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin. Most cancers Res. 18, 4910–4918. https://doi.org/10.1158/1078-0432.Ccr-12-0912 (2012).
Sankar, Ok., Gadgeel, S. M. & Qin, A. Molecular therapeutic targets in non-small cell lung most cancers. Skilled Rev. Anticancer Ther. 20, 647–661. https://doi.org/10.1080/14737140.2020.1787156 (2020).
Liu, L. et al. The function of human epidermal progress issue receptor 2 as a prognostic consider lung most cancers: A meta-analysis of printed knowledge. J. Thorac. Oncol. 5, 1922–1932. https://doi.org/10.1097/jto.0b013e3181f26266 (2010).
Riudavets, M., Sullivan, I., Abdayem, P. & Planchard, D. Concentrating on HER2 in non-small-cell lung most cancers (NSCLC): A glimpse of hope? An up to date assessment on therapeutic methods in NSCLC harbouring HER2 alterations. ESMO Open 6, 100260. https://doi.org/10.1016/j.esmoop.2021.100260 (2021).
Ricciardi, G. R. et al. NSCLC and HER2: Between lights and shadows. J. Thorac. Oncol. 9, 1750–1762. https://doi.org/10.1097/jto.0000000000000379 (2014).
Yoshizawa, A. et al. HER2 standing in lung adenocarcinoma: A comparability of immunohistochemistry, fluorescence in situ hybridization (FISH), dual-ISH, and gene mutations. Lung Most cancers 85, 373–378. https://doi.org/10.1016/j.lungcan.2014.06.007 (2014).
Bunn, P. A. Jr. et al. Expression of Her-2/neu in human lung most cancers cell traces by immunohistochemistry and fluorescence in situ hybridization and its relationship to in vitro cytotoxicity by trastuzumab and chemotherapeutic brokers. Clin. Most cancers Res. 7, 3239–3250 (2001).
Dziadziuszko, R. et al. Afatinib in NSCLC with HER2 mutations: Outcomes of the possible, open-label section II NICHE trial of European thoracic oncology platform (ETOP). J. Thorac. Oncol. 14, 1086–1094. https://doi.org/10.1016/j.jtho.2019.02.017 (2019).
Hyman, D. M. et al. HER kinase inhibition in sufferers with HER2- and HER3-mutant cancers. Nature 554, 189–194. https://doi.org/10.1038/nature25475 (2018).
Jebbink, M., de Langen, A. J., Boelens, M. C., Monkhorst, Ok. & Smit, E. F. The pressure of HER2—A druggable goal in NSCLC?. Most cancers Deal with. Rev. 86, 101996. https://doi.org/10.1016/j.ctrv.2020.101996 (2020).
Kris, M. G. et al. Concentrating on HER2 aberrations as actionable drivers in lung cancers: Part II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in sufferers with HER2-mutant or amplified tumors. Ann. Oncol. 26, 1421–1427. https://doi.org/10.1093/annonc/mdv186 (2015).
Elamin, Y. Y. et al. Poziotinib for sufferers with HER2 exon 20 mutant non-small-cell lung most cancers: Outcomes from a section II trial. J. Clin. Oncol. 40, 702–709. https://doi.org/10.1200/jco.21.01113 (2022).
Le, X. et al. Poziotinib in non-small-cell lung most cancers harboring HER2 exon 20 insertion mutations after prior therapies: ZENITH20-2 trial. J. Clin. Oncol. 40, 710–718. https://doi.org/10.1200/jco.21.01323 (2022).
Wang, Y. et al. HER2 exon 20 insertions in non-small-cell lung most cancers are delicate to the irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib. Ann. Oncol. 30, 447–455. https://doi.org/10.1093/annonc/mdy542 (2019).
Music, Z. et al. Pyrotinib in sufferers with HER2-amplified superior non-small cell lung most cancers: A potential, multicentre, single-arm trial. Clin. Most cancers Res. 28, 461–467. https://doi.org/10.1158/1078-0432.Ccr-21-2936 (2022).
Estrada-Bernal, A. et al. Tarloxotinib is a hypoxia-activated pan-HER kinase inhibitor lively towards a broad vary of HER-family oncogenes. Clin. Most cancers Res. 27, 1463–1475. https://doi.org/10.1158/1078-0432.Ccr-20-3555 (2021).
Liu, S. V. et al. LBA61 first evaluation of RAIN-701: Examine of tarloxotinib in sufferers with non-small cell lung most cancers (NSCLC) EGFR Exon 20 insertion, HER2-activating mutations & different strong tumours with NRG1/ERBB gene fusions. Ann. Oncol. 31, S1189. https://doi.org/10.1016/j.annonc.2020.08.2294 (2020).
Riely, G. J. et al. 1261MO up to date outcomes from a section I/II examine of mobocertinib (TAK-788) in NSCLC with EGFR exon 20 insertions (exon20ins). Ann. Oncol. 31, S815–S816. https://doi.org/10.1016/j.annonc.2020.08.1575 (2020).
Hafeez, U., Parakh, S., Gan, H. Ok. & Scott, A. M. Antibody-drug conjugates for most cancers remedy. Molecules https://doi.org/10.3390/molecules25204764 (2020).
Hainsworth, J. D. et al. Focused remedy for superior strong tumors on the idea of molecular profiles: Outcomes from mypathway, an open-label, section IIa a number of basket examine. J. Clin. Oncol. 36, 536–542. https://doi.org/10.1200/jco.2017.75.3780 (2018).
Kinoshita, I. et al. 1491PA section II examine of trastuzumab monotherapy in pretreated sufferers with non-small cell lung cancers (NSCLCs) harboring HER2 alterations: HOT1303-B trial. Ann. Oncol. https://doi.org/10.1093/annonc/mdy292.112 (2018).
Gatzemeier, U. et al. Randomized section II trial of gemcitabine–cisplatin with or with out trastuzumab in HER2-positive non-small-cell lung most cancers. Ann. Oncol. 15, 19–27. https://doi.org/10.1093/annonc/mdh031 (2004).
Mazieres, J. et al. Mixture of trastuzumab, pertuzumab, and docetaxel in sufferers with superior non-small-cell lung most cancers harboring HER2 mutations: Outcomes from the IFCT-1703 R2D2 trial. J. Clin. Oncol. 40, 719–728. https://doi.org/10.1200/jco.21.01455 (2022).
van Berge Henegouwen, J. M. et al. Trastuzumab and pertuzumab mixture remedy for superior pre-treated HER2 exon 20-mutated non-small cell lung most cancers. Eur. J. Most cancers 171, 114–123. https://doi.org/10.1016/j.ejca.2022.05.009 (2022).
Li, B. T. et al. Ado-trastuzumab emtansine for sufferers with HER2-mutant lung cancers: outcomes from a section II basket trial. J. Clin. Oncol. 36, 2532–2537. https://doi.org/10.1200/JCO.2018.77.9777 (2018).
Iwama, E. et al. Trastuzumab emtansine for sufferers with non-small cell lung most cancers optimistic for human epidermal progress issue receptor 2 exon-20 insertion mutations. Eur. J. Most cancers 162, 99–106. https://doi.org/10.1016/j.ejca.2021.11.021 (2022).
Peters, S. et al. Trastuzumab emtansine (T-DM1) in sufferers with beforehand handled HER2-overexpressing metastatic non-small cell lung most cancers: Efficacy, security, and biomarkers. Clin. Most cancers Res. 25, 64–72. https://doi.org/10.1158/1078-0432.Ccr-18-1590 (2019).
Li, B. T. et al. Trastuzumab deruxtecan in HER2-mutant non-small-cell lung most cancers. N. Engl. J. Med. 386, 241–251. https://doi.org/10.1056/NEJMoa2112431 (2022).
Tsurutani, J. et al. Concentrating on HER2 with trastuzumab deruxtecan: A dose-expansion, section I examine in a number of superior strong tumors. Most cancers Discov. 10, 688–701. https://doi.org/10.1158/2159-8290.Cd-19-1014 (2020).
Nakagawa, Ok. et al. OA04.05 Trastuzumab Deruxtecan in HER2-overexpressing metastatic non-small cell lung most cancers: Interim outcomes of DESTINY-Lung01. J. Thorac. Oncol. 16, S109–S110. https://doi.org/10.1016/j.jtho.2021.01.285 (2021).
Narayan, P. et al. FDA approval abstract: Fam-Trastuzumab Deruxtecan-Nxki for the remedy of unresectable or metastatic HER2-positive breast most cancers. Clin. Most cancers Res. 27, 4478–4485. https://doi.org/10.1158/1078-0432.Ccr-20-4557 (2021).
Li, B. T. et al. HER2-mediated internalization of cytotoxic brokers in ERBB2 amplified or mutant lung cancers. Most cancers Discov. 10, 674–687. https://doi.org/10.1158/2159-8290.Cd-20-0215 (2020).
Elfving, H. et al. Analysis of NTRK immunohistochemistry as a screening technique for NTRK gene fusion detection in non-small cell lung most cancers. Lung Most cancers 151, 53–59. https://doi.org/10.1016/j.lungcan.2020.11.023 (2021).
Okamura, Ok. et al. Expression of TrkB and BDNF is related to poor prognosis in non-small cell lung most cancers. Lung Most cancers 78, 100–106. https://doi.org/10.1016/j.lungcan.2012.07.011 (2012).
Kummar, S. & Lassen, U. N. TRK inhibition: A brand new tumor-agnostic remedy technique. Goal Oncol. 13, 545–556. https://doi.org/10.1007/s11523-018-0590-1 (2018).
Farago, A. F. et al. Clinicopathologic Options of non-small-cell lung most cancers harboring an NTRK gene fusion. JCO Summary. Oncol. https://doi.org/10.1200/po.18.00037 (2018).
Doebele, R. C. et al. Entrectinib in sufferers with superior or metastatic NTRK fusion-positive strong tumours: Built-in evaluation of three section 1–2 trials. Lancet Oncol. 21, 271–282. https://doi.org/10.1016/s1470-2045(19)30691-6 (2020).
Hong, D. S. et al. Larotrectinib in sufferers with TRK fusion-positive strong tumours: A pooled evaluation of three section 1/2 medical trials. Lancet Oncol. 21, 531–540. https://doi.org/10.1016/s1470-2045(19)30856-3 (2020).
Lee, J. et al. Evaluating entrectinib as a remedy choice for non-small cell lung most cancers. Skilled Opin. Pharmacother. 21, 1935–1942. https://doi.org/10.1080/14656566.2020.1798932 (2020).
Sartore-Bianchi, A. et al. Entrectinib for the remedy of metastatic NSCLC: Security and efficacy. Skilled Rev. Anticancer Ther. 20, 333–341. https://doi.org/10.1080/14737140.2020.1747439 (2020).
Drilon, A. et al. Efficacy and security of larotrectinib in sufferers with tropomyosin receptor kinase fusion-positive lung cancers. JCO Summary. Oncol. https://doi.org/10.1200/po.21.00418 (2022).
Qin, H. & Patel, M. R. The problem and alternative of NTRK inhibitors in non-small cell lung most cancers. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23062916 (2022).
Holzmann, Ok. et al. Different splicing of fibroblast progress issue receptor IgIII loops in most cancers. J. Nucleic Acids 2012, 950508. https://doi.org/10.1155/2012/950508 (2012).
Tiseo, M. et al. FGFR as potential goal within the remedy of squamous non small cell lung most cancers. Most cancers Deal with. Rev. 41, 527–539. https://doi.org/10.1016/j.ctrv.2015.04.011 (2015).
Qin, A. et al. Detection of identified and novel FGFR fusions in non-small cell lung most cancers by complete genomic profiling. J. Thorac. Oncol. 14, 54–62. https://doi.org/10.1016/j.jtho.2018.09.014 (2019).
Dong, M., Li, T. & Chen, J. Progress on the examine of concentrating on FGFR in squamous non-small cell lung most cancers. Zhongguo Fei Ai Za Zhi 21, 116–120. https://doi.org/10.3779/j.issn.1009-3419.2018.02.05 (2018).
Ng, T. L. et al. Preselection of lung most cancers instances utilizing FGFR1 mRNA and gene copy quantity for remedy with ponatinib. Clin. Lung Most cancers 20, e39–e51. https://doi.org/10.1016/j.cllc.2018.09.001 (2019).
Pacini, L., Jenks, A. D., Lima, N. C. & Huang, P. H. Concentrating on the fibroblast progress issue receptor (FGFR) household in lung most cancers. Cells https://doi.org/10.3390/cells10051154 (2021).
Gavine, P. R. et al. AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast progress issue receptor tyrosine kinase household. Most cancers Res. 72, 2045–2056. https://doi.org/10.1158/0008-5472.Can-11-3034 (2012).
Aggarwal, C. et al. SWOG S1400D (NCT02965378), a section II examine of the fibroblast progress issue receptor inhibitor AZD4547 in beforehand handled sufferers with fibroblast progress issue pathway-activated stage IV squamous cell lung most cancers (lung-MAP substudy). J. Thorac. Oncol. 14, 1847–1852. https://doi.org/10.1016/j.jtho.2019.05.041 (2019).
Harding, T. C. et al. Blockade of nonhormonal fibroblast progress components by FP-1039 inhibits progress of a number of kinds of most cancers. Sci. Transl. Med. 5, 178ra139. https://doi.org/10.1126/scitranslmed.3005414 (2013).
Morgensztern, D. et al. An open-label section IB examine to judge GSK3052230 together with paclitaxel and carboplatin, or docetaxel, in FGFR1-amplified non-small cell lung most cancers. Lung Most cancers 136, 74–79. https://doi.org/10.1016/j.lungcan.2019.08.011 (2019).
Grünewald, S. et al. Rogaratinib: A potent and selective pan-FGFR inhibitor with broad antitumor exercise in FGFR-overexpressing preclinical most cancers fashions. Int. J. Most cancers 145, 1346–1357. https://doi.org/10.1002/ijc.32224 (2019).
Schuler, M. et al. Rogaratinib in sufferers with superior cancers chosen by FGFR mRNA expression: A section 1 dose-escalation and dose-expansion examine. Lancet Oncol. 20, 1454–1466. https://doi.org/10.1016/S1470-2045(19)30412-7 (2019).
Addeo, A. et al. Fibroblast progress issue receptor (FGFR) inhibitor rogaratinib in sufferers with superior pretreated squamous-cell non-small cell lung most cancers over-expressing FGFR mRNA: The SAKK 19/18 section II examine. Lung Most cancers 172, 154–159. https://doi.org/10.1016/j.lungcan.2022.08.016 (2022).
Peng, L. et al. Concentrating on ALK rearrangements in NSCLC: Present state-of-the-art. Entrance. Oncol. 12, 863461. https://doi.org/10.3389/fonc.2022.863461 (2022).
Shaw, A. T. et al. Crizotinib versus chemotherapy in superior ALK-positive lung most cancers. N. Engl. J. Med. 373, 1582. https://doi.org/10.1056/NEJMx150036 (2015).
Huber, R. M. et al. Brigatinib in crizotinib-refractory ALK+ NSCLC: 2-year follow-up on systemic and intracranial outcomes within the section 2 ALTA trial. J. Thorac. Oncol. 15, 404–415. https://doi.org/10.1016/j.jtho.2019.11.004 (2020).
Kim, D. W. et al. Exercise and security of ceritinib in sufferers with ALK-rearranged non-small-cell lung most cancers (ASCEND-1): Up to date outcomes from the multicentre, open-label, section 1 trial. Lancet Oncol. 17, 452–463. https://doi.org/10.1016/s1470-2045(15)00614-2 (2016).
Ou, S. I. et al. Continuation of lorlatinib in ALK-positive NSCLC past progressive illness. J. Thorac. Oncol. 17, 568–577. https://doi.org/10.1016/j.jtho.2021.12.011 (2022).
Peters, S. et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung most cancers. N. Engl. J. Med. 377, 829–838. https://doi.org/10.1056/NEJMoa1704795 (2017).
Pelish, H. E. et al. Summary 1468: NUV-655 (NVL-655) is a selective, brain-penetrant ALK inhibitor with antitumor exercise towards the lorlatinib-resistant G1202R/L1196M compound mutation. Most cancers Res. 81, 1468–1468. https://doi.org/10.1158/1538-7445.Am2021-1468 (2021).
Murray, B. W. et al. Summary 1469: TPX-0131, a potent inhibitor of untamed kind ALK and a broad spectrum of each single and compound ALK resistance mutations. Most cancers Res. 81, 1469–1469. https://doi.org/10.1158/1538-7445.Am2021-1469 (2021).
Yang, J.-J. et al. SAF-189s in superior, ALK-positive, non–small cell lung most cancers: Outcomes from a first-in-human section 1/2, multicenter examine. J. Clin. Oncol. 40, 9076–9076. https://doi.org/10.1200/JCO.2022.40.16_suppl.9076 (2022).
Ardini, E. et al. Entrectinib, a Pan–TRK, ROS1, and ALK inhibitor with exercise in a number of molecularly outlined most cancers indications. Mol. Most cancers Ther. 15, 628–639. https://doi.org/10.1158/1535-7163.Mct-15-0758 (2016).
Cho, B. C. et al. Security and preliminary medical exercise of repotrectinib in sufferers with superior ROS1 fusion-positive non-small cell lung most cancers (TRIDENT-1 examine). J. Clin. Oncol. 37, 9011–9011. https://doi.org/10.1200/JCO.2019.37.15_suppl.9011 (2019).
Mizuta, H. et al. Gilteritinib overcomes lorlatinib resistance in ALK-rearranged most cancers. Nat. Commun. 12, 1261. https://doi.org/10.1038/s41467-021-21396-w (2021).
Rikova, Ok. et al. International survey of phosphotyrosine signaling identifies oncogenic kinases in lung most cancers. Cell 131, 1190–1203. https://doi.org/10.1016/j.cell.2007.11.025 (2007).
Gendarme, S., Bylicki, O., Chouaid, C. & Guisier, F. ROS-1 fusions in non-small-cell lung most cancers: Proof up to now. Curr. Oncol. 29, 641–658. https://doi.org/10.3390/curroncol29020057 (2022).
Patil, T. et al. The incidence of mind metastases in stage IV ROS1-rearranged non–small cell lung most cancers and fee of central nervous system development on crizotinib. J. Thorac. Oncol. 13, 1717–1726. https://doi.org/10.1016/j.jtho.2018.07.001 (2018).
Doebele, R. C. et al. TRIDENT-1: A worldwide, multicenter, open-label Part II examine investigating the exercise of repotrectinib in superior strong tumors harboring ROS1 or NTRK1–3 rearrangements. J. Clin. Oncol. 38, TPS9637. https://doi.org/10.1200/JCO.2020.38.15_suppl.TPS9637 (2020).
Li, W. et al. The efficacy and security of taletrectinib in sufferers with TKI-naïve or crizotinib-pretreated ROS1-positive non–small cell lung most cancers (NSCLC). J. Clin. Oncol. 40, 8572–8572. https://doi.org/10.1200/JCO.2022.40.16_suppl.8572 (2022).
Nagasaka, M. et al. TRUST-II: A worldwide section II examine for taletrectinib in ROS1 fusion–optimistic lung most cancers and different strong tumors. J. Clin. Oncol. 40, TPS8601. https://doi.org/10.1200/JCO.2022.40.16_suppl.TPS8601 (2022).
Ai, X. et al. Security however restricted efficacy of ensartinib in ROS1-Optimistic NSCLC: A single-arm, multicenter section 2 examine. J. Thorac. Oncol. 16, 1959–1963. https://doi.org/10.1016/j.jtho.2021.06.023 (2021).
Jonna, S. et al. Detection of NRG1 gene fusions in strong tumors. Clin. Most cancers Res. 25, 4966–4972. https://doi.org/10.1158/1078-0432.Ccr-19-0160 (2019).
Drilon, A. et al. Clinicopathologic options and response to remedy of NRG1 fusion-driven lung cancers: The eNRGy1 International Multicenter Registry. J. Clin. Oncol. 39, 2791–2802. https://doi.org/10.1200/jco.20.03307 (2021).
Gan, H. Ok. et al. A section I, first-in-human examine of GSK2849330, an anti-HER3 monoclonal antibody, in HER3-expressing strong tumors. Oncologist 26, e1844–e1853. https://doi.org/10.1002/onco.13860 (2021).
Schram, A. M. et al. Efficacy and security of zenocutuzumab, a HER2 x HER3 bispecific antibody, throughout superior NRG1 fusion (NRG1+) cancers. J. Clin. Oncol. 40, 105–105. https://doi.org/10.1200/JCO.2022.40.16_suppl.105 (2022).
Carrizosa, D. R. et al. CRESTONE: Preliminary efficacy and security of seribantumab in strong tumors harboring NRG1 fusions. J. Clin. Oncol. 40, 3006–3006. https://doi.org/10.1200/JCO.2022.40.16_suppl.3006 (2022).

