Intra-tumoral T cells in pediatric mind tumors show clonal growth and effector properties


  • Pollack, I. F. Mind tumors in kids. N. Engl. J. Med. 331, 1500–1507 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Jones, C. & Baker, S.J. Distinctive genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat. Rev. Most cancers 14, 651–661 (2014).

    CAS 

    Google Scholar
     

  • Chevignard, M., Câmara-Costa, H., Doz, F. & Dellatolas, G. Core deficits and high quality of survival after childhood medulloblastoma: a evaluate. Neurooncol. Pract. 4, 82–97 (2017).

    PubMed 

    Google Scholar
     

  • Makale, M. T., McDonald, C. R., Hattangadi-Gluth, J. A. & Kesari, S. Mechanisms of radiotherapy-associated cognitive incapacity in sufferers with mind tumours. Nat. Rev. Neurol. 13, 52–64 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Hwang, E. I. et al. The present panorama of immunotherapy for pediatric mind tumors. Nat. Most cancers 3, 11–24 (2022).

    PubMed 

    Google Scholar
     

  • Dunkel, I. J. et al. Nivolumab with or with out ipilimumab in pediatric sufferers with high-grade CNS malignancies: security, efficacy, biomarker, and pharmacokinetics: checkMate 908. Neuro. Oncol. 25, 1530–1545 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouffet, E. et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme ensuing from germline biallelic mismatch restore deficiency. J. Clin. Oncol. 34, 2206–2211 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Fried, I. et al. Preliminary outcomes of immune modulating antibody MDV9300 (pidilizumab) therapy in kids with diffuse intrinsic pontine glioma. J. Neurooncol. 136, 189–195 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for efficient remedy. Nat. Med. 24, 541–550 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruni, D., Angell, H. Ok. & Galon, J. The immune contexture and Immunoscore in most cancers prognosis and therapeutic efficacy. Nat. Rev. Most cancers 20, 662–680 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, R. R., Ramkissoon, S. H., Ross, J. & Weintraub, L. Tumor mutational burden and driver mutations: characterizing the genomic panorama of pediatric mind tumors. Pediatr. Blood Most cancers 67, e28338 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Mok, T. S. Ok. et al. Pembrolizumab versus chemotherapy for beforehand untreated, PD-L1-expressing, regionally superior or metastatic non-small-cell lung most cancers (KEYNOTE-042): a randomised, open-label, managed, section 3 trial. Lancet 393, 1819–1830 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Schumacher, T. N. & Schreiber, R. D. Neoantigens in most cancers immunotherapy. Science 348, 69–74 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Gubin, M. M. et al. Checkpoint blockade most cancers immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robbins, P. F. et al. Mining exomic sequencing information to determine mutated antigens acknowledged by adoptively transferred tumor-reactive T cells. Nat. Med. 19, 747–752 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran, E. et al. T-cell switch remedy concentrating on mutant KRAS in most cancers. N. Engl. J. Med. 375, 2255–2262 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carreno, B. M. et al. Most cancers immunotherapy. A dendritic cell vaccine will increase the breadth and variety of melanoma neoantigen-specific T cells. Science 348, 803–808 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ott, P. A. et al. An immunogenic private neoantigen vaccine for sufferers with melanoma. Nature 547, 217–221 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowery, F. J. et al. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science 375, 877–884 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kvistborg, P. & Yewdell, J. W. Enhancing responses to most cancers immunotherapy. Science 359, 516–517 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Chiou, S. H. et al. World evaluation of shared T cell specificities in human non-small cell lung most cancers permits HLA inference and antigen discovery. Immunity 54, 586–602.e8 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganesan, A. P. et al. Tissue-resident reminiscence options are linked to the magnitude of cytotoxic T cell responses in human lung most cancers. Nat. Immunol. 18, 940–950 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, J. et al. Single-cell transcriptomic evaluation of tissue-resident reminiscence T cells in human lung most cancers. J. Exp. Med. 216, 2128–2149 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savas, P. et al. Single-cell profiling of breast most cancers T cells reveals a tissue-resident reminiscence subset related to improved prognosis. Nat. Med. 24, 986–993 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Han, J. et al. Resident and circulating reminiscence T cells persist for years in melanoma sufferers with sturdy responses to immunotherapy. Nat. Most cancers 2, 300–311 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, B. et al. Temporal single-cell tracing reveals clonal revival and growth of precursor exhausted T cells throughout anti-PD-1 remedy in lung most cancers. Nature Most cancers 3, 108–121 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Dysfunctional CD8 T cells type a proliferative, dynamically regulated compartment inside human melanoma. Cell 176, 775–789.e18 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Sade-Feldman, M. et al. Defining T cell states related to response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yost, Ok. E. et al. Clonal substitute of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gide, T. N. et al. Distinct immune cell populations outline response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 mixed remedy. Most cancers Cell 35, 238–255.e6 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic adjustments in PD-1CD8+ tumor-Infiltrating T cells. Immunity 50, 181–194.e6 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor management in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Castellino, F. et al. Chemokines improve immunity by guiding naive CD8+ T cells to websites of CD4+ T cell-dendritic cell interplay. Nature 440, 890–895 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Brewitz, A. et al. CD8+ T cells orchestrate pDC-XCR1+ dendritic cell spatial and practical cooperativity to optimize priming. Immunity 46, 205–219 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackay, L. Ok. et al. Hobit and Blimp1 instruct a common transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Mackay, L. Ok. et al. The developmental pathway for CD103+CD8+ tissue-resident reminiscence T cells of pores and skin. Nat. Immunol. 14, 1294–1301 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Lim, M. et al. Part III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly recognized glioblastoma with methylated MGMT promoter. Neuro. Oncol. 24, 1935–1949 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Omuro, A. et al. Radiotherapy mixed with nivolumab or temozolomide for newly recognized glioblastoma with unmethylated MGMT promoter: a world randomized section III trial. Neuro. Oncol. 25, 123–134 (2022).

    PubMed Central 

    Google Scholar
     

  • Mathewson, N. D. et al. Inhibitory CD161 receptor recognized in glioma-infiltrating T cells by single-cell evaluation. Cell 184, 1281–1298.e26 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corridoni, D. et al. Single-cell atlas of colonic CD8+ T cells in ulcerative colitis. Nat. Med. 26, 1480–1490 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Jonsson, A. H. et al. Granzyme Ok+ CD8 T cells type a core inhabitants in infected human tissue. Sci. Transl. Med. 14, eabo0686 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, T. et al. Single-cell profiling reveals pathogenic position and differentiation trajectory of granzyme Ok+CD8+ T cells in major Sjögren’s syndrome. JCI Perception 8, e167490 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trapnell, C. et al. The dynamics and regulators of cell destiny selections are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baitsch, L. et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma sufferers. J. Clin. Make investments. 121, 2350–2360 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Make investments. 124, 2246–2259 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung most cancers handled with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, R. et al. Antigen presentation equipment signature-derived CALR mediates migration, polarization of macrophages in glioma and predicts immunotherapy response. Entrance. Immunol. 13, 833792 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sledzinska, A. et al. Regulatory T cells restrain Interleukin-2- and Blimp-1-dependent acquisition of cytotoxic perform by CD4+ T cells. Immunity 52, 151–166.e6 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eschweiler, S. et al. Intratumoral follicular regulatory T cells curtail anti-PD-1 therapy efficacy. Nat. Immunol. 22, 1052–1063 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Awad, M. M. et al. Customized neoantigen vaccine NEO-PV-01 with chemotherapy and anti-PD-1 as first-line therapy for non-squamous non-small cell lung most cancers. Most cancers Cell 40, 1010–1026.e11 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Ott, P. A. et al. A section Ib trial of personalised neoantigen remedy plus Anti-PD-1 in sufferers with superior melanoma, non-small cell lung most cancers, or bladder most cancers. Cell 183, 347–362.e24 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Pittet, M. J. et al. Excessive frequencies of naive Melan-A/MART-1-specific CD8+ T cells in a big proportion of human histocompatibility leukocyte antigen (HLA)-A2 people. J. Exp. Med. 190, 705–715 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, N., Flecken, T. & Thimme, R. Tumor-associated antigen particular CD8+ T cells in hepatocellular carcinoma—a promising goal for immunotherapy. Oncoimmunology 3, e954919 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moustaki, A. et al. Antigen cross-presentation in younger tumor-bearing hosts promotes CD8+ T cell terminal differentiation. Sci. Immunol. 7, eabf6136 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sekine, T. et al. TOX is expressed by exhausted and polyfunctional human effector reminiscence CD8+ T cells. Sci. Immunol. 5, eaba7918 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in power viral an infection. Nature 571, 265–269 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Alspach, E. et al. MHC-II neoantigens form tumour immunity and response to immunotherapy. Nature 574, 696–701 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorsi, H. S. et al. Nivolumab within the therapy of recurrent or refractory pediatric mind tumors: a single institutional expertise. J. Pediatr. Hematol. Oncol. 41, e235–e241 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Mascarenhas, L. et al. Part 1 scientific trial of durvalumab in kids with strong and central nervous system tumors. J. Clin. Oncol. 40, 10029 (2022).


    Google Scholar
     

  • Meckiff, B. J. et al. Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4+ T cells in COVID-19. Cell 183, 1340–1353.e16 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic information. Cell Syst. 8, 281–291.e89 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart, T. et al. Complete integration of single-cell information. Cell 177, 1888–1902.e21 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran, H. T. N. et al. A benchmark of batch-effect correction strategies for single-cell RNA sequencing information. Genome Biol. 21, 12 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korsunsky, I. et al. Quick, delicate and correct integration of single-cell information with Concord. Nat. Strategies. 16, 1289–1296 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denisenko, E. et al. Systematic evaluation of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Strategies 14, 935–936 (2017).

    PubMed 

    Google Scholar
     

  • Behr, F. M. et al. Blimp-1 fairly than Hobit drives the formation of tissue-resident reminiscence CD8+ T cells within the lungs. Entrance. Immunol. 10, 400 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation evaluation for microarray and RNA-seq information. BMC Bioinf. 14, 7 (2013).


    Google Scholar
     

  • Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R bundle for the visualization of intersecting units and their properties. Bioinformatics 33, 2938–2940 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shugay, M. et al. VDJtools: unifying post-analysis of T cell receptor repertoires. PLoS Comput. Biol. 11, e1004503 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Csárdi, G. & Nepusz, T. The igraph software program bundle for complicated community analysis. InterJ. Complicated Syst. 1695, 1–9 (2006).


    Google Scholar
     

  • McCann, Ok. et al. Concentrating on the tumor mutanome for personalised vaccination in a TMB low non-small cell lung most cancers. J. Immunother. Most cancers 10, e003821 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Therneau, T. M. & Grambsch, P. M. in Modeling Survival Information: Extending the Cox Mannequin (eds Therneau T. M. & Grambsch P. M.) 39–77 (Springer, 2000).

  • Hot Topics

    Related Articles