Fearon, E. R. & Vogelstein, B. A genetic mannequin for colorectal tumorigenesis. Cell 61, 759–767 (1990).
Bos, J. L. et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 327, 293–297 (1987).
Karapetis, C. S. et al. Okay-ras mutations and profit from cetuximab in superior colorectal most cancers. N. Engl. J. Med. 359, 1757–1765 (2008).
Zhang, Y. et al. A Pan-Most cancers Proteogenomic Atlas of PI3K/AKT/mTOR pathway alterations. Most cancers Cell 31, 820–832.e823 (2017).
Moore, A. R., Rosenberg, S. C., McCormick, F. & Malek, S. RAS-targeted therapies: is the undruggable drugged? Nat. Rev. Drug Discov. 19, 533–552 (2020).
Fruman, D. A. et al. The PI3K pathway in human illness. Cell 170, 605–635 (2017).
Voutsadakis, I. A. KRAS mutated colorectal cancers with or with out PIK3CA mutations: scientific and molecular profiles inform present and future therapeutics. Crit. Rev. Oncol. Hematol. 186, 103987 (2023).
Glaviano, A. et al. PI3K/AKT/mTOR signaling transduction pathway and focused therapies in most cancers. Mol. Most cancers 22, 138 (2023).
Vasan, N. & Cantley, L. C. At a crossroads: translate the roles of PI3K in oncogenic and metabolic signalling into enhancements in most cancers remedy. Nat. Rev. Clin. Oncol. 19, 471–485 (2022).
Tolaney, S. M. et al. Section Ib examine of ribociclib plus fulvestrant and ribociclib plus fulvestrant plus PI3K inhibitor (alpelisib or buparlisib) for HR+ superior breast most cancers. Clin. Most cancers Res. 27, 418–428 (2021).
Banerji, U. et al. A section I open-label examine to establish a dosing routine of the pan-AKT inhibitor AZD5363 for analysis in stable tumors and in PIK3CA-mutated breast and gynecologic cancers. Clin. Most cancers Res. 24, 2050–2059 (2018).
Lee, B. J. et al. Selective inhibitors of mTORC1 activate 4EBP1 and suppress tumor development. Nat. Chem. Biol. 17, 1065–1074 (2021).
Vanhaesebroeck, B., Perry, M. W. D., Brown, J. R., André, F. & Okkenhaug, Okay. PI3K inhibitors are lastly coming of age. Nat. Rev. Drug Discov. 20, 741–769 (2021).
Mora, A., Komander, D., van Aalten, D. M. & Alessi, D. R. PDK1, the grasp regulator of AGC kinase sign transduction. Semin. Cell. Dev. Biol. 15, 161–170 (2004).
Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).
Eser, S. et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and most cancers. Most cancers Cell 23, 406–420 (2013).
Cai, W. et al. A genome-wide display screen identifies PDPK1 as a goal to reinforce the efficacy of MEK1/2 inhibitors in NRAS mutant melanoma. Most cancers Res. 82, 2625–2639 (2022).
Coppé, J. P. et al. Mapping phospho-catalytic dependencies of therapy-resistant tumors reveals actionable vulnerabilities. Nat. Cell. Biol. 21, 778–790 (2019).
Peifer, C. & Alessi, D. R. Small-molecule inhibitors of PDK1. ChemMedChem 3, 1810–1838 (2008).
Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. & Thomsen, G. H. A SMAD ubiquitin ligase targets the BMP pathway and impacts embryonic sample formation. Nature 400, 687–693 (1999).
Yamashita, M. et al. Ubiquitin ligase Smurf1 controls osteoblast exercise and bone homeostasis by concentrating on MEKK2 for degradation. Cell 121, 101–113 (2005).
Xia, Q., Li, Y., Han, D. & Dong, L. SMURF1, a promoter of tumor cell development? Most cancers Gene Ther. 28, 551–565 (2021).
Barlaam, B. et al. Discovery of (R)-8-(1-(3,5-difluorophenylamino)ethyl)-N,N-dimethyl-2-morpholino-4-oxo-4H-chromene-6-carboxamide (AZD8186): a potent and selective inhibitor of PI3Kβ and PI3Kδ for the therapy of PTEN-deficient cancers. J. Med. Chem. 58, 943–962 (2015).
Jo, H. et al. Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal dying. Proc. Natl Acad. Sci. USA 109, 10581–10586 (2012).
Xie, P. et al. The covalent modifier Nedd8 is essential for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat. Commun. 5, 3733 (2014).
Xie, P. et al. Neddylation of PTEN regulates its nuclear import and promotes tumor growth. Cell. Res. 31, 291–311 (2021).
Lobato-Gil, S. et al. Proteome-wide identification of NEDD8 modification websites reveals distinct proteomes for canonical and atypical NEDDylation. Cell Rep. 34, 108635 (2021).
Oliveira, C. A. B., Isaakova, E., Beli, P. & Xirodimas, D. P. A mass spectrometry-based technique for mapping modification websites for the ubiquitin-like modifier NEDD8. Strategies Mol. Biol. 2602, 137–149 (2023).
Schulze, J. O. et al. Bidirectional allosteric communication between the ATP-binding web site and the regulatory PIF pocket in PDK1 protein kinase. Cell Chem. Biol. 23, 1193–1205 (2016).
Yang, W. L. et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325, 1134–1138 (2009).
Chan, C. H. et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, Herceptin sensitivity, and tumorigenesis. Cell 149, 1098–1111 (2012).
Wang, G. et al. SETDB1-mediated methylation of Akt promotes its K63-linked ubiquitination and activation resulting in tumorigenesis. Nat. Cell. Biol. 21, 214–225 (2019).
Castagnoli, L. et al. Selectivity of the CUBAN area within the recognition of ubiquitin and NEDD8. FEBS J. 286, 653–677 (2018).
Kwon, A., Lee, H. L., Woo, Okay. M., Ryoo, H. M. & Baek, J. H. SMURF1 performs a job in EGF-induced breast most cancers cell migration and invasion. Mol. Cells 6, 548–555 (2013).
Lee, H. L. et al. Smurf1 performs a job in EGF inhibition of BMP2-induced osteogenic differentiation. Exp. Cell Res. 323, 276–287 (2014).
Whitmarsh, A. J. Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. Biochim. Biophys. Acta 1773, 1285–1298 (2007).
Békés, M., Langley, D. R. & Crews, C. M. PROTAC focused protein degraders: the previous is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).
Adams, C. M. et al. Focused MDM2 degradation reveals a brand new vulnerability for p53-inactivated triple-negative breast most cancers. Most cancers Discov. 13, 1210–1229 (2023).
Powell, C. E. et al. Selective degradation-inducing probes for finding out cereblon (CRBN) biology. RSC Med Chem. 12, 1381–1390 (2021).
Maniaci, C. et al. Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat. Commun. 8, 830 (2017).
Zhang, Y., Wang, C., Cao, Y., Gu, Y. & Zhang, L. Selective compounds improve osteoblastic exercise by concentrating on HECT area of ubiquitin ligase Smurf1. Oncotarget 8, 50521–50533 (2016).
Cao, Y. et al. Selective small molecule compounds enhance BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Sci. Rep. 4, 4965 (2014).
Bowers, Okay. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the ACM/IEEE Convention on Supercomputing (SC06) (Affiliation for Computing Equipment, 2006).
Du, M. G. et al. Neddylation modification of the U3 snoRNA-binding protein RRP9 by Smurf1 promotes tumorigenesis. J. Biol. Chem. 297, 101307 (2021).
Fischer, E. S. et al. Construction of the DDB1-CRBN E3 ubiquitin ligase in complicated with thalidomide. Nature 512, 49–53 (2014).
Zhu, J. et al. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Most cancers Res. 64, 4309–4318 (2004).
Ziemba, B. P., Pilling, C., Calleja, V., Larijani, B. & Falke, J. J. The PH area of phosphoinositide-dependent kinase-1 displays a novel, phospho-regulated monomer-dimer equilibrium with essential implications for kinase area activation: single-molecule and ensemble research. Biochemistry 52, 4820–4829 (2013).
Levina, A., Fleming, Okay. D., Burke, J. E. & Leonard, T. A. Activation of the important kinase PDK1 by phosphoinositide-driven trans-autophosphorylation. Nat. Commun. 13, 1874 (2022).
Yue, T. et al. The aging-related threat signature in colorectal most cancers. Ageing 13, 7330–7349 (2021).
Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C. & Koeffler, H. P. Maftools: environment friendly and complete evaluation of somatic variants in most cancers. Genome Res. 28, 1747–1756 (2018).
Gu, Z., Eils, R. & Schlesner, M. Complicated heatmaps reveal patterns and correlations in multidimensional genomic knowledge. Bioinformatics 32, 2847–2849 (2016).
Wang, Q. et al. Immunogenomic identification for predicting the prognosis of cervical most cancers sufferers. Int. J. Mol. Sci. 22, 2442 (2021).
Koboldt, D. C. et al. VarScan 2: somatic mutation and duplicate quantity alteration discovery in most cancers by exome sequencing. Genome Res. 22, 568–576 (2012).

