GDNF-induced phosphorylation of MUC21 promotes pancreatic most cancers perineural invasion and metastasis by activating RAC2 GTPase


  • Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic most cancers. Lancet. 2011;378:607–20.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerstberger S, Jiang Q, Ganesh Okay. Metastasis. Cell. 2023;186:1564–79.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jurcak N, Zheng L. Signaling within the microenvironment of pancreatic most cancers: transmitting alongside the nerve. Pharmacol Ther. 2019;200:126–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taveggia C, Feltri ML. Past wrapping: canonical and noncanonical features of Schwann cells. Annu Rev Neurosci. 2022;45:561–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liebig C, Ayala G, Wilks JA, Berger DH, Albo D. Perineural invasion in most cancers: a overview of the literature. Most cancers. 2009;115:3379–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Schorn S, Demir IE, Haller B, Scheufele F, Reyes CM, Tieftrunk E, et al. The affect of neural invasion on survival and tumor recurrence in pancreatic ductal adenocarcinoma – a scientific overview and meta-analysis. Surg Oncol. 2017;26:105–15.

    PubMed 

    Google Scholar
     

  • Gasparini G, Pellegatta M, Crippa S, Lena MS, Belfiori G, Doglioni C, et al. Nerves and pancreatic most cancers: new insights right into a harmful relationship. Cancers. 2019;11.

  • Chen T, Zheng B, Yang P, Zhang Z, Su Y, Chen Y, et al. The Incidence and prognosis worth of perineural invasion in rectal carcinoma: from meta-analyses and real-world scientific pathological options. Clin Oncol (R Coll Radiol). 2023;35:e611–e21.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang C, Li Y, Guo Y, Zhang Z, Lian G, Chen Y, et al. MMP1/PAR1/SP/NK1R paracrine loop modulates early perineural invasion of pancreatic most cancers cells. Theranostics. 2018;8:3074–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Kang R, Tang D. Mobile and molecular mechanisms of perineural invasion of pancreatic ductal adenocarcinoma. Most cancers Commun. 2021;41:642–60.


    Google Scholar
     

  • Breugelmans T, Oosterlinck B, Arras W, Ceuleers H, De Man J, Maintain GL, et al. The position of mucins in gastrointestinal barrier perform throughout well being and illness. Lancet Gastroenterol Hepatol. 2022;7:455–71.

    PubMed 

    Google Scholar
     

  • Corfield AP, Myerscough N, Longman R, Sylvester P, Arul S, Pignatelli M. Mucins and mucosal safety within the gastrointestinal tract: new prospects for mucins within the pathology of gastrointestinal illness. Intestine. 2000;47:589–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatia R, Gautam SK, Cannon A, Thompson C, Corridor BR, Aithal A, et al. Most cancers-associated mucins: position in immune modulation and metastasis. Most cancers Metastasis Rev. 2019;38:223–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur S, Kumar S, Momi N, Sasson AR, Batra SK. Mucins in pancreatic most cancers and its microenvironment. Nat Rev Gastroenterol Hepatol. 2013;10:607–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marimuthu S, Rauth S, Ganguly Okay, Zhang C, Lakshmanan I, Batra SK, et al. Mucins reprogram stemness, metabolism and promote chemoresistance throughout most cancers development. Most cancers Metastasis Rev. 2021;40:575–88.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itoh Y, Kamata-Sakurai M, Denda-Nagai Okay, Nagai S, Tsuiji M, Ishii-Schrade Okay, et al. Identification and expression of human epiglycanin/MUC21: a novel transmembrane mucin. Glycobiology. 2008;18:74–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Yi Y, Kamata-Sakurai M, Denda-Nagai Okay, Itoh T, Okada Okay, Ishii-Schrade Okay, et al. Mucin 21/epiglycanin modulates cell adhesion. J Biol Chem. 2010;285:21233–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Zhang X, Liu J, Liu Q. MUC21 induces the viability and migration of glioblastoma by way of the STAT3/AKT pathway. Exp Ther Med. 2022;23:331.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Xiao Y, Xiong X, Qi X. MUC21 controls melanoma development by way of regulating SLITRK5 and hedgehog signaling pathway. Cell Biol Int. 2022;46:1458–67.

    CAS 
    PubMed 

    Google Scholar
     

  • Matsumura M, Okudela Okay, Nakashima Y, Mitsui H, Denda-Nagai Okay, Suzuki T, et al. Particular expression of MUC21 in micropapillary parts of lung adenocarcinomas – Implications for the development of EGFR-mutated lung adenocarcinomas. PLoS ONE. 2019;14:e0215237.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rashid NU, Peng XL, Jin C, Moffitt RA, Volmar KE, Belt BA, et al. Purity impartial subtyping of tumors (PurIST), a clinically strong, single-sample classifier for tumor subtyping in pancreatic most cancers. Clin Most cancers Res. 2020;26:82–92.

    PubMed 

    Google Scholar
     

  • Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SG, Hoadley KA, et al. Digital microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47:1168–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deborde S, Gusain L, Powers A, Marcadis A, Yu Y, Chen CH, et al. Reprogrammed Schwann cells arrange into dynamic tracks that promote pancreatic most cancers invasion. Most cancers Discov. 2022;12:2454–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. Cell. 2016;166:21–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Hanahan D, Weinberg RA. Hallmarks of most cancers: the following technology. Cell. 2011;144:646–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Sahu SK, Garding A, Tiwari N, Thakurela S, Toedling J, Gebhard S, et al. JNK-dependent gene regulatory circuitry governs mesenchymal destiny. EMBO J. 2015;34:2162–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denhardt DT. Sign-transducing protein phosphorylation cascades mediated by Ras/Rho proteins within the mammalian cell: the potential for multiplex signalling. Biochem J. 1996;318:729–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wennerberg Okay, Rossman KL, Der CJ. The Ras superfamily at a look. J Cell Sci. 2005;118:843–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Corridor A. Rho household GTPases. Biochem Soc Trans. 2012;40:1378–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Hayashi-Takagi A, Takaki M, Graziane N, Seshadri S, Murdoch H, Dunlop AJ, et al. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse by way of Rac1. Nat Neurosci. 2010;13:327–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lokuta MA, Nuzzi PA, Huttenlocher A. Calpain regulates neutrophil chemotaxis. Proc Natl Acad Sci USA. 2003;100:4006–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang M, Guo Y, Wang M, Zhou T, Xue Y, Du G, et al. The glial cell-derived neurotrophic issue (GDNF)-responsive phosphoprotein panorama identifies raptor phosphorylation required for spermatogonial progenitor cell proliferation. Mol Cell Proteomics. 2017;16:982–97.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hodge RG, Ridley AJ. Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol. 2016;17:496–510.

    CAS 
    PubMed 

    Google Scholar
     

  • Cardama GA, Alonso DF, Gonzalez N, Maggio J, Gomez DE, Rolfo C, et al. Relevance of small GTPase Rac1 pathway in drug and radio-resistance mechanisms: alternatives in most cancers therapeutics. Crit Rev Oncol Hematol. 2018;124:29–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang C, Liu J, Zhao Y, Yue X, Zhu Y, Wang X, et al. Glutaminase 2 is a novel adverse regulator of small GTPase Rac1 and mediates p53 perform in suppressing metastasis. Elife. 2016;5:e10727.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukata M, Watanabe T, Noritake J, Nakagawa M, Yamaga M, Kuroda S, et al. Rac1 and Cdc42 seize microtubules by IQGAP1 and CLIP-170. Cell. 2002;109:873–85.

    CAS 
    PubMed 

    Google Scholar
     

  • Shukla SK, Purohit V, Mehla Okay, Gunda V, Chaika NV, Vernucci E, et al. MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic most cancers. Most cancers Cell. 2017;32:71–87 e7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahraei M, Roy LD, Curry JM, Teresa TL, Nath S, Besmer D, et al. MUC1 regulates PDGFA expression throughout pancreatic most cancers development. Oncogene. 2012;31:4935–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sagar S, Leiphrakpam PD, Thomas D, McAndrews KL, Caffrey TC, Swanson BJ, et al. MUC4 enhances gemcitabine resistance and malignant behaviour in pancreatic most cancers cells expressing cancer-associated brief O-glycans. Most cancers Lett. 2021;503:91–102.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chauhan SC, Ebeling MC, Maher DM, Koch MD, Watanabe A, Aburatani H, et al. MUC13 mucin augments pancreatic tumorigenesis. Mol Most cancers Ther. 2012;11:24–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Khan S, Sikander M, Ebeling MC, Ganju A, Kumari S, Yallapu MM, et al. MUC13 interplay with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma development. Oncogene. 2017;36:491–500.

    CAS 
    PubMed 

    Google Scholar
     

  • Thomas D, Sagar S, Liu X, Lee HR, Grunkemeyer JA, Grandgenett PM, et al. Isoforms of MUC16 activate oncogenic signaling by EGF receptors to boost the development of pancreatic most cancers. Mol Ther. 2021;29:1557–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Lakshmanan I, Marimuthu S, Chaudhary S, Seshacharyulu P, Rachagani S, Muniyan S, et al. Muc16 depletion diminishes KRAS-induced tumorigenesis and metastasis by altering tumor microenvironment elements in pancreatic ductal adenocarcinoma. Oncogene. 2022;41:5147–59.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kai Y, Amatya VJ, Kushitani Okay, Kambara T, Suzuki R, Tsutani Y, et al. Mucin 21 is a novel, adverse immunohistochemical marker for epithelioid mesothelioma for its differentiation from lung adenocarcinoma. Histopathology. 2019;74:545–54.

    PubMed 

    Google Scholar
     

  • Liu Q, Ma Z, Cao Q, Zhao H, Guo Y, Liu T, et al. Perineural invasion-associated biomarkers for tumor growth. Biomed Pharmacother. 2022;155:113691.

    CAS 
    PubMed 

    Google Scholar
     

  • Martyn GV, Shurin GV, Keskinov AA, Bunimovich YL, Shurin MR. Schwann cells form the neuro-immune environs and management most cancers development. Most cancers Immunol Immunother. 2019;68:1819–29.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue M, Zhu Y, Jiang Y, Han L, Shi M, Su R, et al. Schwann cells regulate tumor cells and cancer-associated fibroblasts within the pancreatic ductal adenocarcinoma microenvironment. Nat Commun. 2023;14:4600.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zahalka AH, Arnal-Estape A, Maryanovich M, Nakahara F, Cruz CD, Finley LWS, et al. Adrenergic nerves activate an angio-metabolic swap in prostate most cancers. Science. 2017;358:321–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deborde S, Omelchenko T, Lyubchik A, Zhou Y, He S, McNamara WF, et al. Schwann cells induce most cancers cell dispersion and invasion. J Clin Make investments. 2016;126:1538–54.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic issue for midbrain dopaminergic neurons. Science. 1993;260:1130–2.

    CAS 
    PubMed 

    Google Scholar
     

  • Veit C, Genze F, Menke A, Hoeffert S, Gress TM, Gierschik P, et al. Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells. Most cancers Res. 2004;64:5291–300.

    CAS 
    PubMed 

    Google Scholar
     

  • van Weering DH, Bos JL. Glial cell line-derived neurotrophic issue induces Ret-mediated lamellipodia formation. J Biol Chem. 1997;272:249–54.

    PubMed 

    Google Scholar
     

  • Murakami H, Iwashita T, Asai N, Iwata Y, Narumiya S, Takahashi M. Rho-dependent and -independent tyrosine phosphorylation of focal adhesion kinase, paxillin and p130Cas mediated by Ret kinase. Oncogene. 1999;18:1975–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Fukuda T, Kiuchi Okay, Takahashi M. Novel mechanism of regulation of Rac exercise and lamellipodia formation by RET tyrosine kinase. J Biol Chem. 2002;277:19114–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Lu DY, Leung YM, Cheung CW, Chen YR, Wong KL. Glial cell line-derived neurotrophic issue induces cell migration and matrix metalloproteinase-13 expression in glioma cells. Biochem Pharmacol. 2010;80:1201–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Su CM, Lu DY, Hsu CJ, Chen HT, Huang CY, Yang WH, et al. Glial cell-derived neurotrophic issue will increase migration of human chondrosarcoma cells by way of ERK and NF-kappaB pathways. J Cell Physiol. 2009;220:499–507.

    CAS 
    PubMed 

    Google Scholar
     

  • Ni B, He X, Zhang Y, Wang Z, Dong Z, Xia X, et al. Tumor-associated macrophage-derived GDNF promotes gastric most cancers liver metastasis by way of a GFRA1-modulated autophagy flux. Cell Oncol. 2023;46:315–30.

    CAS 

    Google Scholar
     

  • Kim M, Jung JY, Choi S, Lee H, Morales LD, Koh JT, et al. GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma by inducing autophagy. Autophagy. 2017;13:149–68.

    CAS 
    PubMed 

    Google Scholar
     

  • Hishiki T, Nimura Y, Isogai E, Kondo Okay, Ichimiya S, Nakamura Y, et al. Glial cell line-derived neurotrophic issue/neurturin-induced differentiation and its enhancement by retinoic acid in main human neuroblastomas expressing c-Ret, GFR alpha-1, and GFR alpha-2. Most cancers Res. 1998;58:2158–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Ayala GE, Wheeler TM, Shine HD, Schmelz M, Frolov A, Chakraborty S, et al. In vitro dorsal root ganglia and human prostate cell line interplay: redefining perineural invasion in prostate most cancers. Prostate. 2001;49:213–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Hot Topics

    Related Articles