Clements O, Eliahoo J, Kim JU, Taylor-Robinson SD, Khan SA. Danger elements for intrahepatic and extrahepatic cholangiocarcinoma: a scientific evaluate and meta-analysis. J Hepatol. 2020;72:95–103.
Sirica AE, Gores GJ, Groopman JD, Selaru FM, Strazzabosco M, Wei Wang X, et al. Intrahepatic cholangiocarcinoma: persevering with challenges and translational advances. Hepatology .2019;69:1803–15.
Rizvi S, Kan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma—evolving ideas and therapeutic methods. Nat Rev Clin Oncol. 2018;15:95–111.
Bagni C, Tassone F, Neri G, Hagerman R. Fragile X syndrome: causes, analysis, mechanisms, and therapeutics. J Clin Make investments. 2012;122:4314–22.
Bagni C, Zukin RS. A synaptic perspective of fragile X syndrome and autism spectrum issues. Neuron .2019;101:1070–88.
Bagni C, Oostra BA. Fragile X syndrome: from protein perform to remedy. Am J Med Genet A. 2013;161A:2809–21.
Bhakar AL, Dolen G, Bear MF. The pathophysiology of fragile X (and what it teaches us about synapses). Annu Rev Neurosci. 2012;35:417–43.
Gross C, Barry-Kravis EM, Bassell GJ. Therapeutic methods in fragile X syndrome: dysregulated mGluR signaling and past. Neuropsychoparmacology. 2012;37:178–95.
Miyashiro KY, Beckel-Mitchener A, Purk TP, Becker KG, Barret T, Liu L, et al. RNA cargoes associating with FMRP reveal deficits in mobile functioning in Fmr1 null mice. Neuron .2003;37:417–31.
Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic perform and autism. Cell .2011;146:247–61.
Ascano M Jr, Mukherjee N, Bandaru P, Miller JB, Nusbaum JD, Corcoran DL, et al. FMRP targets distinct mRNA sequence parts to manage protein expression. Nature .2012;492:382–6.
Maurin T, Lebrigand Ok, Castagnola S, Paquet A, Jarjat M, Popa A, et al. HITS-CLIP in numerous mind areas reveals new targets and new modalities of RNA binding by fragile X psychological retardation protein. Nucleic Acids Res. 2018;46:6344–55.
Lucà R, Averna M, Zalfa F, Vecchi M, Bianchi F, La Fata G, et al. The delicate X protein binds mRNAs concerned in most cancers development and modulates metastasis formation. EMBO Mol Med. 2013;5:1523–36.
Xing Z, Zeng M, Hu H, Zhang H, Hao Z, Lengthy Y, et al. Fragile X psychological retardation protein promotes astrocytoma proliferation through the MEK/ERK signaling pathway. Oncotarget .2016;7:75394–406.
Srivastava A. A novel hyperlink between FMR gene and the JNK pathway gives clues to potential position in malignant pleural mesothelioma. FEBS Open Bio. 2015;5:705–11.
Zalfa F, Panasiti V, Carotti S, Zingariello M, Perrone G, Sancillo L, et al. The delicate X psychological retardation protein regulates tumor invasiveness-related pathways in melanoma cells. Cell Dying Dis. 2017;8:e3169.
Di Grazia A, Marafini I, Pedini G, Di Fusco D, Laudisi F, Dinallo V, et al. The delicate X psychological retardation protein regulates RIP1K and colorectal most cancers resistance to necroptosis. Cell Mol Gastroenterol Hepatol. 2020;20:30172–7.
Schultz-Pedersen S, Hasle H, Olsen JH, Friedrich U. Proof of decreased danger of most cancers in people with fragile X. Am J Med Genet. 2001;103:226–30.
Kalkunte R, Macarthur D, Morton R. Glioblastoma in a boy with fragile X: an uncommon case of neuroprotection. Arch Dis Baby. 2007;92:795–6.
Kurokawa Y, Matoba R, Takemasa I, Nakamori S, Tsujie M, Nagano H, et al. Molecular options of non-B, non-C hepatocellular carcinoma: a PCR-array gene expression profiling research. J Hepatol. 2003;39:1004–12.
Liu Y, Zhu X, Zhu J, Liao S, Tang Q, Liu Ok, et al. Identification of differential expression of genes in hepatocellular carcinoma by suppression subtractive hybridization mixed cDNA microarray. Oncol Rep. 2007;18:943–51.
Li Y, Tang Y, Ye L, Liu B, Liu Ok, Chen J, et al. Institution of a hepatocellular carcinoma cell line with distinctive metastatic traits by way of in vivo choice and screening for metastasis-related genes by way of cDNA microarray. J Most cancers Res Clin Oncol. 2003;129:43–51.
Li L, Zeng Q, Bhutkar A, Galván JA, Karamitopoulou E, Noordermeer D, et al. GKAP acts as a genetic modulator of NMDAR signaling to control invasive tumor development. Most cancers Cell. 2018;33:736–51.
Dianat N, Dubois-Pot-Schneider H, Steichen C, Desterke C, Leclerc P, Raveux A, et al. Technology of useful cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepathology. 2014;60:700–14.
Kusaka Y, Tokiwa T, Sato J. Institution and characterization of a cell line from a human cholangiocellular carcinoma. Res Exp Med. 1988;188:367–75.
Weed SA, Parsons JT. Cortactin: coupling membrane dynamics to cortical actin meeting. Oncogene .2001;20:6418–34.
Arjonen A, Kaukonen R, Ivaska J. Filopodia and adhesion in most cancers cell motility. Cell Adhes Migr. 2011;5:421–30.
Macgrath SM, Koleske AJ. Cortactin in cell migration and most cancers at a look. J Cell Sci. 2012;125:1621–6.
Chen WT, Wang JY. Specialised floor protrusions of invasive cells, invadopodia and lamellipodia, have differential MT1-MMP, MMP-2, and TIMP-2 localization. Ann N. Y Acad Sci. 1999;30:361–71.
Murphy DA, Courtneidge SA. The ‘ins’ and ‘outs’ of podosomes and invadopodia: traits, formation and performance. Nat Rev Mol Cell Biol. 2011;12:413–26.
Beaty BT, Condeelis J. Digging slightly deeper: the phases of invadopodium formation and maturation. Eur J Cell Biol. 2014;93:438–44.
Wang Y, Li J, Xia Y, Gong R, Wang Ok, Yan Z, et al. Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy. J Clin Oncol. 2013;31:1188–95.
Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Remedy and prognosis for sufferers with intrahepatic cholangiocarcinoma: systematic evaluate and meta-analysis. JAMA Surg. 2014;149:565–74.
Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, et al. Cholangiocarcinoma: present data and future views consensus assertion from the European Community for the Examine of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13:261–80.
Rizvi S, Gores GJ. Rising molecular therapeutic targets for cholangiocarcinoma. J Hepatol. 2017;67:632–44.
Hanahan D, Weinberg RA. Hallmarks of most cancers: the following technology. Cell .2011;144:646–74.
Yilmaz M, Christofori G. EMT, the cytoskeleton, and most cancers cell invasion. Most cancers Metastasis Rev. 2009;28:15–33.
Christofori G. New indicators from the invasive entrance. Nature .2006;441:444–50.
Ferrari F, Mercaldo V, Piccoli G, Sala C, Cannata S, Achsel T, et al. The delicate X psychological retardation protein-RNP granules present an mGluR-dependent localization within the post-synaptic spines. Mol Cell Neurosci. 2007;34:343–54.
Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, et al. The translational panorama of mTOR signalling steers most cancers initiation and metastasis. Nature .2012;485:55–61.
Silvera D, Formenti SC, Schneider RJ. Translational management in most cancers. Nat Rev Most cancers. 2010;10:254–66.
Stumpf CR, Ruggero D. The cancerous translation equipment. Curr Opin Genet Dev. 2011;21:474–83.
Bravo-Cordero JJ, Hodgson L, Condeelis J. Directed cell invasion and migration throughout metastasis. Curr Opin Cell Biol. 2012;24:277–83.
Eddy RJ, Weidmann MD, Sharma VP, Condeelis JS. Tumor cell invadopodia: invasive protrusions that orchestrate metastasis. Traits cell Biol. 2017;27:595–607.
Insall RH, Machesky LM. Actin dynamics at the vanguard: from easy equipment to complicated networks. Dev Cell. 2009;17:310–22.
Ridley AJ. Life at the vanguard. Cell .2011;145:1012–22.
Pollard TD, Cooper JA. Actin a central participant in cell form and motion. Science. 2009;326:1208–12.
Liao G, Mingle L, Van De Water L, Liu G. Management of cell migration by way of mRNA localization and native translation. Wiley Interdiscip Rev RNA. 2015;6:1–15.
Taniuchi Ok, Furihata M, Hanazaki Ok, Saito M, Saibara T. IGF2BP3-mediated translation in cell protrusions promotes cell invasiveness and metastasis of pancreatic most cancers. Oncotarget .2014;5:6832–45.
Bell JL, Wachter Ok, Mühleck B, Pazaitis N, Köhn M, Lederer M, et al. Insulin-like development issue 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of most cancers development? Cell Mol Life Sci. 2013;70:2657–75.
Vikesaa J, Hansen TV, Jønson L, Borup R, Wewer UM, Christiansen J, et al. RNA-binding IMPs promote cell adhesion and invadopodia formation. EMBO J. 2006;25:1456–68.
Davidovic L, Jaglin XH, Lepagnol-Bestel AM, Tremblay S, Simonneau M, Bardoni B, et al. The delicate X psychological retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules. Hum Mol Genet. 2007;16:3047–58.
Dictenberg JB, Swanger SA, Antar LN, Singer RH, Bassell GJ. A direct position for FMRP in activity-dependent dendritic mRNA transport hyperlinks filopodial-spine morphogenesis to fragile X syndrome. Dev Cell. 2008;14:926–39.
Lindsay AJ, McCaffrey MW. Myosin Va is required for the transport of fragile X psychological retardation protein (FMRP) granules. Biol Cell. 2014;106:57–71.
Ohashi S, Koike Ok, Omori A, Ichinose S, Ohara S, Kobayashi S, et al. Identification of mRNA/protein (mRNP) complexes containing Puralpha, mStaufen, fragile X protein, and myosin Va and their affiliation with tough endoplasmic reticulum outfitted with a kinesin motor. J Biol Chem. 2002;277:37804–10.
Mili S, Moissoglu Ok, Macara IG. Genome-wide display screen reveals APC-associated RNAs enriched in cell protrusions. Nature. 2008;453:115–9.
Schaeffer C, Bardoni B, Mandel JL, Ehresmann B, Ehresmann C, Moine H. The delicate X psychological retardation protein binds particularly to its mRNA through a purine quartet motif. EMBO J. 2001;20:4803–13.
Didiot MC, Tian Z, Schaeffer C, Subramanian M, Mandel JL, Moine H. The G-quartet containing FMRP binding website in FMR1 mRNA is a potent exonic splicing enhancer. Nucleic Acids Res. 2008;36:4902–12.
Janusz A, Milek J, Perycz M, Pacini L, Bagni C, Kaczmarek L, et al. The Fragile X psychological retardation protein regulates matrix metalloproteinase 9 mRNA at synapses. J Neurosci. 2013;33:18234–41.
Sidhu H, Dansie LE, Hickmott PW, Ethell DW, Ethell IM. Genetic elimination of matrix metalloproteinase 9 rescues the signs of fragile X syndrome in a mouse mannequin. J Neurosci. 2014;34:9867–79.
Gkogkas CG, Khoutorsky A, Cao R, Jafarnejad SM, Prager-Khoutorsky M, Giannakas N, et al. Pharmacogenetic inhibition of eIF4E-dependent Mmp9 mRNA translation reverses fragile X syndrome-like phenotypes. Cell Rep. 2014;9:1742–55.
Kao DI, Aldridge GM, Weiler IJ, Greenough WT. Altered mRNA transport, docking, and protein translation in neurons missing fragile X psychological retardation protein. Proc Natl Acad Sci U.S.A. 2010;107:15601–6.
D’Hulst C, De Geest N, Reeve SP, Van Dam D, De Deyn PP, Hassan BA, et al. Decreased expression of the GABAA receptor in fragile X syndrome. Mind Res. 2006;1121:238–45.
Zalfa F, Eleuteri B, Dickson KS, Mercaldo V, De Rubeis S, Di, et al. A brand new perform for the delicate X psychological retardation protein in regulation of PSD-95 mRNA stability. Nat Neurosci. 2007;10:578–87.
Zhang M, Wang Q, Huang Y. Fragile X psychological retardation protein FMRP and the RNA export issue NXF2 affiliate with and destabilize Nxf1 mRNA in neuronal cells. Proc Natl Acad Sci U.S.A. 2007;104:10057–62.
De Rubeis S, Bagni C. Fragile X psychological retardation protein management of neuronal mRNA metabolism: insights into mRNA stability. Mol Cell Neurosci. 2010;43:43–50.
Bhogal B, Jepson JE, Savva YA, Pepper AS, Reenan RA, Jongens TA. Modulation of dADAR-dependent RNA enhancing by the Drosophila fragile X psychological retardation protein. Nat Neurosci. 2011;14:1517–24.
Filippini A, Bonini D, Lacoux C, Pacini L, Zingariello M, Sancillo L, et al. Absence of the delicate X psychological retardation protein leads to defects of RNA enhancing of neuronal mRNAs in mouse. RNA Biol. 2017;14:1580–91.
Zalfa F, Giorgi M, Primerano B, Moro A, Di Penta A, Reis S, et al. The delicate X syndrome protein FMRP associates with BC1 RNA and regulates the interpretation of particular mRNAs at synapses. Cell .2003;112:317–27.
Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F, De Rubeis S, et al. The delicate X syndrome protein represses activity-dependent translation by way of CYFIP1, a brand new 4E-BP. Cell .2008;134:1042–54.
Zach S, Birgin E, Ruckert F. Major cholangiocellular carcinoma cell strains. J Stem Cell Res Transpl. 2015;2:1013.
Elizalde M, Urtasun R, Azkona M, Latasa MU, Goñi S, García-Irigoyen O, et al. Splicing regulator SLU7 is important for sustaining liver homeostasis. J Clin Make investments. 2014;124:2909–20.
Bárcena-Varela M, Caruso S, Llerena S, Álvarez-Sola G, Uriarte I, Latasa MU, et al. Twin focusing on of histone methyltransferase G9a and DNA-methyltransferase 1 for the remedy of experimental hepatocellular carcinoma. Hepatology .2019;69:587–603.
Vira VA, Kenneth MY, Susette C, Mueller ECM. Degradation assays for analyzing native cell invasion. Strategies in molecular biology. Extracell Matrix Protoc. 2009;522:211–9.

