Focusing on Smurf1 to dam PDK1–Akt signaling in KRAS-mutated colorectal most cancers


  • Fearon, E. R. & Vogelstein, B. A genetic mannequin for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bos, J. L. et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 327, 293–297 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karapetis, C. S. et al. Okay-ras mutations and profit from cetuximab in superior colorectal most cancers. N. Engl. J. Med. 359, 1757–1765 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. A Pan-Most cancers Proteogenomic Atlas of PI3K/AKT/mTOR pathway alterations. Most cancers Cell 31, 820–832.e823 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore, A. R., Rosenberg, S. C., McCormick, F. & Malek, S. RAS-targeted therapies: is the undruggable drugged? Nat. Rev. Drug Discov. 19, 533–552 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fruman, D. A. et al. The PI3K pathway in human illness. Cell 170, 605–635 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voutsadakis, I. A. KRAS mutated colorectal cancers with or with out PIK3CA mutations: scientific and molecular profiles inform present and future therapeutics. Crit. Rev. Oncol. Hematol. 186, 103987 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Glaviano, A. et al. PI3K/AKT/mTOR signaling transduction pathway and focused therapies in most cancers. Mol. Most cancers 22, 138 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasan, N. & Cantley, L. C. At a crossroads: translate the roles of PI3K in oncogenic and metabolic signalling into enhancements in most cancers remedy. Nat. Rev. Clin. Oncol. 19, 471–485 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tolaney, S. M. et al. Section Ib examine of ribociclib plus fulvestrant and ribociclib plus fulvestrant plus PI3K inhibitor (alpelisib or buparlisib) for HR+ superior breast most cancers. Clin. Most cancers Res. 27, 418–428 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerji, U. et al. A section I open-label examine to establish a dosing routine of the pan-AKT inhibitor AZD5363 for analysis in stable tumors and in PIK3CA-mutated breast and gynecologic cancers. Clin. Most cancers Res. 24, 2050–2059 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, B. J. et al. Selective inhibitors of mTORC1 activate 4EBP1 and suppress tumor development. Nat. Chem. Biol. 17, 1065–1074 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanhaesebroeck, B., Perry, M. W. D., Brown, J. R., André, F. & Okkenhaug, Okay. PI3K inhibitors are lastly coming of age. Nat. Rev. Drug Discov. 20, 741–769 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mora, A., Komander, D., van Aalten, D. M. & Alessi, D. R. PDK1, the grasp regulator of AGC kinase sign transduction. Semin. Cell. Dev. Biol. 15, 161–170 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eser, S. et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and most cancers. Most cancers Cell 23, 406–420 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, W. et al. A genome-wide display screen identifies PDPK1 as a goal to reinforce the efficacy of MEK1/2 inhibitors in NRAS mutant melanoma. Most cancers Res. 82, 2625–2639 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coppé, J. P. et al. Mapping phospho-catalytic dependencies of therapy-resistant tumors reveals actionable vulnerabilities. Nat. Cell. Biol. 21, 778–790 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peifer, C. & Alessi, D. R. Small-molecule inhibitors of PDK1. ChemMedChem 3, 1810–1838 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. & Thomsen, G. H. A SMAD ubiquitin ligase targets the BMP pathway and impacts embryonic sample formation. Nature 400, 687–693 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamashita, M. et al. Ubiquitin ligase Smurf1 controls osteoblast exercise and bone homeostasis by concentrating on MEKK2 for degradation. Cell 121, 101–113 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, Q., Li, Y., Han, D. & Dong, L. SMURF1, a promoter of tumor cell development? Most cancers Gene Ther. 28, 551–565 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barlaam, B. et al. Discovery of (R)-8-(1-(3,5-difluorophenylamino)ethyl)-N,N-dimethyl-2-morpholino-4-oxo-4H-chromene-6-carboxamide (AZD8186): a potent and selective inhibitor of PI3Kβ and PI3Kδ for the therapy of PTEN-deficient cancers. J. Med. Chem. 58, 943–962 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jo, H. et al. Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal dying. Proc. Natl Acad. Sci. USA 109, 10581–10586 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, P. et al. The covalent modifier Nedd8 is essential for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat. Commun. 5, 3733 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, P. et al. Neddylation of PTEN regulates its nuclear import and promotes tumor growth. Cell. Res. 31, 291–311 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lobato-Gil, S. et al. Proteome-wide identification of NEDD8 modification websites reveals distinct proteomes for canonical and atypical NEDDylation. Cell Rep. 34, 108635 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliveira, C. A. B., Isaakova, E., Beli, P. & Xirodimas, D. P. A mass spectrometry-based technique for mapping modification websites for the ubiquitin-like modifier NEDD8. Strategies Mol. Biol. 2602, 137–149 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulze, J. O. et al. Bidirectional allosteric communication between the ATP-binding web site and the regulatory PIF pocket in PDK1 protein kinase. Cell Chem. Biol. 23, 1193–1205 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, W. L. et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325, 1134–1138 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, C. H. et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, Herceptin sensitivity, and tumorigenesis. Cell 149, 1098–1111 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, G. et al. SETDB1-mediated methylation of Akt promotes its K63-linked ubiquitination and activation resulting in tumorigenesis. Nat. Cell. Biol. 21, 214–225 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castagnoli, L. et al. Selectivity of the CUBAN area within the recognition of ubiquitin and NEDD8. FEBS J. 286, 653–677 (2018).

    Article 

    Google Scholar
     

  • Kwon, A., Lee, H. L., Woo, Okay. M., Ryoo, H. M. & Baek, J. H. SMURF1 performs a job in EGF-induced breast most cancers cell migration and invasion. Mol. Cells 6, 548–555 (2013).

    Article 

    Google Scholar
     

  • Lee, H. L. et al. Smurf1 performs a job in EGF inhibition of BMP2-induced osteogenic differentiation. Exp. Cell Res. 323, 276–287 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitmarsh, A. J. Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. Biochim. Biophys. Acta 1773, 1285–1298 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Békés, M., Langley, D. R. & Crews, C. M. PROTAC focused protein degraders: the previous is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, C. M. et al. Focused MDM2 degradation reveals a brand new vulnerability for p53-inactivated triple-negative breast most cancers. Most cancers Discov. 13, 1210–1229 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powell, C. E. et al. Selective degradation-inducing probes for finding out cereblon (CRBN) biology. RSC Med Chem. 12, 1381–1390 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maniaci, C. et al. Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat. Commun. 8, 830 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Wang, C., Cao, Y., Gu, Y. & Zhang, L. Selective compounds improve osteoblastic exercise by concentrating on HECT area of ubiquitin ligase Smurf1. Oncotarget 8, 50521–50533 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y. et al. Selective small molecule compounds enhance BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Sci. Rep. 4, 4965 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowers, Okay. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the ACM/IEEE Convention on Supercomputing (SC06) (Affiliation for Computing Equipment, 2006).

  • Du, M. G. et al. Neddylation modification of the U3 snoRNA-binding protein RRP9 by Smurf1 promotes tumorigenesis. J. Biol. Chem. 297, 101307 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, E. S. et al. Construction of the DDB1-CRBN E3 ubiquitin ligase in complicated with thalidomide. Nature 512, 49–53 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, J. et al. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Most cancers Res. 64, 4309–4318 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ziemba, B. P., Pilling, C., Calleja, V., Larijani, B. & Falke, J. J. The PH area of phosphoinositide-dependent kinase-1 displays a novel, phospho-regulated monomer-dimer equilibrium with essential implications for kinase area activation: single-molecule and ensemble research. Biochemistry 52, 4820–4829 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levina, A., Fleming, Okay. D., Burke, J. E. & Leonard, T. A. Activation of the important kinase PDK1 by phosphoinositide-driven trans-autophosphorylation. Nat. Commun. 13, 1874 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue, T. et al. The aging-related threat signature in colorectal most cancers. Ageing 13, 7330–7349 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C. & Koeffler, H. P. Maftools: environment friendly and complete evaluation of somatic variants in most cancers. Genome Res. 28, 1747–1756 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, Z., Eils, R. & Schlesner, M. Complicated heatmaps reveal patterns and correlations in multidimensional genomic knowledge. Bioinformatics 32, 2847–2849 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Immunogenomic identification for predicting the prognosis of cervical most cancers sufferers. Int. J. Mol. Sci. 22, 2442 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koboldt, D. C. et al. VarScan 2: somatic mutation and duplicate quantity alteration discovery in most cancers by exome sequencing. Genome Res. 22, 568–576 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hot Topics

    Related Articles