Siegel, R. L. & Miller, Ok. D. Most cancers statistics, 2022. 72, 7-33 (2022).
de Magalhães, J. P. From cells to ageing: a overview of fashions and mechanisms of mobile senescence and their influence on human ageing. Exp Cell Res. 300, 1–10 (2004).
Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp Cell Res. 25, 585–621 (1961).
Aunan, J. R., Cho, W. C. & Søreide, Ok. The Biology of Growing old and Most cancers: A Temporary Overview of Shared and Divergent Molecular Hallmarks. Growing old Dis. 8, 628–642 (2017).
Campisi, J. Growing old, mobile senescence, and most cancers. Annu Rev Physiol. 75, 685–705 (2013).
Coppé, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the darkish facet of tumor suppression. Annu Rev Pathol. 5, 99–118 (2010).
Fane, M. & Weeraratna, A. T. How the ageing microenvironment influences tumour development. 20, 89-106 (2020).
DeNardo, D. G. et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Most cancers Cell. 16, 91–102 (2009).
Ruhland, M. Ok., Loza, A. J. & Capietto, A. H. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. 7, 11762 (2016).
Bavik, C. et al. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation by paracrine mechanisms. Most cancers Res. 66, 794–802 (2006).
Canino, C. et al. SASP mediates chemoresistance and tumor-initiating-activity of mesothelioma cells. Oncogene. 31, 3148–3163 (2012).
Schosserer, M., Grillari, J. & Breitenbach, M. The Twin Position of Mobile Senescence in Growing Tumors and Their Response to Most cancers Remedy. Entrance Oncol. 7, 278 (2017).
De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated irritation. Nature. 566, 73–78 (2019).
Elias, R., Hartshorn, Ok., Rahma, O., Lin, N. & Snyder-Cappione, J. E. Growing old, immune senescence, and immunotherapy: A complete overview. Semin Oncol. 45, 187–200 (2018).
Kugel, C. H. et al. Age Correlates with Response to Anti-PD1, Reflecting Age-Associated Variations in Intratumoral Effector and Regulatory T-Cell Populations. Clin Most cancers Res. 24, 5347–5356 (2018).
Sceneay, J. et al. Interferon Signaling Is Diminished with Age and Is Related to Immune Checkpoint Blockade Efficacy in Triple-Damaging Breast Most cancers. 9, 1208-1227 (2019).
Courtois-Cox, S., Jones, S. L. & Cichowski, Ok. Many roads result in oncogene-induced senescence. Oncogene. 27, 2801–2809 (2008).
Wei, W., Hemmer, R. M. & Sedivy, J. M. Position of p14(ARF) in replicative and induced senescence of human fibroblasts. Mol Cell Biol. 21, 6748–6757 (2001).
Berkovich, E., Lamed, Y. & Ginsberg, D. E2F and Ras synergize in transcriptionally activating p14ARF expression. Cell Cycle. 2, 127–133 (2003).
Raghuram, G. V. & Mishra, P. Ok. Stress induced untimely senescence: a brand new perpetrator in ovarian tumorigenesis? Indian J Med Res. 140(Suppl), S120–129 (2014).
Celli, G. B. & de Lange, T. DNA processing just isn’t required for ATM-mediated telomere harm response after TRF2 deletion. Nat Cell Biol. 7, 712–718 (2005).
Cipriano, R. et al. TGF-beta signaling engages an ATM-CHK2-p53-independent RAS-induced senescence and prevents malignant transformation in human mammary epithelial cells. Proc Natl Acad Sci USA 108, 8668–8673 (2011).
Jacobs, J. J. & de Lange, T. Important position for p16INK4a in p53-independent telomere-directed senescence. Curr Biol. 14, 2302–2308 (2004).
Gorgoulis, V. et al. Mobile Senescence: Defining a Path Ahead. Cell. 179, 813–827 (2019).
Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Annu Rev Genet. 42, 301–334 (2008).
de Lange, T. Shelterin: the protein complicated that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).
Benarroch-Popivker, D. et al. TRF2-Mediated Management of Telomere DNA Topology as a Mechanism for Chromosome-Finish Safety. Mol Cell. 61, 274–286 (2016).
Shay, J. W. & Wright, W. E. Telomeres and telomerase: three many years of progress. 20, 299-309 (2019).
González-Suárez, E., Samper, E., Flores, J. M. & Blasco, M. A. Telomerase-deficient mice with brief telomeres are immune to pores and skin tumorigenesis. Nat Genet. 26, 114–117 (2000).
Blasco, M. A. Telomeres and human illness: ageing, most cancers and past. Nat Rev Genet. 6, 611–622 (2005).
Gertler, R. et al. Telomere size and human telomerase reverse transcriptase expression as markers for development and prognosis of colorectal carcinoma. J Clin Oncol. 22, 1807–1814 (2004).
Salama, R., Sadaie, M., Hoare, M. & Narita, M. Mobile senescence and its effector packages. Genes Dev. 28, 99–114 (2014).
Chan, A. S. L. & Narita, M. Brief-term achieve, long-term ache: the senescence life cycle and most cancers. 33, 127-143 (2019).
Zeng, Z., Wong, C. J., Yang, L., Ouardaoui, N. & Li, D. TISMO: syngeneic mouse tumor database to mannequin tumor immunity and immunotherapy response. 50, D1391-d1397 (2022).
Campisi, J. & d’Adda di Fagagna, F. Mobile senescence: when unhealthy issues occur to good cells. Nat Rev Mol Cell Biol. 8, 729–740 (2007).
Rodier, F. et al. DNA-SCARS: distinct nuclear buildings that maintain damage-induced senescence progress arrest and inflammatory cytokine secretion. J Cell Sci. 124, 68–81 (2011).
Baker, D. J. & Sedivy, J. M. Probing the depths of mobile senescence. J Cell Biol. 202, 11–13 (2013).
Ivanov, A. et al. Lysosome-mediated processing of chromatin in senescence. J Cell Biol. 202, 129–143 (2013).
Tubbs, A. & Nussenzweig, A. Endogenous DNA Harm as a Supply of Genomic Instability in Most cancers. Cell. 168, 644–656 (2017).
Milanovic, M. et al. Senescence-associated reprogramming promotes most cancers stemness. Nature. 553, 96–100 (2018).
Hanahan, D. & Weinberg, R. A. Hallmarks of most cancers: the following era. Cell. 144, 646–674 (2011).
Wang, X. et al. Complete evaluation of mobile senescence within the tumor microenvironment. 23 (2022).
Wu, Z., Uhl, B., Gires, O. & Reichel, C. A. A transcriptomic pan-cancer signature for survival prognostication and prediction of immunotherapy response primarily based on endothelial senescence. J Biomed Sci. 30, 21 (2023).
Zhang, Q. et al. Complete pan-cancer evaluation identifies mobile senescence as a brand new therapeutic goal for most cancers: multi-omics evaluation and single-cell sequencing validation. Am J Most cancers Res. 12, 4103–4119 (2022).
Dou, Z. et al. Cytoplasmic chromatin triggers irritation in senescence and most cancers. Nature. 550, 402–406 (2017).
Sharma, A. et al. Onco-fetal Reprogramming of Endothelial Cells Drives Immunosuppressive Macrophages in Hepatocellular Carcinoma. Cell. 183, 377–394.e321 (2020).
Aird, Ok. M., Iwasaki, O. & Kossenkov, A. V. HMGB2 orchestrates the chromatin panorama of senescence-associated secretory phenotype gene loci. 215, 325-334 (2016).
Capell, B. C. et al. MLL1 is crucial for the senescence-associated secretory phenotype. Genes Dev. 30, 321–336 (2016).
Hoare, M. et al. NOTCH1 mediates a swap between two distinct secretomes throughout senescence. Nat Cell Biol. 18, 979–992 (2016).
Tasdemir, N. et al. BRD4 Connects Enhancer Transforming to Senescence Immune Surveillance. Most cancers Discov. 6, 612–629 (2016).
Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory community. Cell. 133, 1019–1031 (2008).
Orjalo, A. V., Bhaumik, D., Gengler, B. Ok., Scott, G. Ok. & Campisi, J. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine community. Proc Natl Acad Sci USA 106, 17031–17036 (2009).
Acosta, J. C. et al. A fancy secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 15, 978–990 (2013).
Thorsson, V., Gibbs, D. L., Brown, S. D., Wolf, D. & Mariamidze, A. The Immune Panorama of Most cancers. Immunity. 48 (2018).
Greten, F. R. & Grivennikov, S. I. Irritation and Most cancers: Triggers, Mechanisms, and Penalties. Immunity. 51, 27–41 (2019).
Blatner, N. R. et al. Expression of RORγt marks a pathogenic regulatory T cell subset in human colon most cancers. Sci Transl Med. 4, 164ra159 (2012).
Veglia, F. & Perego, M. Myeloid-derived suppressor cells coming of age. 19, 108-119 (2018).
Jiang, H., Hegde, S. & DeNardo, D. G. Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Most cancers Immunol Immunother. 66, 1037–1048 (2017).
Moiseeva, O. et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Growing old Cell. 12, 489–498 (2013).
Herranz, N. et al. mTOR regulates MAPKAPK2 translation to regulate the senescence-associated secretory phenotype. Nat Cell Biol. 17, 1205–1217 (2015).
Laberge, R. M. et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by selling IL1A translation. Nat Cell Biol. 17, 1049–1061 (2015).
Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 445, 656–660 (2007).
Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell. 153, 449–460 (2013).
McCarthy, S. & Das, S. A reference panel of 64,976 haplotypes for genotype imputation. 48, 1279-1283 (2016).
Dees, S. & Ganesan, R. Regulatory T cell focusing on in most cancers: Rising methods in immunotherapy. 51, 280-291 (2021).
Wang, Y., Shi, T., Music, X., Liu, B. & Wei, J. Gene fusion neoantigens: Rising targets for most cancers immunotherapy. Most cancers Lett. 506, 45–54 (2021).
Ruscetti, M. et al. Senescence-Induced Vascular Transforming Creates Therapeutic Vulnerabilities in Pancreas Most cancers. Cell. 181, 424–441.e421 (2020).
Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. 583, 127-132 (2020).
Saleh, T. et al. Clearance of therapy-induced senescent tumor cells by the senolytic ABT-263 by way of interference with BCL-X(L) -BAX interplay. 14, 2504-2519 (2020).
Fleury, H., Malaquin, N. & Tu, V. Exploiting interconnected artificial deadly interactions between PARP inhibition and most cancers cell reversible senescence. 10, 2556 (2019).
González-Gualda, E. et al. Galacto-conjugation of Navitoclax as an environment friendly technique to extend senolytic specificity and cut back platelet toxicity. 19, e13142 (2020).
Ritschka, B. et al. The senotherapeutic drug ABT-737 disrupts aberrant p21 expression to revive liver regeneration in grownup mice. Genes Dev. 34, 489–494 (2020).
Hoadley, Ok. A. et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Kinds of. Most cancers. Cell. 173, 291–304.e296 (2018).
Avelar, R. A. et al. A multidimensional methods biology evaluation of mobile senescence in growing older and illness. Genome Biol. 21, 91 (2020).
Shen, S. et al. Complete analyses of m6A regulators and interactive coding and non-coding RNAs throughout 32 most cancers varieties. Mol Most cancers. 20, 67 (2021).
Kodinariya, T. M. & Makwana, P. Evaluation on figuring out variety of Cluster in Ok-Means Clustering. Worldwide Journal. 1, 90–95 (2013).
Bhandari, V. & Hoey, C. Molecular landmarks of tumor hypoxia throughout most cancers varieties. 51, 308-318 (2019).
Chen, H. et al. A Pan-Most cancers Evaluation of Enhancer Expression in Almost 9000 Affected person Samples. Cell. 173, 386–399.e312 (2018).
Taylor, A. M. et al. Genomic and Purposeful Approaches to Understanding Most cancers Aneuploidy. Most cancers Cell. 33, 676–689.e673 (2018).
Thorsson, V. et al. The Immune Panorama of Most cancers. Immunity. 48, 812–830.e814 (2018).
Sanchez-Vega, F. et al. Oncogenic Signaling Pathways in The Most cancers Genome Atlas. Cell. 173, 321–337.e310 (2018).
Charoentong, P. et al. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep. 18, 248–262 (2017).
Sieverling, L. & Hong, C. Genomic footprints of activated telomere upkeep mechanisms in most cancers. 11, 733 (2020).
Barthel, F. P., Wei, W. & Tang, M. Systematic evaluation of telomere size and somatic alterations in 31 most cancers varieties. 49, 349-357 (2017).
Meyers, R. M. et al. Computational correction of copy quantity impact improves specificity of CRISPR-Cas9 essentiality screens in most cancers cells. Nat Genet. 49, 1779–1784 (2017).
Zeng, J. et al. CancerSCEM: a database of single-cell expression map throughout varied human cancers. 50, D1147-d1155 (2022).
Korsunsky, I., Millard, N. & Fan, J. Quick, delicate and correct integration of single-cell knowledge with Concord. 16, 1289-1296 (2019).
Gribov, A. et al. SEURAT: visible analytics for the built-in evaluation of microarray knowledge. BMC Med Genomics. 3, 21 (2010).
Database Assets of the Nationwide Genomics Knowledge Middle, China Nationwide Middle for Bioinformation in 2021. Nucleic Acids Res. 49, D18-d28 (2021).
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression knowledge evaluation. Genome Biol. 19, 15 (2018).
Efremova, M., Vento-Tormo, M. & Teichmann, S. A. CellPhoneDB: inferring cell-cell communication from mixed expression of multi-subunit ligand-receptor complexes. 15, 1484-1506 (2020).
Hsu, C. L. et al. Exploring Markers of Exhausted CD8 T Cells to Predict Response to Immune Checkpoint Inhibitor Remedy for Hepatocellular Carcinoma. Liver Most cancers. 10, 346–359 (2021).
Yang, W. et al. Genomics of Drug Sensitivity in Most cancers (GDSC): a useful resource for therapeutic biomarker discovery in most cancers cells. Nucleic Acids Res. 41, D955–961 (2013).

