Human lung most cancers harbors spatially organized stem-immunity hubs related to response to immunotherapy


  • Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pelka, Okay. et al. Spatially organized multicellular immune hubs in human colorectal most cancers. Cell 184, 4734–4752 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mihm, M. C. Jr. & Mulé, J. J. Reflections on the histopathology of tumor-infiltrating lymphocytes in melanoma and the host immune response. Most cancers Immunol. Res. 3, 827–835 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angell, H. Okay., Bruni, D., Barrett, J. C., Herbst, R. & Galon, J. The immunoscore: colon most cancers and past. Clin. Most cancers Res. 26, 332–339 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung most cancers handled with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moldoveanu, D. et al. Spatially mapping the immune panorama of melanoma utilizing imaging mass cytometry. Sci. Immunol. 7, eabi5072 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Litchfield, Okay. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayers, M. et al. IFN-γ-related mRNA profile predicts medical response to PD-1 blockade. J. Clin. Make investments. 127, 2930–2940 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reschke, R. et al. Immune cell and tumor cell-derived CXCL10 is indicative of immunotherapy response in metastatic melanoma. J. Immunother. Most cancers 9, e003521 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sade-Feldman, M. et al. Defining T cell states related to response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy in opposition to human most cancers. Science 370, 1328–1334 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor management in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic adjustments in PD-1-CD8+ tumor-infiltrating T cells. Immunity 50, 181–194 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor management and reply to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung most cancers. N. Engl. J. Med. 375, 1823–1833 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, B., Zhang, Y., Wang, D., Hu, X. & Zhang, Z. Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade. Nat. Most cancers 3, 1123–1136 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caushi, J. X. et al. Transcriptional applications of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveira, G. et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature 596, 119–125 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowery, F. J. et al. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science 375, 877–884 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanada, Okay.-I. et al. A phenotypic signature that identifies neoantigen-reactive T cells in contemporary human lung cancers. Most cancers Cell 40, 479–493 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenhauer, E. A. et al. New response analysis standards in strong tumours: revised RECIST guideline (model 1.1). Eur. J. Most cancers 45, 228–247 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Groom, J. R. & Luster, A. D. CXCR3 in T cell perform. Exp. Cell. Res. 317, 620–631 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Okay. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, extremely multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, T. et al. The TCF1–Bcl6 axis counteracts kind I interferon to repress exhaustion and preserve T cell stemness. Sci. Immunol. 1, eaai8593 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Im, S. J. et al. Defining CD8+ T cells that present the proliferative burst after PD-1 remedy. Nature 537, 417–421 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eberhardt, C. S. et al. Useful HPV-specific PD-1+ stem-like CD8 T cells in head and neck most cancers. Nature 597, 279–284 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. et al. IL-15 promotes self-renewal of progenitor exhausted CD8 T cells throughout persistent antigenic stimulation. Entrance. Immunol. 14, 1117092 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, D. et al. A tumor-specific pro-IL-12 prompts preexisting cytotoxic T cells to manage established tumors. Sci. Immunol. 7, eabi6899 (2022).

  • Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi, J. et al. Single-cell and spatial evaluation reveal interplay of FAP+ fibroblasts and SPP1+ macrophages in colorectal most cancers. Nat. Commun. 13, 1742 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, N. et al. Single-cell RNA sequencing demonstrates the molecular and mobile reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tune, A., Nikolcheva, T. & Krensky, A. M. Transcriptional regulation of RANTES expression in T lymphocytes. Immunol. Rev. 177, 236–245 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Dysfunctional CD8 T cells kind a proliferative, dynamically regulated compartment inside human melanoma. Cell 176, 775–789 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dubois, S. P., Waldmann, T. A. & Müller, J. R. Survival adjustment of mature dendritic cells by IL-15. Proc. Natl Acad. Sci. USA 102, 8662–8667 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Pilato, M. et al. CXCR6 positions cytotoxic T cells to obtain vital survival alerts within the tumor microenvironment. Cell 184, 4512–4530 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, M. et al. The interplay of CD4+ helper T cells with dendritic cells shapes the tumor microenvironment and immune checkpoint blockade response. Nat. Most cancers 3, 303–317 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rapp, M. et al. CCL22 controls immunity by selling regulatory T cell communication with dendritic cells in lymph nodes. J. Exp. Med. 216, 1170–1181 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, D. Y. et al. Intratumoral CD4+ T cells mediate anti-tumor cytotoxicity in human bladder most cancers. Cell 181, 1612–1625 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei, X. et al. CD4+ helper T cells endow cDC1 with cancer-impeding capabilities within the human tumor micro-environment. Nat. Commun. 14, 217 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Home, I. G. et al. Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade. Clin. Most cancers Res. 26, 487–504 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chow, M. T. et al. Intratumoral exercise of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 remedy. Immunity 50, 1498–1512 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nixon, B. G. et al. Tumor-associated macrophages expressing the transcription issue IRF8 promote T cell exhaustion in most cancers. Immunity 55, 2044–2058 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kersten, Okay. et al. Spatiotemporal co-dependency between macrophages and exhausted CD8+ T cells in most cancers. Most cancers Cell 40, 624–638 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cang, Z. et al. Screening cell-cell communication in spatial transcriptomics through collective optimum transport. Nat. Strategies 20, 218–228 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, H.-W. et al. CCL19-producing fibroblastic stromal cells restrain lung carcinoma development by selling native antitumor T-cell responses. J. Allergy Clin. Immunol. 142, 1257–1271 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, Y. et al. Single-cell profiling of tumor-infiltrating TCF1/TCF7+ T cells reveals a T lymphocyte subset related to tertiary lymphoid constructions/organs and a superior prognosis in oral most cancers. Oral. Oncol. 119, 105348 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Im, S. J. et al. Traits and anatomic location of PD-1+TCF1+ stem-like CD8 T cells in persistent viral an infection and most cancers. Proc. Natl Acad. Sci. USA 120, e2221985120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rangel-Moreno, J., Moyron-Quiroz, J. E., Hartson, L., Kusser, Okay. & Randall, T. D. Pulmonary expression of CXC chemokine ligand 13, CC chemokine ligand 19, and CC chemokine ligand 21 is crucial for native immunity to influenza. Proc. Natl Acad. Sci. USA 104, 10577–10582 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, Y. et al. Heterogeneous fibroblasts underlie age-dependent tertiary lymphoid tissues within the kidney. JCI Perception 1, e87680 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sautès-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid constructions within the period of most cancers immunotherapy. Nat. Rev. Most cancers 19, 307–325 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid constructions in most cancers. Science 375, eabf9419 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fastened tissue. Nat. Biotechnol. 38, 586–599 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set assortment. Cell Syst. 1, 417–425 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion throughout persistent viral an infection. Immunity 27, 670–684 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes options of the response to immunotherapy. Sci. Immunol. 7, eabk1692 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulz, D. et al. Simultaneous multiplexed imaging of mRNA and proteins with subcellular decision in breast most cancers tissue samples by mass cytometry. Cell Syst. 6, 25–36 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ardighieri, L. et al. Infiltration by CXCL10 secreting macrophages is related to antitumor immunity and response to remedy in ovarian most cancers subtypes. Entrance. Immunol. 12, 690201 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alspach, E. et al. MHC-II neoantigens form tumour immunity and response to immunotherapy. Nature 574, 696–701 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryan, N. et al. STAT1 inhibits T-cell exhaustion and myeloid derived suppressor cell accumulation to advertise antitumor immune responses in head and neck squamous cell carcinoma. Int. J. Most cancers 146, 1717–1729 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meissl, Okay., Macho-Maschler, S., Müller, M. & Strobl, B. The great and the unhealthy faces of STAT1 in strong tumours. Cytokine 89, 12–20 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prokhnevska, N. et al. CD8+ T cell activation in most cancers contains an preliminary activation part in lymph nodes adopted by effector differentiation inside the tumor. Immunity 56, 107–124 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Q. et al. The primordial differentiation of tumor-specific reminiscence CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell 185, 4049–4066 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jansen, C. S. et al. An intra-tumoral area of interest maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grant, S. M., Lou, M., Yao, L., Germain, R. N. & Radtke, A. J. The lymph node at a look–how spatial group optimizes the immune response. J. Cell Sci. 133, jcs241828 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duckworth, B. C. & Groom, J. R. Conversations that depend: mobile interactions that drive T cell destiny. Immunol. Rev. 300, 203–219 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gommerman, J. L. & Browning, J. L. Lymphotoxin/mild, lymphoid microenvironments and autoimmune illness. Nat. Rev. Immunol. 3, 642–655 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piao, W. et al. Regulatory T cells situation lymphatic endothelia for enhanced transendothelial migration. Cell Rep. 30, 1052–1062 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dejardin, E. et al. The lymphotoxin-beta receptor induces totally different patterns of gene expression through two NF-κB pathways. Immunity 17, 525–535 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schaeuble, Okay. et al. Perivascular fibroblasts of the growing spleen act as LTα1β2-dependent precursors of each T and B zone organizer cells. Cell Rep. 21, 2500–2514 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bar-Ephraïm, Y. E. & Mebius, R. E. Innate lymphoid cells in secondary lymphoid organs. Immunol. Rev. 271, 185–199 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Magen, A. et al. Intratumoral dendritic cell-CD4+ T helper cell niches allow CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat. Med. 29, 1389–1399 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garon, E. B. et al. Pembrolizumab for the therapy of non-small-cell lung most cancers. N. Engl. J. Med. 372, 2018–2028 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Filbin, M. R. et al. Longitudinal proteomic evaluation of extreme COVID-19 reveals survival-associated signatures, tissue-specific cell loss of life, and cell–cell interactions. Cell Rep. Med. 2, 100287 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based strategy for decoding genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for mobile segmentation. Nat. Strategies 18, 100–106 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petukhov, V. et al. Cell segmentation in imaging-based spatial transcriptomics. Nat. Biotechnol. 40, 345–354 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in 4 persistent inflammatory illnesses. Med. 3, 481–518 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melville, J. uwot: the uniform manifold approximation and projection (UMAP) methodology for dimensionality discount. https://github.com/jlmelville/uwot (2020).

  • Csardi, G. et al. The igraph software program package deal for complicated community analysis. InterJournal Complicated Syst. 1695, 1–9 (2006).


    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Becoming linear mixed-effects fashions utilizing lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

  • Gelman, A. & Su, Y. -S. arm: knowledge evaluation utilizing regression and multilevel/hierarchical fashions. https://CRAN.R-project.org/package deal=arm (2020).

  • Korsunsky, I. et al. Quick, delicate and correct integration of single-cell knowledge with Concord. Nat. Strategies 16, 1289–1296 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, D. T. & Schachter, B. J. Two algorithms for setting up a Delaunay triangulation. Int. J. Comput. Inf. Sci. 9, 219–242 (1980).

    Article 

    Google Scholar
     

  • Keren, L. et al. A structured tumor-immune microenvironment in triple unfavorable breast most cancers revealed by multiplexed ion beam imaging. Cell 174, 1373–1387 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hot Topics

    Related Articles