Stepp, H. & Stummer, W. 5-ALA within the administration of malignant glioma. Lasers Surg. Med 50, 399–419 (2018).
Stummer, W. et al. Fluorescence-guided surgical procedure with 5-aminolevulinic acid for resection of malignant glioma: a randomised managed multicentre section III trial. Lancet Oncol. 7, 392–401 (2006).
Schucht, P. et al. Gross complete resection charges in up to date glioblastoma surgical procedure: outcomes of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and mind mapping. Neurosurgery 71, 927–935 (2012).
Widhalm, G. et al. The worth of seen 5-ALA fluorescence and quantitative protoporphyrin IX evaluation for improved surgical procedure of suspected low-grade gliomas. J. Neurosurg. 133, 79–88 (2019).
Valdés, P. A. et al. Quantitative fluorescence utilizing 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgical procedure. J. Neurosurg. 123, 771–780 (2015).
Stummer, W. et al. Fluorescence-guided resection of glioblastoma multiforme through the use of 5-aminolevulinic acid-induced porphyrins: A potential research in 52 consecutive sufferers. J. Neurosurg. 93, 1003–1013 (2000).
Roberts, D. W. et al. Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid–induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clin. Artic. J. Neurosurg. 114, 595–603 (2011).
Valdes, P. A., Millesi, M., Widhalm, G. & Roberts, D. W. 5-aminolevulinic acid induced protoporphyrin IX (ALA-PpIX) fluorescence steerage in meningioma surgical procedure. J. Neurooncol. 141, 555–565 (2019).
Kajimoto, Y. et al. Use of 5-aminolevulinic acid in fluorescence-guided resection of meningioma with excessive danger of recurrence: Case report. J. Neurosurg. 106, 1070–1074 (2007).
Motekallemi, A. et al. The present standing of 5-ALA fluorescence-guided resection of intracranial meningiomas—a essential evaluate. Neurosurg. Rev. 38, 619–628 (2015).
Valdes, P. A. et al. 5-Aminolevulinic acid-induced protoporphyrin IX fluorescence in meningioma: Qualitative and quantitative measurements in Vivo. Neurosurgery 10, 74–82 (1982).
Suero Molina, E., Kaneko, S., Black, D. & Stummer, W. 5-Aminolevulinic acid-induced porphyrin contents in numerous mind tumors: implications concerning imaging machine design and their validation. Neurosurgery 89, 1132–1140 (2021).
Leunig, A. et al. Detection of squamous cell carcinoma of the oral cavity by imaging 5-Aminolevulinic acid-induced Protoporphyrin IX fluorescence. Laryngoscope 110, 78–83 (2000).
Betz, C. S. et al. A comparative research of regular inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral most cancers prognosis. Int J. Most cancers 97, 245–252 (2002).
Harada, Y., Murayama, Y., Takamatsu, T., Otsuji, E. & Tanaka, H. 5-Aminolevulinic acid-induced Protoporphyrin IX fluorescence imaging for tumor detection: latest advances and challenges. Int. J. Mol. Sci. 23, 6478 (2022).
Koenig, F. et al. Prognosis of bladder carcinoma utilizing protoporphyrin IX fluorescence induced by 5-aminolaevulinic acid. BJU Int. 83, 129–135 (1999).
Van Der Beek, N., De Leeuw, J., Demmendal, C., Bjerring, P. & Neumann, H. A. M. PpIX fluorescence mixed with auto-fluorescence is extra correct than PpIX fluorescence alone in fluorescence detection of non-melanoma pores and skin most cancers: An intra-patient direct comparability research. Lasers Surg. Med. 44, 271–276 (2012).
Kennedy, J. C. & Pottier, R. H. New tendencies in photobiology: Endogenous protoporphyrin IX, a clinically helpful photosensitizer for photodynamic remedy. J. Photochem. Photobiol. B 14, 275–292 (1992).
Schipmann, S. et al. Mixture of ALA-induced fluorescence-guided resection and intraoperative open photodynamic remedy for recurrent glioblastoma: case collection on a promising twin technique for native tumor management. J. Neurosurg. 134, 426–436 (2020).
Sachar, M., Anderson, Okay. E. & Ma, X. Protoporphyrin IX: the Good, the Unhealthy, and the Ugly. J. Pharmacol. Exp. Ther. 356, 267–275 (2016).
McNicholas, Okay., MacGregor, M. N. & Gleadle, J. M. To ensure that the sunshine to shine so brightly, the darkness should be current—why do cancers fluoresce with 5-aminolaevulinic acid? Br. J. Most cancers 121, 631–639 (2019).
Olivo, M. & Wilson, B. C. Mapping ALA-induced PPIX fluorescence in regular mind and mind tumour utilizing confocal fluorescence microscopy. Int J. Oncol. 25, 37–45 (2004).
Valdés, P. A. et al. Deferoxamine iron chelation will increase delta-aminolevulinic acid induced protoporphyrin IX in xenograft glioma mannequin. Photochem Photobiol. 86, 471–475 (2010).
Mazurek, M., Szczepanek, D., Orzyłowska, A. & Rola, R. Evaluation of things affecting 5-ALA fluorescence depth in visualizing glial tumor cells-literature evaluate. Int. J. Mol. Sci. 23, 926 (2022).
Harmatys, Okay. M., Musso, A. J., Clear, Okay. J. & Smith, B. D. Small molecule additive enhances cell uptake of 5-aminolevulinic acid and conversion to protoporphyrin IX. Photochem Photobiol. Sci. 15, 1408 (2016).
Hagiya, Y. et al. Pivotal roles of peptide transporter PEPT1 and ATP-binding cassette (ABC) transporter ABCG2 in 5-aminolevulinic acid (ALA)-based photocytotoxicity of gastric most cancers cells in vitro. Photodiagn. Photodyn. Ther. 9, 204–214 (2012).
Kaneko, S. et al. Fluorescence real-time kinetics of protoporphyrin IX after 5-ALA administration in low-grade glioma. J. Neurosurg. 1, 1–7 (2021).
Lichtman, J. W. & Conchello, J. A. Fluorescence microscopy. Nat. Strategies 2, 910–919 (2005).
Vollmer, F., Rettig, W. & Birckner, E. Photochemical mechanisms producing giant fluorescence stokes shifts. J. Fluoresc. 4, 65–69 (1994).
Suero Molina, E., Stögbauer, L., Jeibmann, A., Warneke, N. & Stummer, W. Validating a brand new technology filter system for visualizing 5-ALA-induced PpIX fluorescence in malignant glioma surgical procedure: a proof of precept research. Acta Neurochir. 162, 785–793 (2020).
Stummer, W. et al. Technical ideas for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir. 140, 995–1000 (1998).
Bottiroli, G. et al. Mind tissue autofluorescence: an support for intraoperative delineation of tumor resection margins. Most cancers Detect. Prev. 22, 330–339 (1998).
Mochizuki, Y., Park, M. Okay., Mori, T. & Kawashima, S. The distinction in autofluorescence options of lipofuscin between mind and adrenal. 12, 283–288 https://doi.org/10.2108/zsj.12.283 (1995).
Lifante, J. et al. The near-infrared autofluorescence fingerprint of the mind. J. Biophotonics 13, e202000154 (2020).
Black, D. et al. Characterization of autofluorescence and quantitative protoporphyrin IX biomarkers for optical spectroscopy-guided glioma surgical procedure. Sci. Rep. 11, 1–12 (2021).
Alston, L. et al. Spectral complexity of 5-ALA induced PpIX fluorescence in guided surgical procedure: a scientific research in the direction of the discrimination of wholesome tissue and margin boundaries in excessive and low grade gliomas. Biomed. Decide. Categorical 10, 2478 (2019).
Montcel, B., Mahieu-Williame, L., Armoiry, X., Meyronet, D. & Guyotat, J. Two-peaked 5-ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low grade gliomas and infiltrative part of glioblastomas. Biomed. Decide. Categorical 4, 548 (2013).
Li, Y., Rey-Dios, R., Roberts, D. W., Valdés, P. A. & Cohen-Gadol, A. A. Intraoperative fluorescence-guided resection of high-grade gliomas: a comparability of the current strategies and evolution of future methods. World Neurosurg. 82, 175–185 https://doi.org/10.1016/j.wneu.2013.06.014 (2014).
Alston, L., Rousseau, D., Hebert, M. & Mahieu-Williame, L. Nonlinear relation between focus and fluorescence emission of protoporphyrin IX in calibrated phantoms. J. Biomed. Decide. 23, 1 (2018).
Kaneko, S., Suero Molina, E., Ewelt, C., Warneke, N. & Stummer, W. Fluorescence-based measurement of real-time kinetics of Protoporphyrin IX after 5-Aminolevulinic acid administration in human in situ malignant gliomas. Clin. Neurosurg. 85, E739–E746 (2019).
Molina, E. S., Black, D., Kaneko, S., Müther, M. & Stummer, W. Double dose of 5-aminolevulinic acid and its impact on protoporphyrin IX accumulation in low-grade glioma. J. Neurosurg. 137, 943–952 (2022).
Valdés, P. A. et al. A spectrally constrained dual-band normalization method for protoporphyrin IX quantification in fluorescence-guided surgical procedure. Decide. Lett. 37, 1817 (2012).
Bondy, M. L. et al. Mind tumor epidemiology: consensus from the Mind Tumor Epidemiology Consortium (BTEC). Most cancers 113, 1953 (2008).
Zacharaki, E. I. et al. Classification of mind tumor sort and grade utilizing MRI texture and form in a machine studying scheme. Magn. Reson Med. 62, 1609–1618 (2009).
Abiwinanda, N., Hanif, M., Hesaputra, S. T., Handayani, A. & Mengko, T. R. Mind tumor classification utilizing convolutional neural community. IFMBE Proc. 68, 183–189 (2019).
Omuro, A. & DeAngelis, L. M. Glioblastoma and different malignant gliomas: a scientific evaluate. JAMA 310, 1842–1850 (2013).
Torp, S. H., Solheim, O. & Skjulsvik, A. J. The WHO 2021 Classification of Central Nervous System tumours: a sensible replace on what neurosurgeons must know-a minireview. Acta Neurochir. 164, 2453–2464 (2022).
Weller, M. et al. Glioma. Nat. Rev. Dis. Prim. 1, 1–18 (2015).
Louis, D. N. et al. The 2016 World Well being Group Classification of Tumors of the Central Nervous System: a abstract. Acta Neuropathologica. 131, 803–820https://doi.org/10.1007/s00401-016-1545-1 (2016).
Guo, J. et al. Organic roles and therapeutic functions of IDH2 mutations in human most cancers. Entrance. Oncol. 11, 644857 (2021).
Ahammed Muneer, Okay. V., Rajendran, V. R. & Paul Joseph, Okay. Glioma tumor grade identification utilizing synthetic clever strategies. J. Med Syst. 43, 1–12 (2019).
Jose, L. et al. Synthetic intelligence-assisted classification of gliomas utilizing whole-slide photos. Arch. Pathol. Lab. Med. https://doi.org/10.5858/ARPA.2021-0518-OA (2022).
Ferrer, V. P., Moura Neto, V. & Mentlein, R. Glioma infiltration and extracellular matrix: Key gamers and modulators. Glia 66, 1542–1565 (2018).
Kubben, P. L. et al. Intraoperative MRI-guided resection of glioblastoma multiforme: A scientific evaluate. Lancet Oncol. 12, 1062–1070 (2011).
Nabavi, A. et al. Serial intraoperative magnetic resonance imaging of mind shift. Neurosurgery 48, 787–798 (2001).
Legal guidelines, E. R. et al. Survival following surgical procedure and prognostic elements for just lately identified malignant glioma: knowledge from the Glioma Outcomes Mission. J. Neurosurg. 99, 467–473 (2003).
Li, Y. M., Suki, D., Hess, Okay. & Sawaya, R. The affect of most protected resection of glioblastoma on survival in 1229 sufferers: Can we do higher than gross-total resection? J. Neurosurg. 124, 977–988 (2016).
Leclerc, P. et al. Machine learning-based prediction of glioma margin from 5-ALA induced PpIX fluorescence spectroscopy. Sci. Rep. 10, 1–9 (2020).
Walke, A. et al. Challenges in, and suggestions for, hyperspectral imaging in ex vivo malignant glioma biopsy measurements. Sci. Rep. 13, 3829 (2023).
Liberti, M. V. & Locasale, J. W. The Warburg impact: how does it profit most cancers cells? Traits Biochem Sci. 41, 211–218 (2016).
Wold, S., Esbensen, Okay. & Geladi, P. Principal part evaluation. Chemometr. Intell. Lab. Syst. 2, 37–52 (1987).
Black, D. et al. Deep learning-based correction and unmixing of hyperspectral photos for mind tumor surgical procedure. Preprint at https://doi.org/10.48550/arXiv.2402.03761 (2024).
Alshiekh Nasany, R. & de la Fuente, M. I. Therapies for IDH-Mutant Gliomas. Curr. Neurol. Neurosci. Rep. 23, 225–233 (2023).
Van Den Bent, M. J. Interobserver variation of the histopathological prognosis in scientific trials on glioma: a clinician’s perspective. Acta Neuropathol. 120, 297–304 (2010).
Di Ieva, A. Angioarchitectural morphometrics of mind tumors: are there any potential histopathological biomarkers? Microvasc. Res. 80, 522–533 (2010).
Fürtjes, G. et al. Intraoperative microscopic autofluorescence detection and characterization in mind tumors utilizing stimulated Raman histology and two-photon fluorescence. Entrance Oncol. 13, 1146031 (2023).
Black, D. et al. A spectral library and methodology for sparse unmixing of hyperspectral photos in fluorescence guided resection of mind tumors. Biomedical Optics Categorical (2024) (In Press).
Stone, J. V. Unbiased part evaluation: an introduction. Traits Cogn. Sci. 6, 59–64 (2002).
Biau, G. & Scornet, E. A random forest guided tour. Take a look at 25, 197–227 (2016).
Larose, D. T. & Larose, C. D. ok -nearest neighbor algorithm. Discov. Knowl. Knowledge 149–164 https://doi.org/10.1002/9781118874059.CH7 (2014).
Noble, W. S. What’s a assist vector machine? Nat. Biotechnol. 24, 1565–1567 (2006).
Murtagh, F. Multilayer perceptrons for classification and regression. Neurocomputing 2, 183–197 (1991).
Freund, Y. & Schapire, R. E. A Brief Introduction to Boosting. J. Jpn. Soc. Artif. Intell. 14, 771–780 (1999).