Cytotoxic potential of Curcuma caesia rhizome extract and derived gold nanoparticles in concentrating on breast most cancers cell traces


  • Ravindran, P. N., Nirmal, B. Okay. & Sivaraman, Okay. Turmeric: The Genus Curcuma 11 (CRC Press, 2007).

    E-book 

    Google Scholar
     

  • Sasikumar, B. Genetic sources of Curcuma: Range, characterization and utilization. Plant Genet. Resour. 3(2), 230–251. https://doi.org/10.1079/PGR200574 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Charles, S. V., Elias, U. M., Ramachandram, T. R. & Kamada, T. Secondary metabolites from rhizome of Curcuma caesia Roxb. (Zingiberaceae). Biochem. Syst. Ecol. 48, 107–110. https://doi.org/10.1016/J.BSE.2012.11.008 (2013).

    Article 

    Google Scholar
     

  • Mahato, D. & Sharma, H. P. Kali Haldi, an ethnomedicinal plant of Jharkhand state: A evaluate. Indian J. Tradit. Knowl. 17(2), 322–326. https://doi.org/10.4103/1477-3163.133520 (2018).

    Article 

    Google Scholar
     

  • Devi, H. P., Mazumder, P. B. & Devi, L. P. Antioxidant and antimutagenic exercise of Curcuma caesia Roxb. rhizome extracts. Toxicol. Rep. 2, 423–428. https://doi.org/10.1016/j.toxrep.2014.12.018 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baghel, S. S., Baghel, R. S., Sharma, Okay. & Sikarwar, I. Pharmacological actions of Curcuma caesia. Int. J. Inexperienced Pharm. 7(1), 1–5. https://doi.org/10.4103/0973-8258.111590 (2013).

    Article 

    Google Scholar
     

  • Karmakar, I., Dolai, N., Bala, A. & Haldar, P. Okay. Anxiolytic and CNS depressant actions of methanol extract of Curcuma caesia rhizome. Pharmacology 2, 738–747. https://doi.org/10.1300/J157v06n03_06 (2011).

    Article 

    Google Scholar
     

  • Arulmozhi, D. Okay., Sridhar, N., Veeranjaneyulu, A. & Arora, S. Okay. Preliminary mechanistic research on the graceful muscle relaxant impact of hydroalcoholic extract of Curcuma caesia. J. Herb. Pharmacother. 6, 117–124. https://doi.org/10.1080/j157v06n03_06 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nationwide Medicinal Crops Board. Agro-Strategies if Chosen Medicinal Crops (The Vitality and Assets Institute Press, 2008).


    Google Scholar
     

  • Chiu, T. L. & Su, C. C. Curcumin inhibits proliferation and migration by growing the Bax to Bcl-2 ratio and lowering NF-kappaBp65 expression in breast most cancers MDA-MB-231 cells. Int. J. Mol. Med. 23, 469–475. https://doi.org/10.3892/ijmm_00000153 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Q., Bathroom, W. T., Sze, S. C. & Tong, Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast most cancers cells mediated by down-regulation of NFkappaB, cyclinD and MMP-1 transcription. Phytomedicine 16, 916–922. https://doi.org/10.1016/j.phymed.2009.04.008 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohammad, A. A., Eltayeb, N. M., Khairuddean, M. & Salhimia, S. M. Bioactive chemical constituents from Curcuma caesia Roxb. rhizomes and inhibitory impact of curcuzederone on the migration of triple-negative breast most cancers cell line MDA-MB-231. Nat. Res. Prod. 35(18), 3166–3170. https://doi.org/10.1080/14786419.2019.1690489 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H. T. & Ho, Y. S. Anticancer impact of curcumin on breast most cancers and stem cells. Meals Sci. Hum. Wellness 7(2), 134–137. https://doi.org/10.1016/j.fshw.2018.06.001 (2018).

    Article 

    Google Scholar
     

  • Krmakar, L., Dolai, N., Suresh, Okay. R. B. & Halder, P. Okay. Antitumer exercise and antioxidant property of Curcuma caesia in opposition to Ehrlich ascites carcinoma bearing mice. Pharma Biol. 51(6), 753–759. https://doi.org/10.3109/13880209.2013.764538 (2013).

    Article 

    Google Scholar
     

  • Kumar, S., Dubey, Okay. Okay., Tripathi, S., Fujii, M. & Misra, Okay. Design and synthesis of curcumin-bioconjugates to enhance systemic supply. Nucleic Acids Symp. Ser. 44, 75–76. https://doi.org/10.1093/nass/44.1.75 (2000).

    Article 

    Google Scholar
     

  • Hadem, Okay. L. H., Sharan, R. N. & Kma, L. Phytochemicals of Aristolochiatagala and Curcuma caesia exert anticancer impact by tumor necrosis factor-α-mediated lower in nuclear issue kappa B binding exercise. J Fundamental Clin. Pharm. 7(1), 1–11. https://doi.org/10.4103/0976-0105.170585 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prasad, R.; Patnaik, S. Conservation Evaluation and Administration Planning. Continuing of the Conservation Evaluation and Administration Planning (CAMP) Workshop for Non timber forest merchandise in Madhya Pradesh 1–99 (Indian Institute of Forest Administration, 1998).

  • Salem, S. S. A mini evaluate on inexperienced nanotechnology and its improvement in organic results. Arch. Microbiol. 205, 128. https://doi.org/10.1007/s00203-023-03467-2 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ventola, C. L. The nanomedicine revolution: Half 1: Rising ideas. Pharm. Ther. 37(9), 512–525 (2012).


    Google Scholar
     

  • Afzal, O., Altamimi, A. S. A. & Nadeem, M. S. Nanoparticles in drug supply: From historical past to therapeutic functions. Nanomaterials (Basel). 12(24), 4494. https://doi.org/10.3390/nano12244494 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vollath, D., Fischer, F. D. & Holec, D. Floor power of nanoparticles: Affect of particle dimension and construction. Beilstein J. Nanotechnol. 9, 2265–2276. https://doi.org/10.3762/bjnano.9.211 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, Okay. P. et al. Nanotechnology and its utility: A evaluate nanotechnology. In Most cancers Administration Exact Diagnostics Towards Customized Well being Care 1–33 (Elsevier, 2021).


    Google Scholar
     

  • Das, A. Okay. et al. Papaya latex mediated synthesis of prism formed proteolytic gold nanozymes. Sci. Rep. 13, 5965. https://doi.org/10.1038/s41598-023-32409-7 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oberdörster, G., Oberdörster, E. & Oberdörster, J. Nanotoxicology: An rising self-discipline evolving from research of ultrafine particles. Environ. Well being Perspect. 113, 823–839. https://doi.org/10.1289/ehp.7339 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, D., Tian, F., Ozkan, C. S., Wang, M. & Gao, H. Impact of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155, 73–85. https://doi.org/10.1016/j.toxlet.2004.08.015 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta, D., Yadav, P., Garg, D. & Gupta, T. Okay. Pathways of nanotoxicity: Modes of detection, impression, and challenges. Entrance. Mater. Sci. 15, 512–542 (2021).

    Article 

    Google Scholar
     

  • Li, J. J., Hartono, D., Ong, C. N., Bay, B. H. & Yung, L. Y. Autophagy and oxidative stress related to gold nanoparticles. Biomaterials 31(23), 5996–6003. https://doi.org/10.1016/j.biomaterials.2010.04.014 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, P., Zhang, L., Lu, Y., Man, N. & Wen, L. C60(Nd) nanoparticles improve chemotherapeutic susceptibility of most cancers cells by modulation of autophagy. Nanotechnology 21(49), 495101. https://doi.org/10.1088/0957-4484/21/49/495101 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamawaki, H. & Iwai, N. Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am. J. Physiol. Cell Physiol. 290, 1495. https://doi.org/10.1152/ajpcell.00481.2005 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Autophagy-mediated chemosensitization in most cancers cells by fullerene C60 nanocrystal. Autophagy 5(8), 1107–1117. https://doi.org/10.4161/auto.5.8.9842 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seleverstov, O. et al. Quantum dots for human mesenchymal stem cells labelling. A size-dependent autophagy activation. Nano Lett. 6, 2826–2832. https://doi.org/10.1021/nl0619711 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stern, S. T. et al. McNeil induction of autophagy in porcine kidney cells by quantum dots: A standard mobile response to nanomaterials?. Toxicol. Sci. 106(1), 140–152. https://doi.org/10.1093/toxsci/kfn137 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ankamwar, B. et al. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays utilizing regular, glia and breast most cancers cells. Nanotechnology 21, 075102. https://doi.org/10.1088/0957-4484/21/7/075102 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hong, H. et al. Most cancers-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Lett. 11(9), 3744–3750. https://doi.org/10.1021/nl201782m (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dreaden, E. C., Mackey, M. A., Huang, X., Kang, B. & El-Sayed, M. A. Beating most cancers in a number of methods utilizing nanogold. Chem. Soc. Rev. 40, 3391–3404. https://doi.org/10.1039/C0CS00180E (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Sayed, M. A. Some attention-grabbing properties of metals confined in time and nanometer area of various shapes. AccChem Res. 34(4), 257–264. https://doi.org/10.1021/ar960016n (2001).

    Article 
    CAS 

    Google Scholar
     

  • Pan, Y. et al. Gold nanoparticles of diameter 1.4 Nm set off necrosis by oxidative stress and mitochondrial harm. Small 5, 2067–2076. https://doi.org/10.1002/smll.200900466 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. S., Hung, Y. C., Liau, I. & Huang, G. S. Evaluation of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett. 4, 858. https://doi.org/10.1007/s11671-009-9334-6 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sani, A., Cao, C. & Cui, D. Toxicity of gold nanoparticles (AuNPs): A evaluate. Biochem. Biophys. Rep. 26, 10991. https://doi.org/10.1016/j.bbrep.2021.100991 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. D. et al. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 33, 4628–4638. https://doi.org/10.1016/j.biomaterials.2012.03.020 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng, J. et al. Utilizing gold nanorods core/silver shell nanostructures as mannequin materials to probe biodistribution and poisonous results of silver nanoparticles in mice. Nanotoxicology. 8, 686–696. https://doi.org/10.3109/17435390.2013.822593 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, H. & Král, P. Nanoparticles self-assembly inside lipid bilayers. ACS Omega 3, 10631–10637. https://doi.org/10.1021/acsomega.8b01445 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joshi, P. et al. The anticancer exercise of chloroquine-gold nanoparticles in opposition to MCF-7 breast most cancers cells. Colloids Surf. B 95, 195–200. https://doi.org/10.1016/j.colsurfb.2012.02.039 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Das, R. Okay., Sharma, P., Nahar, P. & Bora, U. Synthesis of gold nanoparticles utilizing aqueous extract of Calotropisprocera latex. Mater. Lett. 65, 610–613. https://doi.org/10.1016/j.matlet.2010.11.040 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bar, H. et al. synthesis of silver nanoparticles utilizing latex of Jatropha curcas. Colloids Surf. A 339, 134–139. https://doi.org/10.1016/j.colsurfa.2009.02.008 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Khan, F. et al. Inexperienced nanotechnology: Plant-mediated nanoparticle synthesis and utility. Nanomaterials 12, 673. https://doi.org/10.3390/nano12040673 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swilam, N. & Khaled, A. N. Polyphenols profile of pomegranate leaves and their position in inexperienced synthesis of silver nanoparticles. Sci. Rep. 10, 14851. https://doi.org/10.1038/s41598-020-71847-5 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glusker, J., Katz, A., Bock, C. & Rigaku, J. Steel ions in organic techniques. Chem. Biol. 16(2), 8–16 (1999).

    CAS 

    Google Scholar
     

  • Si, S. & Mandal, T. Okay. Tryptophan-based peptides to synthesize gold and silver nanoparticles: A mechanistic and kinetic examine. Chemistry 13(11), 3160–3168. https://doi.org/10.1002/chem.200601492 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akinfenwa, A. O. & Hussein, A. A. Phyto-metallic nanoparticles: Biosynthesis, mechanism, therapeutics, and cytotoxicity. In Toxicity of Nanoparticles: Current Advances and New Views (IntechOpen, 2023).


    Google Scholar
     

  • Kavaz, D., Huzaifa, U. & Zimuto, T. Biosynthesis of Gold nanoparticles utilizing Scytosiphon lomentaria (Brown algae) and Spyridia filamentosa (Purple algae) from Kyrenia Area and analysis of their antimicrobial and antioxidant exercise. Hacettepe J. Biol. Chem. 47(4), 367–382 (2019).

    Article 

    Google Scholar
     

  • Bharadwaj, Okay. Okay. et al. Inexperienced synthesis of gold nanoparticles utilizing plant extracts as useful prospect for most cancers theranostics. Molecules 26, 6389. https://doi.org/10.3390/molecules26216389 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahimi, H. R., Nedaeinia, R., Shamloo, A. S., Nikdoust, S. & Oskuee, R. Okay. Novel supply system for pure merchandise: Nano-curcumin formulations. Avicenna J. Phytomed. 6(4), 383–398. https://doi.org/10.22038/AJP.2016.6187 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lesner, S. & Cotran, R. Breast most cancers. In Robbins Pathologic Foundation of Ailments (eds Cotran, R. et al.) 1093–1120 (. Sounders, 1999).


    Google Scholar
     

  • World Most cancers Report. Worldwide Company for Analysis on Most cancers (2008).

  • Ferlay, J. et al. Estimates of the most cancers incidence and mortality in Europe in 2006. Ann. Oncol. 18(3), 581–592. https://doi.org/10.1093/annonc/mdl498 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdelhamed, S. et al. Identification of plant extracts sensitizing breast most cancers cells to TRAIL. Oncol. Rep 29(5), 1991–1998. https://doi.org/10.3892/or.2013.2293 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Umar, H. et al. Prediction of cell migration potential on human breast most cancers cells handled with Albizia lebbeck ethanolic extract utilizing excessive machine studying. Sci. Rep. 13(1), 22242. https://doi.org/10.1038/s41598-023-49363-z (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadisaputri, Y. E. et al. Antiproliferation exercise and apoptotic mechanism of soursop (Annona muricata L.) leaves extract and fractions on MCF7 breast most cancers cells. Breast Most cancers 16(13), 447–457. https://doi.org/10.2147/BCTT.S317682 (2021).

    Article 

    Google Scholar
     

  • Pal, A., Sanyal, S., Das, S. & Sengupta, T. Okay. Impact of Lantana camara ethanolic leaf extract on survival and migration of MDA-MB-231 triple-negative breast most cancers cell line. J. Herb. Med. 43, 100837. https://doi.org/10.1016/j.hermed.2023.100837 (2024).

    Article 

    Google Scholar
     

  • Omrani, V. F. et al. Results of sambucus ebulus extract on cell proliferation and viability of triple-negative breast most cancers: An in vitro and in vivo examine. Anticancer Brokers Med. Chem. 22(7), 1386–1396. https://doi.org/10.2174/1871520621666210412113944 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suffness, M. & Pezzuto, J. M. Assays associated to most cancers drug discovery. In Assays for Bioactivity (Strategies in Plant Biochemistry Vol. 6 (ed. Hostettmann, Okay.) 71–133 (Tutorial Press, 1990).


    Google Scholar
     

  • Abdel-Hameed, E. S., Salih, A., Bazaid, S. A. & El-Sayed, M. M. Phytochemical research and analysis of antioxidant, anticancer and antimicrobial properties of Conocarpus erectus L. rising in Taif. Saudi Arabia. Eur. J. Med. Crops 2, 93–112. https://doi.org/10.9734/EJMP/2012/1040 (2012).

    Article 

    Google Scholar
     

  • Abdelhamed, S. et al. Identification of plant extracts sensitizing breast most cancers cells to TRAIL. Oncol. Rep. 29(5), 2293. https://doi.org/10.3892/or.2013.2293 (2013).

    Article 

    Google Scholar
     

  • Umar, H. & Aliyu, M. R. Moringa oleifera-mediated iron oxide nanoparticles, characterization and their anti-proliferative potential on MDA-MB 231 human breast most cancers cells. Pak. J. Pharm. Sci. 36(6), 1875–1883 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Abed, S. A., Mohammed, M. A. & Khalaf, H. Y. Novel photothermal remedy utilizing platinum nanoparticles in synergy with near-infrared radiation (NIR) in opposition to human breast most cancers MCF-7 cell line. Outcomes Chem. 4(1–2), 100591. https://doi.org/10.1016/j.rechem.2022.100591 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hot Topics

    Related Articles