Fragile X psychological retardation protein in intrahepatic cholangiocarcinoma: regulating the most cancers cell habits plasticity at the vanguard


  • Clements O, Eliahoo J, Kim JU, Taylor-Robinson SD, Khan SA. Danger elements for intrahepatic and extrahepatic cholangiocarcinoma: a scientific evaluate and meta-analysis. J Hepatol. 2020;72:95–103.

    PubMed 

    Google Scholar
     

  • Sirica AE, Gores GJ, Groopman JD, Selaru FM, Strazzabosco M, Wei Wang X, et al. Intrahepatic cholangiocarcinoma: persevering with challenges and translational advances. Hepatology .2019;69:1803–15.

    PubMed 

    Google Scholar
     

  • Rizvi S, Kan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma—evolving ideas and therapeutic methods. Nat Rev Clin Oncol. 2018;15:95–111.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bagni C, Tassone F, Neri G, Hagerman R. Fragile X syndrome: causes, analysis, mechanisms, and therapeutics. J Clin Make investments. 2012;122:4314–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagni C, Zukin RS. A synaptic perspective of fragile X syndrome and autism spectrum issues. Neuron .2019;101:1070–88.

    CAS 
    PubMed 

    Google Scholar
     

  • Bagni C, Oostra BA. Fragile X syndrome: from protein perform to remedy. Am J Med Genet A. 2013;161A:2809–21.

    PubMed 

    Google Scholar
     

  • Bhakar AL, Dolen G, Bear MF. The pathophysiology of fragile X (and what it teaches us about synapses). Annu Rev Neurosci. 2012;35:417–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gross C, Barry-Kravis EM, Bassell GJ. Therapeutic methods in fragile X syndrome: dysregulated mGluR signaling and past. Neuropsychoparmacology. 2012;37:178–95.

    CAS 

    Google Scholar
     

  • Miyashiro KY, Beckel-Mitchener A, Purk TP, Becker KG, Barret T, Liu L, et al. RNA cargoes associating with FMRP reveal deficits in mobile functioning in Fmr1 null mice. Neuron .2003;37:417–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic perform and autism. Cell .2011;146:247–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ascano M Jr, Mukherjee N, Bandaru P, Miller JB, Nusbaum JD, Corcoran DL, et al. FMRP targets distinct mRNA sequence parts to manage protein expression. Nature .2012;492:382–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maurin T, Lebrigand Ok, Castagnola S, Paquet A, Jarjat M, Popa A, et al. HITS-CLIP in numerous mind areas reveals new targets and new modalities of RNA binding by fragile X psychological retardation protein. Nucleic Acids Res. 2018;46:6344–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucà R, Averna M, Zalfa F, Vecchi M, Bianchi F, La Fata G, et al. The delicate X protein binds mRNAs concerned in most cancers development and modulates metastasis formation. EMBO Mol Med. 2013;5:1523–36.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing Z, Zeng M, Hu H, Zhang H, Hao Z, Lengthy Y, et al. Fragile X psychological retardation protein promotes astrocytoma proliferation through the MEK/ERK signaling pathway. Oncotarget .2016;7:75394–406.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srivastava A. A novel hyperlink between FMR gene and the JNK pathway gives clues to potential position in malignant pleural mesothelioma. FEBS Open Bio. 2015;5:705–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zalfa F, Panasiti V, Carotti S, Zingariello M, Perrone G, Sancillo L, et al. The delicate X psychological retardation protein regulates tumor invasiveness-related pathways in melanoma cells. Cell Dying Dis. 2017;8:e3169.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Grazia A, Marafini I, Pedini G, Di Fusco D, Laudisi F, Dinallo V, et al. The delicate X psychological retardation protein regulates RIP1K and colorectal most cancers resistance to necroptosis. Cell Mol Gastroenterol Hepatol. 2020;20:30172–7.


    Google Scholar
     

  • Schultz-Pedersen S, Hasle H, Olsen JH, Friedrich U. Proof of decreased danger of most cancers in people with fragile X. Am J Med Genet. 2001;103:226–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Kalkunte R, Macarthur D, Morton R. Glioblastoma in a boy with fragile X: an uncommon case of neuroprotection. Arch Dis Baby. 2007;92:795–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurokawa Y, Matoba R, Takemasa I, Nakamori S, Tsujie M, Nagano H, et al. Molecular options of non-B, non-C hepatocellular carcinoma: a PCR-array gene expression profiling research. J Hepatol. 2003;39:1004–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Zhu X, Zhu J, Liao S, Tang Q, Liu Ok, et al. Identification of differential expression of genes in hepatocellular carcinoma by suppression subtractive hybridization mixed cDNA microarray. Oncol Rep. 2007;18:943–51.

    PubMed 

    Google Scholar
     

  • Li Y, Tang Y, Ye L, Liu B, Liu Ok, Chen J, et al. Institution of a hepatocellular carcinoma cell line with distinctive metastatic traits by way of in vivo choice and screening for metastasis-related genes by way of cDNA microarray. J Most cancers Res Clin Oncol. 2003;129:43–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Zeng Q, Bhutkar A, Galván JA, Karamitopoulou E, Noordermeer D, et al. GKAP acts as a genetic modulator of NMDAR signaling to control invasive tumor development. Most cancers Cell. 2018;33:736–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dianat N, Dubois-Pot-Schneider H, Steichen C, Desterke C, Leclerc P, Raveux A, et al. Technology of useful cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepathology. 2014;60:700–14.

    CAS 

    Google Scholar
     

  • Kusaka Y, Tokiwa T, Sato J. Institution and characterization of a cell line from a human cholangiocellular carcinoma. Res Exp Med. 1988;188:367–75.

    CAS 

    Google Scholar
     

  • Weed SA, Parsons JT. Cortactin: coupling membrane dynamics to cortical actin meeting. Oncogene .2001;20:6418–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Arjonen A, Kaukonen R, Ivaska J. Filopodia and adhesion in most cancers cell motility. Cell Adhes Migr. 2011;5:421–30.


    Google Scholar
     

  • Macgrath SM, Koleske AJ. Cortactin in cell migration and most cancers at a look. J Cell Sci. 2012;125:1621–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen WT, Wang JY. Specialised floor protrusions of invasive cells, invadopodia and lamellipodia, have differential MT1-MMP, MMP-2, and TIMP-2 localization. Ann N. Y Acad Sci. 1999;30:361–71.


    Google Scholar
     

  • Murphy DA, Courtneidge SA. The ‘ins’ and ‘outs’ of podosomes and invadopodia: traits, formation and performance. Nat Rev Mol Cell Biol. 2011;12:413–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beaty BT, Condeelis J. Digging slightly deeper: the phases of invadopodium formation and maturation. Eur J Cell Biol. 2014;93:438–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Li J, Xia Y, Gong R, Wang Ok, Yan Z, et al. Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy. J Clin Oncol. 2013;31:1188–95.

    PubMed 

    Google Scholar
     

  • Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Remedy and prognosis for sufferers with intrahepatic cholangiocarcinoma: systematic evaluate and meta-analysis. JAMA Surg. 2014;149:565–74.

    PubMed 

    Google Scholar
     

  • Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, et al. Cholangiocarcinoma: present data and future views consensus assertion from the European Community for the Examine of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13:261–80.

    PubMed 

    Google Scholar
     

  • Rizvi S, Gores GJ. Rising molecular therapeutic targets for cholangiocarcinoma. J Hepatol. 2017;67:632–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanahan D, Weinberg RA. Hallmarks of most cancers: the following technology. Cell .2011;144:646–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Yilmaz M, Christofori G. EMT, the cytoskeleton, and most cancers cell invasion. Most cancers Metastasis Rev. 2009;28:15–33.

    PubMed 

    Google Scholar
     

  • Christofori G. New indicators from the invasive entrance. Nature .2006;441:444–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Ferrari F, Mercaldo V, Piccoli G, Sala C, Cannata S, Achsel T, et al. The delicate X psychological retardation protein-RNP granules present an mGluR-dependent localization within the post-synaptic spines. Mol Cell Neurosci. 2007;34:343–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, et al. The translational panorama of mTOR signalling steers most cancers initiation and metastasis. Nature .2012;485:55–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silvera D, Formenti SC, Schneider RJ. Translational management in most cancers. Nat Rev Most cancers. 2010;10:254–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Stumpf CR, Ruggero D. The cancerous translation equipment. Curr Opin Genet Dev. 2011;21:474–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bravo-Cordero JJ, Hodgson L, Condeelis J. Directed cell invasion and migration throughout metastasis. Curr Opin Cell Biol. 2012;24:277–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Eddy RJ, Weidmann MD, Sharma VP, Condeelis JS. Tumor cell invadopodia: invasive protrusions that orchestrate metastasis. Traits cell Biol. 2017;27:595–607.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Insall RH, Machesky LM. Actin dynamics at the vanguard: from easy equipment to complicated networks. Dev Cell. 2009;17:310–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Ridley AJ. Life at the vanguard. Cell .2011;145:1012–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Pollard TD, Cooper JA. Actin a central participant in cell form and motion. Science. 2009;326:1208–12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao G, Mingle L, Van De Water L, Liu G. Management of cell migration by way of mRNA localization and native translation. Wiley Interdiscip Rev RNA. 2015;6:1–15.

    CAS 
    PubMed 

    Google Scholar
     

  • Taniuchi Ok, Furihata M, Hanazaki Ok, Saito M, Saibara T. IGF2BP3-mediated translation in cell protrusions promotes cell invasiveness and metastasis of pancreatic most cancers. Oncotarget .2014;5:6832–45.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell JL, Wachter Ok, Mühleck B, Pazaitis N, Köhn M, Lederer M, et al. Insulin-like development issue 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of most cancers development? Cell Mol Life Sci. 2013;70:2657–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Vikesaa J, Hansen TV, Jønson L, Borup R, Wewer UM, Christiansen J, et al. RNA-binding IMPs promote cell adhesion and invadopodia formation. EMBO J. 2006;25:1456–68.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davidovic L, Jaglin XH, Lepagnol-Bestel AM, Tremblay S, Simonneau M, Bardoni B, et al. The delicate X psychological retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules. Hum Mol Genet. 2007;16:3047–58.

    CAS 
    PubMed 

    Google Scholar
     

  • Dictenberg JB, Swanger SA, Antar LN, Singer RH, Bassell GJ. A direct position for FMRP in activity-dependent dendritic mRNA transport hyperlinks filopodial-spine morphogenesis to fragile X syndrome. Dev Cell. 2008;14:926–39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindsay AJ, McCaffrey MW. Myosin Va is required for the transport of fragile X psychological retardation protein (FMRP) granules. Biol Cell. 2014;106:57–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Ohashi S, Koike Ok, Omori A, Ichinose S, Ohara S, Kobayashi S, et al. Identification of mRNA/protein (mRNP) complexes containing Puralpha, mStaufen, fragile X protein, and myosin Va and their affiliation with tough endoplasmic reticulum outfitted with a kinesin motor. J Biol Chem. 2002;277:37804–10.

    CAS 
    PubMed 

    Google Scholar
     

  • Mili S, Moissoglu Ok, Macara IG. Genome-wide display screen reveals APC-associated RNAs enriched in cell protrusions. Nature. 2008;453:115–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaeffer C, Bardoni B, Mandel JL, Ehresmann B, Ehresmann C, Moine H. The delicate X psychological retardation protein binds particularly to its mRNA through a purine quartet motif. EMBO J. 2001;20:4803–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Didiot MC, Tian Z, Schaeffer C, Subramanian M, Mandel JL, Moine H. The G-quartet containing FMRP binding website in FMR1 mRNA is a potent exonic splicing enhancer. Nucleic Acids Res. 2008;36:4902–12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janusz A, Milek J, Perycz M, Pacini L, Bagni C, Kaczmarek L, et al. The Fragile X psychological retardation protein regulates matrix metalloproteinase 9 mRNA at synapses. J Neurosci. 2013;33:18234–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sidhu H, Dansie LE, Hickmott PW, Ethell DW, Ethell IM. Genetic elimination of matrix metalloproteinase 9 rescues the signs of fragile X syndrome in a mouse mannequin. J Neurosci. 2014;34:9867–79.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gkogkas CG, Khoutorsky A, Cao R, Jafarnejad SM, Prager-Khoutorsky M, Giannakas N, et al. Pharmacogenetic inhibition of eIF4E-dependent Mmp9 mRNA translation reverses fragile X syndrome-like phenotypes. Cell Rep. 2014;9:1742–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kao DI, Aldridge GM, Weiler IJ, Greenough WT. Altered mRNA transport, docking, and protein translation in neurons missing fragile X psychological retardation protein. Proc Natl Acad Sci U.S.A. 2010;107:15601–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Hulst C, De Geest N, Reeve SP, Van Dam D, De Deyn PP, Hassan BA, et al. Decreased expression of the GABAA receptor in fragile X syndrome. Mind Res. 2006;1121:238–45.

    PubMed 

    Google Scholar
     

  • Zalfa F, Eleuteri B, Dickson KS, Mercaldo V, De Rubeis S, Di, et al. A brand new perform for the delicate X psychological retardation protein in regulation of PSD-95 mRNA stability. Nat Neurosci. 2007;10:578–87.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, Wang Q, Huang Y. Fragile X psychological retardation protein FMRP and the RNA export issue NXF2 affiliate with and destabilize Nxf1 mRNA in neuronal cells. Proc Natl Acad Sci U.S.A. 2007;104:10057–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Rubeis S, Bagni C. Fragile X psychological retardation protein management of neuronal mRNA metabolism: insights into mRNA stability. Mol Cell Neurosci. 2010;43:43–50.

    PubMed 

    Google Scholar
     

  • Bhogal B, Jepson JE, Savva YA, Pepper AS, Reenan RA, Jongens TA. Modulation of dADAR-dependent RNA enhancing by the Drosophila fragile X psychological retardation protein. Nat Neurosci. 2011;14:1517–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filippini A, Bonini D, Lacoux C, Pacini L, Zingariello M, Sancillo L, et al. Absence of the delicate X psychological retardation protein leads to defects of RNA enhancing of neuronal mRNAs in mouse. RNA Biol. 2017;14:1580–91.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zalfa F, Giorgi M, Primerano B, Moro A, Di Penta A, Reis S, et al. The delicate X syndrome protein FMRP associates with BC1 RNA and regulates the interpretation of particular mRNAs at synapses. Cell .2003;112:317–27.

    CAS 
    PubMed 

    Google Scholar
     

  • Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F, De Rubeis S, et al. The delicate X syndrome protein represses activity-dependent translation by way of CYFIP1, a brand new 4E-BP. Cell .2008;134:1042–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Zach S, Birgin E, Ruckert F. Major cholangiocellular carcinoma cell strains. J Stem Cell Res Transpl. 2015;2:1013.


    Google Scholar
     

  • Elizalde M, Urtasun R, Azkona M, Latasa MU, Goñi S, García-Irigoyen O, et al. Splicing regulator SLU7 is important for sustaining liver homeostasis. J Clin Make investments. 2014;124:2909–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bárcena-Varela M, Caruso S, Llerena S, Álvarez-Sola G, Uriarte I, Latasa MU, et al. Twin focusing on of histone methyltransferase G9a and DNA-methyltransferase 1 for the remedy of experimental hepatocellular carcinoma. Hepatology .2019;69:587–603.

    PubMed 

    Google Scholar
     

  • Vira VA, Kenneth MY, Susette C, Mueller ECM. Degradation assays for analyzing native cell invasion. Strategies in molecular biology. Extracell Matrix Protoc. 2009;522:211–9.


    Google Scholar
     

  • Hot Topics

    Related Articles