Zenz T, Habe S, Denzel T, Mohr J, Winkler D, Buhler A, et al. Detailed evaluation of p53 pathway defects in fludarabine-refractory CLL: dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a potential scientific trial. Blood. 2009;114:2589–97.
Rossi D, Spina V, Deambrogi C, Rasi S, Laurenti L, Stamatopoulos Okay, et al. The genetics of Richter syndrome reveals illness heterogeneity and predicts survival after transformation. Blood. 2011;117:3391–401.
Griffin R, Wiedmeier-Nutor JE, Parikh SA, McCabe CE, O’Brien DR, Boddicker NJ, et al. Differential prognosis of single and a number of TP53 abnormalities in high-count MBL and untreated CLL. Blood Adv. 2023;7:3169–79.
Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T, Pinyol M, et al. Medical affect of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in continual lymphocytic leukemia. Blood. 2016;127:2122–30.
Rossi D, Khiabanian H, Spina V, Ciardullo C, Bruscaggin A, Famà R, et al. Medical affect of small TP53 mutated subclones in continual lymphocytic leukemia. Blood. 2014;123:2139–47.
Malcikova J, Pavlova S, Barbara KV, Radova L, Plevova Okay, Kotaskova J, et al. Low-burden TP53 mutations in CLL: scientific affect and clonal evolution throughout the context of various therapy choices. Blood. 2021;138:2670–85.
Bomben R, Rossi FM, Vit F, Bittolo T, D’Agaro T, Zucchetto A, et al. Mutations with low variant allele frequency predict quick survival in continual lymphocytic leukemia. Clin Most cancers Res. 2021;27:5566–75.
Blakemore SJ, Clifford R, Parker H, Antoniou P, Stec-Dziedzic E, Larrayoz M, et al. Medical significance of TP53, BIRC3, ATM and MAPK-ERK genes in continual lymphocytic leukaemia: knowledge from the randomised UK LRF CLL4 trial. Leukemia. 2020;34:1760–74.
Brieghel C, Kinalis S, Yde CW, Schmidt AY, Jønson L, Andersen MA, et al. Deep focused sequencing of TP53 in continual lymphocytic leukemia: scientific affect at prognosis and at time of therapy. Haematologica. 2019;104:789–96.
Catherwood MA, Wren D, Chiecchio L, Cavalieri D, Donaldson D, Lawless S, et al. TP53 mutations recognized utilizing NGS comprise the overwhelming majority of TP53 disruptions in CLL: outcomes from a multicentre examine. Entrance Oncol. 2022;12:909615.
Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW, et al. p53 mutations in human lymphoid malignancies: affiliation with Burkitt lymphoma and continual lymphocytic leukemia. Proc Natl Acad Sci USA. 1991;88:5413–7.
el Rouby S, Thomas A, Costin D, Rosenberg CR, Potmesil M, Silber R, et al. p53 gene mutation in B-cell continual lymphocytic leukemia is related to drug resistance and is unbiased of MDR1/MDR3 gene expression. Blood. 1993;82:3452–9.
Fenaux P, Preudhomme C, Lai JL, Quiquandon I, Jonveaux P, Vanrumbeke M, et al. Mutations of the p53 gene in B-cell continual lymphocytic leukemia: a report on 39 instances with cytogenetic evaluation. Leukemia. 1992;6:246–50.
Dohner H, Fischer Okay, Bentz M, Hansen Okay, Benner A, Cabot G, et al. p53 gene deletion predicts for poor survival and non-response to remedy with purine analogs in continual B-cell leukemias. Blood. 1995;85:1580–9.
Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, et al. Genomic aberrations and survival in continual lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.
Zenz T, Krober A, Scherer Okay, Habe S, Buhler A, Benner A, et al. Monoallelic TP53 inactivation is related to poor prognosis in continual lymphocytic leukemia: outcomes from an in depth genetic characterization with long-term follow-up. Blood. 2008;112:3322–9.
Rossi D, Cerri M, Deambrogi C, Sozzi E, Cresta S, Rasi S, et al. The prognostic worth of TP53 mutations in continual lymphocytic leukemia is unbiased of Del17p13: implications for total survival and chemorefractoriness. Clin Most cancers Res. 2009;15:995–1004.
Dicker F, Herholz H, Schnittger S, Nakao A, Patten N, Wu L, et al. The detection of TP53 mutations in continual lymphocytic leukemia independently predicts fast illness development and is very correlated with a posh aberrant karyotype. Leukemia. 2009;23:117–24.
Malcikova J, Smardova J, Rocnova L, Tichy B, Kuglik P, Vranova V, et al. Monoallelic and biallelic inactivation of TP53 gene in continual lymphocytic leukemia: choice, affect on survival, and response to DNA harm. Blood. 2009;114:5307–14.
Zenz T, Eichhorst B, Busch R, Denzel T, Häbe S, Winkler D, et al. TP53 mutation and survival in continual lymphocytic leukemia. J Clin Oncol. 2010;28:4473–9.
Gonzalez D, Martinez P, Wade R, Hockley S, Oscier D, Matutes E, et al. Mutational standing of the TP53 gene as a predictor of response and survival in sufferers with continual lymphocytic leukemia: outcomes from the LRF CLL4 trial. J Clin Oncol. 2011;29:2223–9.
Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Döhner Okay, et al. Gene mutations and therapy end result in continual lymphocytic leukemia: outcomes from the CLL8 trial. Blood. 2014;123:3247–54.
Hoechstetter MA, Busch R, Eichhorst B, Bühler A, Winkler D, Bahlo J, et al. Prognostic mannequin for newly identified CLL sufferers in Binet stage A: outcomes of the multicenter, potential CLL1 trial of the German CLL examine group. Leukemia. 2020;34:1038–51.
Hoechstetter MA, Busch R, Eichhorst B, Bühler A, Winkler D, Eckart MJ, et al. Early, risk-adapted therapy with fludarabine in Binet stage A continual lymphocytic leukemia sufferers: outcomes of the CLL1 trial of the German CLL examine group. Leukemia. 2017;31:2833–7.
group IC-Iw. A world prognostic index for sufferers with continual lymphocytic leukaemia (CLL-IPI): a meta-analysis of particular person affected person knowledge. Lancet Oncol. 2016;17:779–90.
Brieghel C, Galle V, Agius R, da Cunha-Bang C, Andersen MA, Vlummens P, et al. Figuring out sufferers with continual lymphocytic leukemia with out want of therapy: Finish of countless watch and wait? Eur J Haematol. 2022;108:369–78.
Condoluci A, Terzi di Bergamo L, Langerbeins P, Hoechstetter MA, Herling CD, De Paoli L, et al. Worldwide prognostic rating for asymptomatic early-stage continual lymphocytic leukemia. Blood. 2020;135:1859–69.
Hu B, Patel KP, Chen HC, Wang X, Luthra R, Routbort MJ, et al. Affiliation of gene mutations with time-to-first therapy in 384 treatment-naive continual lymphocytic leukaemia sufferers. Br J Haematol. 2019;187:307–18.
Mansouri, Thorvaldsdottir L, Sutton LA B, Karakatsoulis G, Meggendorfer M, Parker H, et al. Totally different prognostic affect of recurrent gene mutations in continual lymphocytic leukemia relying on IGHV gene somatic hypermutation standing: a examine by ERIC in HARMONY. Leukemia. 2023;37:339–47.
Tausch E, Schneider C, Robrecht S, Zhang C, Dolnik A, Bloehdorn J, et al. Prognostic and predictive affect of genetic markers in sufferers with CLL handled with obinutuzumab and venetoclax. Blood. 2020;135:2402–12.
Munir T, Brown JR, O’Brien S, Barrientos JC, Barr PM, Reddy NM, et al. Ultimate evaluation from RESONATE: As much as six years of follow-up on ibrutinib in sufferers with beforehand handled continual lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol. 2019;94:1353–63.
Ghia P, Pluta A, Wach M, Lysak D, Šimkovič M, Kriachok I, et al. Acalabrutinib versus investigator’s selection in relapsed/refractory continual lymphocytic leukemia: ultimate ASCEND trial outcomes. Hemasphere. 2022;6:e801.
Seymour JF, Kipps TJ, Eichhorst BF, D’Rozario J, Owen CJ, Assouline S, et al. Enduring undetectable MRD and up to date outcomes in relapsed/refractory CLL after fixed-duration venetoclax-rituximab. Blood. 2022;140:839–50.
Brieghel C, Aarup Okay, Torp MH, Andersen MA, Yde CW, Tian X, et al. Medical outcomes in sufferers with multi-hit TP53 continual lymphocytic leukemia handled with ibrutinib. Clin Most cancers Res. 2021;27:4531–8.
Bomben R, Rossi FM, Vit F, Bittolo T, Zucchetto A, Papotti R, et al. Medical affect of TP53 disruption in continual lymphocytic leukemia sufferers handled with ibrutinib: a campus CLL examine. Leukemia. 2023;37:914–8.
Huber H, Tausch E, Schneider C, Edenhofer S, von Tresckow J, Robrecht S, et al. Ultimate evaluation of the CLL2-GIVe trial: obinutuzumab, ibrutinib, and venetoclax for untreated CLL with del(17p)/TP53mut. Blood. 2023;142:961–72.
Rigolin GM, Olimpieri PP, Summa V, Celant S, Scarfò L, Tognolo L, et al. Outcomes in sufferers with continual lymphocytic leukemia and TP53 aberration who acquired first-line ibrutinib: a nationwide registry examine from the Italian Medicines Company. Blood Most cancers J. 2023;13:99.
Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum Okay, et al. Ibrutinib therapy for first-line and relapsed/refractory continual lymphocytic leukemia: ultimate evaluation of the pivotal part Ib/II PCYC-1102 examine. Clin Most cancers Res. 2020;26:3918–27.
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, et al. Worldwide Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, scientific, and genomic knowledge. Blood. 2022;140:1200–28.
Sharman JP, Egyed M, Jurczak W, Skarbnik A, Pagel JM, Flinn IW, et al. Efficacy and security in a 4-year follow-up of the ELEVATE-TN examine evaluating acalabrutinib with or with out obinutuzumab versus obinutuzumab plus chlorambucil in treatment-naïve continual lymphocytic leukemia. Leukemia. 2022;36:1171–5.
Woyach JA, Ruppert AS, Heerema NA, Zhao W, Sales space AM, Ding W, et al. Ibrutinib regimens versus chemoimmunotherapy in older sufferers with untreated CLL. N Engl J Med. 2018;379:2517–28.
Al-Sawaf O, Zhang C, Jin HY, Robrecht S, Choi Y, Balasubramanian S, et al. Transcriptomic profiles and 5-year outcomes from the randomized CLL14 examine of venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab in continual lymphocytic leukemia. Nat Commun. 2023;14:2147.
Moreno C, Greil R, Demirkan F, Tedeschi A, Anz B, Larratt L, et al. First-line therapy of continual lymphocytic leukemia with ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab: ultimate evaluation of the randomized, part III iLLUMINATE trial. Haematologica. 2022;107:2108–20.
Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H, et al. iwCLL tips for prognosis, indications for therapy, response evaluation, and supportive administration of CLL. Blood. 2018;131:2745–60.
Brown JR, Eichhorst B, Hillmen P, Jurczak W, Kaźmierczak M, Lamanna N, et al. Zanubrutinib or Ibrutinib in relapsed or refractory continual lymphocytic leukemia. N Engl J Med. 2023;388:319–32.
Byrd JC, Hillmen P, Ghia P, Kater AP, Chanan-Khan A, Furman RR, et al. Acalabrutinib Versus Ibrutinib in Beforehand Handled Persistent Lymphocytic Leukemia: Outcomes of the First Randomized Section III Trial. J Clin Oncol. 2021;39:3441–52.
Ghia P, Wierda WG, Barr PM, Kipps TJ, Siddiqi T, Allan JN, et al. Relapse after first-line fastened period ibrutinib + venetoclax: excessive response charges to ibrutinib retreatment and absence of BTK mutations in sufferers with continual lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) with as much as 5 years of follow-up within the part 2 captivate examine. Blood. 2023;142:633–633.
Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson Okay, Lawrence MS, et al. Evolution and affect of subclonal mutations in continual lymphocytic leukemia. Cell. 2013;152:714–26.
Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al. Mutations driving CLL and their evolution in development and relapse. Nature. 2015;526:525–30.
Fürstenau M, Thus YJ, Robrecht S, Mellink CHM, van der Kevie-Kersemaekers AM, Dubois J, et al. Excessive karyotypic complexity is an unbiased prognostic think about sufferers with CLL handled with venetoclax mixtures. Blood. 2023;142:446–59.
Bonfiglio S, Sutton LA, Ljungström V, Capasso A, Pandzic T, Weström S, et al. BTK and PLCG2 stay unmutated in a single third of sufferers with CLL relapsing on ibrutinib. Blood Adv. 2023;7:2794–806.
Landau DA, Solar C, Rosebrock D, Herman SEM, Fein J, Sivina M, et al. The evolutionary panorama of continual lymphocytic leukemia handled with ibrutinib focused remedy. Nat Commun. 2017;8:2185.
Cafforio L, Raponi S, Cappelli LV, Ilari C, Soscia R, De Propris MS, et al. Therapy with ibrutinib doesn’t induce a TP53 clonal evolution in continual lymphocytic leukemia. Haematologica. 2022;107:334–7.
Gángó A, Alpár D, Galik B, Marosvári D, Kiss R, Fésüs V, et al. Dissection of subclonal evolution by temporal mutation profiling in continual lymphocytic leukemia sufferers handled with ibrutinib. Int J Most cancers. 2020;146:85–93.
Jain N, Croner LJ, Allan JN, Siddiqi T, Tedeschi A, Badoux XC, et al. Absence of BTK, BCL2, and PLCG2 mutations in continual lymphocytic leukemia relapsing after first-line therapy with fixed-duration ibrutinib plus venetoclax. Clin Most cancers Res. 2024;30:498–505.
Cherng HJ, Khwaja R, Kanagal-Shamanna R, Tang G, Burger J, Thompson P, et al. TP53-altered continual lymphocytic leukemia handled with firstline Bruton’s tyrosine kinase inhibitor-based remedy: a retrospective evaluation. Am J Hematol. 2022;97:1005–12.
Pandzic T, Ladenvall C, Engvall M, Mattsson M, Hermanson M, Cavelier L, et al. 5 p.c variant allele frequency is a dependable reporting threshold for TP53 variants detected by subsequent era sequencing in continual lymphocytic leukemia within the scientific setting. Hemasphere. 2022;6:e761.
Rack KA, van den Berg E, Haferlach C, Beverloo HB, Costa D, Espinet B, et al. European suggestions and high quality assurance for cytogenomic evaluation of haematological neoplasms. Leukemia. 2019;33:1851–67.
Eichhorst B, Robak T, Montserrat E, Ghia P, Niemann CU, Kater AP, et al. Persistent lymphocytic leukaemia: ESMO Medical Follow Pointers for prognosis, therapy and follow-up. Ann Oncol. 2021;32:23–33.
Brieghel C, Aarup Okay, Torp MH, Andersen MA, Yde CW, Tian X, et al. Medical outcomes in sufferers with multi-hit. Clin Most cancers Res. 2021;27:4531–8.
Pal Okay, Bystry V, Reigl T, Demko M, Krejci A, Touloumenidou T, et al. GLASS: assisted and standardized evaluation of gene variations from Sanger sequence hint knowledge. Bioinformatics. 2017;33:3802–4.
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 people. Nature. 2020;581:434–43.
Haque MM, Kowtal P, Sarin R. Identification and characterization of TP53 gene Allele Dropout in Li-Fraumeni syndrome and Oral most cancers cohorts. Sci Rep. 2018;8:11705.
Malcikova J, Tausch E, Rossi D, Sutton LA, Soussi T, Zenz T, et al. ERIC suggestions for TP53 mutation evaluation in continual lymphocytic leukemia-update on methodological approaches and outcomes interpretation. Leukemia. 2018;32:1070–80.
Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis related to antagonistic outcomes. N Engl J Med. 2014;371:2488–98.
Pavlova S, Malcikova J, Radova L, Bonfiglio S, Cowland JB, Brieghel C, et al. Laboratories can reliably detect clinically related variants within the TP53 gene under 10% allelic frequency: a multicenter examine of ERIC, the European Analysis Initiative on CLL. Blood. 2023;142:200–200.
Sujobert P, Le Bris Y, de Leval L, Gros A, Merlio JP, Pastoret C, et al. The necessity for a consensus next-generation sequencing panel for mature lymphoid malignancies. Hemasphere. 2019;3:e169.
ISO. Worldwide Commonplace ISO 15189: Medical laboratories — Necessities for high quality and competence. Fourth version ed; 2022. Worldwide Group for Standardization, Geneva, Switzerland.
Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J, et al. Pointers for Validation of Subsequent-Era Sequencing-Primarily based Oncology Panels: A Joint Consensus Suggestion of the Affiliation for Molecular Pathology and Faculty of American Pathologists. J Mol Diagn. 2017;19:341–65.
Medical and Laboratory Requirements Institute (CLSI). Human genetic and genomic testing utilizing conventional and high-throughput nucleic acid sequencing strategies. third ed. CLSI guideline MM09. USA: Medical and Laboratory Requirements Institute; 2023.
Petrackova A, Vasinek M, Sedlarikova L, Dyskova T, Schneiderova P, Novosad T, et al. Standardization of sequencing protection depth in NGS: suggestion for detection of clonal and subclonal mutations in most cancers diagnostics. Entrance Oncol. 2019;9:851.
Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of uncommon mutations with massively parallel sequencing. Proc Natl Acad Sci USA. 2011;108:9530–5.
Deng S, Lira M, Huang D, Wang Okay, Valdez C, Kinong J, et al. TNER: a novel background error suppression methodology for mutation detection in circulating tumor DNA. BMC Bioinform. 2018;19:387.
Kim CS, Mohan S, Ayub M, Rothwell DG, Dive C, Brady G, et al. In silico error correction improves cfDNA mutation calling. Bioinformatics. 2019;35:2380–5.
Hynst J, Navrkalova V, Pal Okay, Pospisilova S. Bioinformatic methods for the evaluation of genomic aberrations detected by focused NGS panels with scientific utility. PeerJ. 2021;9:e10897.
Roy S, Coldren C, Karunamurthy A, Kip NS, Klee EW, Lincoln SE, et al. Requirements and tips for validating next-generation sequencing bioinformatics pipelines: a joint suggestion of the Affiliation for Molecular Pathology and the Faculty of American Pathologists. J Mol Diagn. 2018;20:4–27.
Roy S. Rules and validation of bioinformatics pipeline for most cancers next-generation sequencing. Clin Lab Med. 2022;42:409–21.
Vodák D, Lorenz S, Nakken S, Aasheim LB, Holte H, Bai B, et al. Pattern-index misassignment impacts tumour exome sequencing. Sci Rep. 2018;8:5307.
Costello M, Fleharty M, Abreu J, Farjoun Y, Ferriera S, Holmes L, et al. Characterization and remediation of pattern index swaps by non-redundant twin indexing on massively parallel sequencing platforms. BMC Genomics. 2018;19:332.
Konieczka P. Validation and regulatory points for pattern preparation. In: Complete sampling and pattern preparation. 2022. p. 699–711. Tutorial Press, Elsevier.
Mattocks CJ, Morris MA, Matthijs G, Swinnen E, Corveleyn A, Dequeker E, et al. A standardized framework for the validation and verification of scientific molecular genetic exams. Eur J Hum Genet. 2010;18:1276–88.
Soussi T, Baliakas P. Panorama of TP53 alterations in continual lymphocytic leukemia. Entrance Oncol. 2022;12:808886.
den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, et al. HGVS suggestions for the outline of sequence variants: 2016 replace. Hum Mutat. 2016;37:564–9.
Lefter M, Vis JK, Vermaat M, den Dunnen JT, Taschner PEM, Laros JFJ. Mutalyzer 2: subsequent era HGVS nomenclature checker. Bioinformatics. 2021;37:2811–7.
Tikkanen T, Leroy B, Fournier JL, Risques RA, Malcikova J, Soussi T. Seshat: an online service for correct annotation, validation, and evaluation of TP53 variants generated by standard and next-generation sequencing. Hum Mutat. 2018;39:925–33.
Morales J, Pujar S, Loveland JE, Astashyn A, Bennett R, Berry A, et al. A joint NCBI and EMBL-EBI transcript set for scientific genomics and analysis. Nature. 2022;604:310–5.
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Requirements and tips for the interpretation of sequence variants: a joint consensus suggestion of the American Faculty of Medical Genetics and Genomics and the Affiliation for Molecular Pathology. Genet Med. 2015;17:405–24.
Fortuno C, Lee Okay, Olivier M, Pesaran T, Mai PL, de Andrade KC, et al. Specs of the ACMG/AMP variant interpretation tips for germline TP53 variants. Hum Mutat. 2021;42:223–36.
Koeppel F, Muller E, Harlé A, Guien C, Sujobert P, Trabelsi Grati O, et al. Standardisation of pathogenicity classification for somatic alterations in strong tumours and haematologic malignancies. Eur J Most cancers. 2021;159:1–15.
Horak P, Griffith M, Danos AM, Pitel BA, Madhavan S, Liu X, et al. Requirements for the classification of pathogenicity of somatic variants in most cancers (oncogenicity): Joint suggestions of Medical Genome Useful resource (ClinGen), Most cancers Genomics Consortium (CGC), and Variant Interpretation for Most cancers Consortium (VICC). Genet Med. 2022;24:986–98.
Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Requirements and tips for the interpretation and reporting of sequence variants in most cancers: a joint consensus suggestion of the Affiliation for Molecular Pathology, American Society of Medical Oncology, and Faculty of American Pathologists. J Mol Diagn. 2017;19:4–23.
Mateo J, Chakravarty D, Dienstmann R, Jezdic S, Gonzalez-Perez A, Lopez-Bigas N, et al. A framework to rank genomic alterations as targets for most cancers precision medication: the ESMO Scale for Medical Actionability of molecular Targets (ESCAT). Ann Oncol. 2018;29:1895–902.
Froyen G, Le Mercier M, Lierman E, Vandepoele Okay, Nollet F, Boone E, et al. Standardization of somatic variant classifications in strong and haematological tumours by a two-level strategy of organic and scientific lessons: an initiative of the Belgian ComPerMed Knowledgeable Panel. Cancers. 2019;11:2030.
Gao P, Zhang R, Li J. Complete elaboration of database sources utilized in next-generation sequencing-based tumor somatic mutation detection. Biochim Biophys Acta Rev Most cancers. 2019;1872:122–37.
Kato S, Han SY, Liu W, Otsuka Okay, Shibata H, Kanamaru R, et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation evaluation. Proc Natl Acad Sci USA. 2003;100:8424–9.
Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, et al. Mutational processes form the panorama of TP53 mutations in human most cancers. Nat Genet. 2018;50:1381–7.
Kotler E, Shani O, Goldfeld G, Lotan-Pompan M, Tarcic O, Gershoni A, et al. A Systematic p53 Mutation Library Hyperlinks Differential Purposeful Affect to Most cancers Mutation Sample and Evolutionary Conservation. Mol Cell. 2018;71:873.
de Andrade KC, Lee EE, Tookmanian EM, Kesserwan CA, Manfredi JJ, Hatton JN, et al. The TP53 database: transition from the Worldwide Company for Analysis on Most cancers to the US Nationwide Most cancers Institute. Cell Dying Differ. 2022;29:1071–3.
Leroy B, Anderson M, Soussi T. TP53 mutations in human most cancers: database reassessment and prospects for the following decade. Hum Mutat. 2014;35:672–88.
Mandelker D, Donoghue M, Talukdar S, Bandlamudi C, Srinivasan P, Vivek M, et al. Germline-focussed evaluation of tumour-only sequencing: suggestions from the ESMO Precision Medication Working Group. Ann Oncol. 2019;30:1221–31.
de Wert G, Dondorp W, Clarke A, Dequeker EMC, Cordier C, Deans Z, et al. Opportunistic genomic screening. Suggestions of the European Society of Human Genetics. Eur J Hum Genet. 2021;29:365–77.
Roloff GW, Drazer MW, Godley LA. Inherited susceptibility to hematopoietic malignancies within the period of precision oncology. JCO Summary Oncol. 2021;5:107–22.
Rasi S, Bruscaggin A, Rinaldi A, Cresta S, Fangazio M, De Paoli L, et al. Saliva is a dependable and sensible supply of germline DNA for genome-wide research in continual lymphocytic leukemia. Leuk Res. 2011;35:1419–22.
Voso MT, Pandzic T, Falconi G, Denčić-Fekete M, De Bellis E, Scarfo L, et al. Clonal haematopoiesis as a danger issue for therapy-related myeloid neoplasms in sufferers with continual lymphocytic leukaemia handled with chemo-(immuno)remedy. Br J Haematol. 2022;198:103–13.
Deans ZC, Ahn JW, Carreira IM, Dequeker E, Henderson M, Lovrecic L, et al. Suggestions for reporting outcomes of diagnostic genomic testing. Eur J Hum Genet. 2022;30:1011–6.
Marinelli M, Peragine N, Di Maio V, Chiaretti S, De Propris MS, Raponi S, et al. Identification of molecular and practical patterns of p53 alterations in continual lymphocytic leukemia sufferers in several phases of the illness. Haematologica. 2013;98:371–5.

