Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. International Most cancers Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2021;71:209–49.
Joshi SS, Badgwell BD. Present therapy and up to date progress in gastric most cancers. CA Most cancers J Clin. 2021;71:264–79.
Li GZ, Doherty GM, Wang J. Surgical administration of gastric most cancers: a evaluate. JAMA Surg. 2022;157:446–54.
Chen D, Chen G, Jiang W, Fu M, Liu W, Sui J, et al. Affiliation of the collagen signature within the tumor microenvironment with LN metastasis in early gastric most cancers. JAMA Surg. 2019;154:e185249.
Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in most cancers. Nat Rev Most cancers. 2014;14:159–72.
Sundar SS, Ganesan TS. Position of lymphangiogenesis in most cancers. J Clin Oncol. 2007;25:4298–307.
Liu P, Ding P, Solar C, Chen S, Lowe S, Meng L, et al. Lymphangiogenesis in gastric most cancers: operate and mechanism. Eur J Med Res. 2023;28:405.
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of round RNAs. Nat Rev Genet. 2019;20:675–91.
Chen LL. The increasing regulatory mechanisms and mobile features of round RNAs. Nat Rev Mol Cell Biol. 2020;21:475–90.
Liu CX, Chen LL. Round RNAs: Characterization, mobile roles, and functions. Cell. 2022;185:2016–34.
Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields round RNA molecules. FASEB J. 1993;7:155–60.
Chen L, Shan G. CircRNA in most cancers: elementary mechanism and scientific potential. Most cancers Lett. 2021;505:49–57.
Zhang F, Jiang J, Qian H, Yan Y, Xu W. Exosomal circRNA: rising insights into most cancers development and scientific utility potential. J Hematol Oncol. 2023;16:67.
Miao S, Zhang Q. Circulating circRNA: a social butterfly in tumors. Entrance Oncol. 2023;13:1203696.
Yang F, Ma Q, Huang B, Wang X, Pan X, Yu T, et al. CircNFATC3 promotes the proliferation of gastric most cancers by binding to IGF2BP3 and proscribing its ubiquitination to reinforce CCND1 mRNA stability. J Transl Med. 2023;21:402.
Shen Y, Zhang N, Chai J, Wang T, Ma C, Han L, et al. CircPDIA4 induces gastric most cancers development by selling ERK1/2 activation and enhancing biogenesis of oncogenic circRNAs. Most cancers Res. 2023;83:538–52.
Liu J, Niu L, Hao J, Yao Y, Yan M, Li H. circIPO7 dissociates caprin-1 from ribosomes and inhibits gastric most cancers cell proliferation by suppressing EGFR and mTOR. Oncogene. 2023;42:980–93.
Wang X, Li J, Bian X, Wu C, Hua J, Chang S, et al. CircURI1 interacts with hnRNPM to inhibit metastasis by modulating different splicing in gastric most cancers. Proc Natl Acad Sci USA. 2021;118:e2012881118.
Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated by reversible m6A RNA methylation. Nat Rev Genet. 2014;15:293–306.
Frye M, Jaffrey SR, Pan T, Rechavi G, Suzuki T. RNA modifications: what have we realized and the place are we headed? Nat Rev Genet. 2016;17:365–72.
Sendinc E, Shi Y. RNA m6A methylation throughout the transcriptome. Mol Cell. 2023;83:428–41.
Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for round RNAs. RNA. 2014;20:1666–70.
Nassar LR, Barber GP, Benet-Pagès A, Casper J, Clawson H, Diekhans M, et al. The UCSC Genome Browser database: 2023 replace. Nucleic Acids Res. 2023;51:D1188–95.
Zhong S, Feng J. CircPrimer 2.0: a software program for annotating circRNAs and predicting translation potential of circRNAs. BMC Bioinforma. 2022;23:215.
Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen Okay, Gorospe M. CircInteractome: an internet instrument for exploring round RNAs and their interacting proteins and microRNAs. RNA Biol. 2016;13:34–42.
Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, et al. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife. 2017;6:e31311.
Zhou Y, Zeng P, Li YH, Zhang Z, Cui Q. SRAMP: prediction of mammalian N6-methyladenosine (m6A) websites primarily based on sequence-derived options. Nucleic Acids Res. 2016;44:e91.
Qi YN, Liu Z, Hong LL, Li P, Ling ZQ. Methyltransferase-like proteins in most cancers biology and potential therapeutic focusing on. J Hematol Oncol. 2023;16:89.
Wei X, Huo Y, Pi J, Gao Y, Rao S, He M, et al. METTL3 preferentially enhances non-m6A translation of epigenetic elements and promotes tumourigenesis. Nat Cell Biol. 2022;24:1278–90.
Xu C, Liu Okay, Ahmed H, Loppnau P, Schapira M, Min J. Structural foundation for the discriminative recognition of N6-methyladenosine RNA by the human YT521-B homology area household of proteins. J Biol Chem. 2015;290:24902–13.
Huang H, Weng H, Solar W, Qin X, Shi H, Wu H, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.
Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interplay networks from large-scale CLIP-Seq knowledge. Nucleic Acids Res. 2014;42:D92–7.
Lambert AW, Pattabiraman DR, Weinberg RA. Rising organic rules of metastasis. Cell. 2017;168:670–91.
Massagué J, Ganesh Okay. Metastasis-initiating cells and ecosystems. Most cancers Discov. 2021;11:971–94.
Gerstberger S, Jiang Q, Ganesh Okay. Metastasis. Cell. 2023;186:1564–79.
Zepeda-Enríquez P, Silva-Cázares MB, López-Camarillo C. Novel insights into round RNAs in metastasis in breast most cancers: an replace. Noncoding RNA. 2023;9:55.
Ning J, Luo Y, Chen L, Xiao G, Tanzhu G, Zhou R. CircRNAs and lung most cancers: Perception into their roles in metastasis. Biomed Pharmacother. 2023;166:115260.
Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA. Going round: historical past, current, and way forward for circRNAs in most cancers. Oncogene. 2023;42:2783–800.
Dong J, Zheng Z, Zhou M, Wang Y, Chen J, Cen J, et al. EGCG-LYS fibrils-mediated CircMAP2K2 silencing decreases the proliferation and metastasis skill of gastric most cancers cells in vitro and in vivo. Adv Sci. 2023;10:e2304075.
Shen X, Kong S, Ma S, Shen L, Zheng M, Qin S, et al. Hsa_circ_0000437 promotes pathogenesis of gastric most cancers and LN metastasis. Oncogene. 2022;41:4724–35.
Zang X, Jiang J, Gu J, Chen Y, Wang M, Zhang Y, et al. Round RNA EIF4G3 suppresses gastric most cancers development by inhibition of β-catenin by selling δ-catenin ubiquitin degradation and upregulating SIK1. Mol Most cancers. 2022;21:141.
Yu T, Ran L, Zhao H, Yin P, Li W, Lin J, et al. Round RNA circ-TNPO3 suppresses metastasis of GC by performing as a protein decoy for IGF2BP3 to control the expression of MYC and SNAIL. Mol Ther Nucleic Acids. 2021;26:649–64.
Lu J, Wang YH, Yoon C, Huang XY, Xu Y, Xie JW, et al. Round RNA circ-RanGAP1 regulates VEGFA expression by focusing on miR-877-3p to facilitate gastric most cancers invasion and metastasis. Most cancers Lett. 2020;471:38–48.
Chen Y, Yang F, Fang E, Xiao W, Mei H, Li H, et al. Round RNA circAGO2 drives most cancers development by facilitating HuR-repressed features of AGO2-miRNA complexes. Cell Dying Differ. 2019;26:1346–64.
Giubelan A, Stancu MI, Honţaru SO, Mălăescu GD, Badea-Voiculescu O, Firoiu C, et al. Tumor angiogenesis in gastric most cancers. Rom J Morphol Embryol. 2023;64:311–8.
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Pure RNA circles operate as environment friendly microRNA sponges. Nature. 2013;495:384–8.
Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competitors. Nature. 2014;505:344–52.
Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, et al. Lack of a mammalian round RNA locus causes miRNA deregulation and impacts mind operate. Science. 2017;357:eaam8526.
Yan H, Zhang L, Cui X, Zheng S, Li R. Roles and mechanisms of the m6A reader YTHDC1 in organic processes and ailments. Cell Dying Discov. 2022;8:237.
Zhou H, Solar Q, Feng M, Gao Z, Jia S, Cao L, et al. Regulatory mechanisms and therapeutic implications of insulin-like progress issue 2 mRNA-binding proteins, the rising essential m6A regulators of tumors. Theranostics. 2023;13:4247–65.
Liu Y, Yang D, Liu T, Chen J, Yu J, Yi P. N6-methyladenosine-mediated gene regulation and therapeutic implications. Tendencies Mol Med. 2023 Jun;29:454–67.
Fan HN, Chen ZY, Chen XY, Chen M, Yi YC, Zhu JS, et al. METTL14-mediatedm6A modification of circORC5 suppresses gastric most cancers development by regulating miR-30c-2-3p/AKT1S1 axis. Mol Most cancers. 2022;21:51.
Zhang JY, Du Y, Gong LP, Shao YT, Pan LJ, Feng ZY, et al. ebv-circRPMS1 promotes the development of EBV-associated gastric carcinoma through Sam68-dependent activation of METTL3. Most cancers Lett. 2022;535:215646.
Wu X, Fang Y, Gu Y, Shen H, Xu Y, Xu T, et al. Fats mass and obesity-associated protein (FTO) mediated m6A modification of circFAM192A promoted gastric most cancers proliferation by suppressing SLC7A5 decay. Mol Biomed. 2024;5:11.
Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ, Ma XD, et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to advertise colorectal liver metastasis. Nat Commun. 2019;10:4695.
Di Timoteo G, Dattilo D, Centrón-Broco A, Colantoni A, Guarnacci M, Rossi F, et al. Modulation of circRNA Metabolism by m6A Modification. Cell Rep. 2020;31:107641.
Korn SM, Ulshöfer CJ, Schneider T, Schlundt A. Constructions and goal RNA preferences of the RNA-binding protein household of IGF2BPs: an outline. Construction. 2021;29:787–803.
Bell JL, Wächter Okay, Mühleck B, Pazaitis N, Köhn M, Lederer M, et al. Insulin-like progress issue 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of most cancers development? Cell Mol Life Sci. 2013;70:2657–75.
Huang X, Zhang H, Guo X, Zhu Z, Cai H, Kong X. Insulin-like progress issue 2 mRNA-binding protein 1 (IGF2BP1) in most cancers. J Hematol Oncol. 2018;11:88.
Wang J, Chen L, Qiang P. The position of IGF2BP2, an m6A reader gene, in human metabolic ailments and cancers. Most cancers Cell Int. 2021;21:99.
Lederer M, Bley N, Schleifer C, Hüttelmaier S. The position of the oncofetal IGF2 mRNA-binding protein 3 (IGF2BP3) in most cancers. Semin Most cancers Biol. 2014;29:3–12.
Zhang L, Zhang Y, Li X, Gao H, Chen X, Li P. CircRNA-miRNA-VEGFA: an necessary pathway to control most cancers pathogenesis. Entrance Pharmacol. 2023;14:1049742.
Du Y, Zhang JY, Gong LP, Feng ZY, Wang D, Pan YH, et al. Hypoxia-induced ebv-circLMP2A promotes angiogenesis in EBV-associated gastric carcinoma by the KHSRP/VHL/HIF1α/VEGFA pathway. Most cancers Lett. 2022;526:259–72.
Xie M, Yu T, Jing X, Ma L, Fan Y, Yang F, et al. Exosomal circSHKBP1 promotes gastric most cancers development through regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Most cancers. 2020;19:112.
Matsumoto Okay, Ema M. Roles of VEGF-A signalling in improvement, regeneration, and tumours. J Biochem. 2014;156:1–10.
Dou R, Han L, Yang C, Fang Y, Zheng J, Liang C, et al. Upregulation of LINC00501 by H3K27 acetylation facilitates gastric most cancers metastasis by activating epithelial-mesenchymal transition and angiogenesis. Clin Transl Med. 2023;13:e1432.
Langmead B, Salzberg SL. Quick gapped-read alignment with Bowtie 2. Nat Strategies. 2012;9:357–9.
Kim D, Langmead B, Salzberg SL. HISAT: a quick spliced aligner with low reminiscence necessities. Nat Strategies. 2015;12:357–60.
Kim D, Salzberg SL. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011;12:R72.
Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, et al. Numerous different back-splicing and different splicing panorama of round RNAs. Genome Res. 2016;26:1277–87.
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014;159:134–47.
Gao Y, Wang J, Zhao F. CIRI: an environment friendly and unbiased algorithm for de novo round RNA identification. Genome Biol. 2015;16:4.