Focused activation of ferroptosis in colorectal most cancers by way of LGR4 concentrating on overcomes acquired drug resistance


  • Hanahan, D. & Weinberg, R. A. Hallmarks of most cancers: the subsequent era. Cell 144, 646–674 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in most cancers. Nature 575, 299–309 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boumahdi, S. & de Sauvage, F. J. The good escape: tumour cell plasticity in resistance to focused remedy. Nat. Rev. Drug Discov. 19, 39–56 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Robey, R. W. et al. Revisiting the position of ABC transporters in multidrug-resistant most cancers. Nat. Rev. Most cancers 18, 452–464 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takebe, N. et al. Concentrating on Notch, Hedgehog, and Wnt pathways in most cancers stem cells: medical replace. Nat. Rev. Clin. Oncol. 12, 445–464 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hangauer, M. J. et al. Drug-tolerant persister most cancers cells are weak to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bugter, J. M., Fenderico, N. & Maurice, M. M. Mutations and mechanisms of WNT pathway tumour suppressors in most cancers. Nat. Rev. Most cancers 21, 5–21 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Rijsewijk, F. et al. The Drosophila homolog of the mouse mammary oncogene int-1 is equivalent to the phase polarity gene wingless. Cell 50, 649–657 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nusse, R. & Varmus, H. E. Many tumors induced by the mouse mammary tumor virus include a provirus built-in in the identical area of the host genome. Cell 31, 99–109 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nusse, R. & Clevers, H. Wnt/β-catenin signaling, illness, and rising therapeutic modalities. Cell 169, 985–999 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carmon, Okay. S., Gong, X., Yi, J., Thomas, A. & Liu, Q. RSPO–LGR4 features by way of IQGAP1 to potentiate Wnt signaling. Proc. Natl Acad. Sci. USA 111, E1221–E1229 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, H. et al. Wnt signaling in colorectal most cancers: pathogenic position and therapeutic goal. Mol. Most cancers 21, 144 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeung, J. et al. β-Catenin mediates the institution and drug resistance of MLL leukemic stem cells. Most cancers Cell 18, 606–618 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stein, U. et al. Affect of mutant β-catenin on ABCB1 expression and remedy response in colon most cancers cells. Br. J. Most cancers 106, 1395–1405 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wielenga, V. J. et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am. J. Pathol. 154, 515–523 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, L. et al. CD44 is of useful significance for colorectal most cancers stem cells. Clin. Most cancers Res. 14, 6751–6760 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pich, O. et al. The translational challenges of precision oncology. Most cancers Cell 40, 458–478 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ward, R. A. et al. Challenges and alternatives in most cancers drug resistance. Chem. Rev. 121, 3297–3351 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dixon, S. J. et al. Ferroptosis: an iron-dependent type of nonapoptotic cell demise. Cell 149, 1060–1072 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ingold, I. et al. Selenium utilization by GPX4 is required to forestall hydroperoxide-induced ferroptosis. Cell 172, 409–422 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, W. S. et al. Regulation of ferroptotic most cancers cell demise by GPX4. Cell 156, 317–331 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, J. Okay. M. et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox steadiness. Proc. Natl Acad. Sci. USA 116, 9433–9442 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. Intercellular interplay dictates most cancers cell ferroptosis by way of NF2–YAP signalling. Nature 572, 402–406 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, L. et al. Ferroptosis as a p53-mediated exercise throughout tumour suppression. Nature 520, 57–62 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stockwell, B. R. Ferroptosis turns 10: rising mechanisms, physiological features, and therapeutic functions. Cell 185, 2401–2421 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei, G., Zhuang, L. & Gan, B. Concentrating on ferroptosis as a vulnerability in most cancers. Nat. Rev. Most cancers 22, 381–396 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedmann Angeli, J. P., Krysko, D. V. & Conrad, M. Ferroptosis on the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Most cancers 19, 405–414 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viswanathan, V. S. et al. Dependency of a therapy-resistant state of most cancers cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez, R., Schreiber, S. L. & Conrad, M. Persister most cancers cells: iron habit and vulnerability to ferroptosis. Mol. Cell 82, 728–740 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barker, N. et al. Identification of stem cells in small gut and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Lau, W. et al. Lgr5 homologues affiliate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Yan, Okay. S. et al. Non-equivalence of Wnt and R-spondin ligands throughout Lgr5+ intestinal stem-cell self-renewal. Nature 545, 238–242 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, T. et al. Lengthy-term growth of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sasaki, N. & Clevers, H. Learning mobile heterogeneity and drug sensitivity in colorectal most cancers utilizing organoid know-how. Curr. Opin. Genet. Dev. 52, 117–122 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, Y. et al. Affected person-derived organoids predict chemoradiation responses of domestically superior rectal most cancers. Cell Stem Cell 26, 17–26 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, Q. et al. LGR4 cooperates with PrPc to endow the stemness of colorectal most cancers stem cells contributing to tumorigenesis and liver metastasis. Most cancers Lett. 540, 215725 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roerink, S. F. et al. Intra-tumour diversification in colorectal most cancers on the single-cell degree. Nature 556, 457–462 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jenkins, R. W. et al. Ex vivo profiling of PD-1 blockade utilizing organotypic tumor spheroids. Most cancers Discov. 8, 196–215 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. & Lippard, S. J. Mobile processing of platinum anticancer medicine. Nat. Rev. Drug Discov. 4, 307–320 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang, P. M. et al. Ferredoxin reductase impacts p53-dependent, 5-fluorouracil-induced apoptosis in colorectal most cancers cells. Nat. Med. 7, 1111–1117 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, H. et al. Transferrin receptor is a particular ferroptosis marker. Cell Rep. 30, 3411–3423 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anastas, J. N. & Moon, R. T. WNT signalling pathways as therapeutic targets in most cancers. Nat. Rev. Most cancers 13, 11–26 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kahn, M. Can we safely goal the WNT pathway? Nat. Rev. Drug Discov. 13, 513–532 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harnack, C. et al. R-spondin 3 promotes stem cell restoration and epithelial regeneration within the colon. Nat. Commun. 10, 4368 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salik, B. et al. Concentrating on RSPO3-LGR4 signaling for leukemia stem cell eradication in acute myeloid leukemia. Most cancers Cell 38, 263–278 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassannia, B., Vandenabeele, P. & Vanden Berghe, T. Concentrating on ferroptosis to iron out most cancers. Most cancers Cell 35, 830–849 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. BAP1 hyperlinks metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol. 20, 1181–1192 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to most cancers therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, F. et al. Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis. Cell Discov. 8, 40 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, G. H. et al. Institution of a human colorectal most cancers cell line P6C with stem cell properties and resistance to chemotherapeutic medicine. Acta Pharmacol. Sin. 34, 793–804 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van de Wetering, M. et al. Potential derivation of a residing organoid biobank of colorectal most cancers sufferers. Cell 161, 933–945 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R bundle for evaluating organic themes amongst gene clusters. Omics 16, 284–287 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Summa, S. et al. GATK onerous filtering: tunable parameters to enhance variant calling for subsequent era sequencing focused gene panel information. BMC Bioinform. 18, 119 (2017).

    Article 

    Google Scholar
     

  • Kim, J. Y. et al. HDAC8 deacetylates HIF-1α and enhances its protein stability to advertise tumor development and migration in melanoma. Cancers 15, 1123 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rescigno, P. et al. Characterizing CDK12-mutated prostate cancers. Clin. Most cancers Res. 27, 566–574 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Sousa e Melo, F. et al. A definite position for Lgr5(+) stem cells in major and metastatic colon most cancers. Nature 543, 676–680 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Du, L. et al. CD44-positive most cancers stem cells expressing mobile prion protein contribute to metastatic capability in colorectal most cancers. Most cancers Res. 73, 2682–2694 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, Z. et al. LGR4 promotes tumorigenesis by activating TGF-β1/Smad signaling pathway in a number of myeloma. Cell. Signalling 110, 110814 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldman, M. J. et al. Visualizing and decoding most cancers genomics information by way of the Xena platform. Nat. Biotechnol. 38, 675–678 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hot Topics

    Related Articles