Bray, F. et al. International most cancers statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J. Clin. 68, 394–424 (2018).
Montironi, R., Lopez-Beltran, A., Scarpelli, M., Mazzucchelli, R. & Cheng, L. Morphological classification and definition of benign, preneoplastic and non-invasive neoplastic lesions of the urinary bladder. Histopathology 53, 621–633 (2008).
Gospodarowicz, M. Ok. & Mason, M. Urological Tumors. In TNM Classification of Malignant Tumors eighth edn (eds Brierley, D. J. et al.) 204–207 (Wiley, 2017).
Kurth, Ok. H. et al. Remedy of superficial bladder tumors: Achievements and desires. The EORTC Genitourinary Group. Eur Urol. 37, 1–9 (2000).
Kaufman, D. S., Shipley, W. U. & Feldman, A. S. Bladder most cancers. Lancet 374, 239–249 (2009).
Richter, S. & Sridhar, S. S. New instructions for biologic targets in urothelial carcinoma. Mol. Most cancers Therapeutics. 11, 226–1235 (2012).
Schrier, B. P., Hollander, M. P., van Rhijn, B. W., Kiemeney, L. A. & Witjes, J. A. Prognosis of muscle-invasive bladder most cancers: distinction between main and progressive tumors and implications for remedy. Eur. Urol. 45, 292–296 (2004).
Woldu, S. L., Bagrodia, A. & Lotan, Y. Guideline of tips: non-muscle-invasive bladder most cancers. BJU Int. 119, 371–380 (2017).
Stein, J. P. et al. Radical cystectomy within the therapy of invasive bladder most cancers: long-term ends in 1054 sufferers. J. Clin. Oncol. 19, 666–675 (2001).
Mathis, C. et al. Down-regulation of A-FABP predicts non-muscle invasive bladder most cancers development: Investigation with a long-term scientific follow-up. BMC Most cancers 18, 1239–1252 (2018).
McKillop, I. H., Girardi, C. A. & Thompson, Ok. J. Function of fatty acid binding proteins (FABPs) in most cancers growth and development. Cell Sign 62, 109336–109347 (2019).
Ostergaard, M. et al. Proteome profiling of bladder squamous cell carcinomas: Identification of markers that outline their diploma of differentiation. Most cancers Res. 57, 4111–4117 (1997).
Hotamisligil, G. S. et al. Uncoupling of weight problems from insulin resistance via a focused mutation in aP2, the adipocyte fatty acid binding protein. Science. 274, 1377–1379 (1996).
Haunerland, N. H. & Spener, F. Fatty acid-binding proteins – insights from genetic manipulations. Prog. Lipid. Res. 43, 328–349 (2004).
Babjuk, M. et al. Reply to Harry Herr’s Letter to the Editor re: Marko Babjuk, Andreas Böhle, Maximilian Burger, et al. EAU Pointers on Non-muscle-invasive Urothelial Carcinoma of the Bladder: Replace 2016. Eur Urol 2017;71:447-61. Eur. Urol. 71, 447–61 (2017).
Sylvester, R. J. et al. Predicting recurrence and development in particular person sufferers with stage Ta T1 bladder most cancers utilizing EORTC danger tables: A mixed evaluation of 2596 sufferers from seven EORTC trials. Eur Urol. 49, 466–477 (2006).
van Rhijn, B. W. et al. Recurrence and development of illness in non-muscle-invasive bladder most cancers: From epidemiology to therapy technique. Eur. Urol. 56, 430–442 (2009).
Rink, M., Schwarzenbach, H., Vetterlein, M. W., Riethdorf, S. & Soave, A. The present function of circulating biomarkers in non-muscle invasive bladder most cancers. Transl. Androl. Urol. 8, 61–75 (2019).
Zamboni, S. et al. Prediction instruments in non-muscle invasive bladder most cancers. Transl. Androl. Urol. 8, 39–45 (2019).
Celis, J. E. et al. Lack of adipocyte-type fatty acid binding protein and different protein biomarkers is related to development of human bladder transitional cell carcinomas. Most cancers Res. 56, 4782–4790 (1996).
Chen, R., Feng, C. & Xu, Y. Cyclin-dependent Kinase-associated Protein Cks2 is related to bladder most cancers development. J. Int. Med. Res. 39, 533–540 (2011).
Celis, A. et al. Quick-term culturing of low-grade superficial bladder transitional cell carcinomas results in modifications within the expression ranges of a number of proteins concerned in key mobile actions. Electrophoresis 20, 355–361 (1999).
Celis, J. E. et al. Proteomic methods to disclose tumor heterogeneity amongst urothelial papillomas. Mol. Cell Proteomics. 1, 269–279 (2002).
Sheng, Ok. H., Yao, Y. C., Chuang, S. S., Wu, H. & Wu, T. F. Seek for the tumor-related proteins of transition cell carcinoma in Taiwan by proteomic evaluation. Proteomics 6, 1058–1065 (2006).
Guaita-Esteruelas, S., Gumà, J., Masana, L. & Borràs, J. The peritumoural adipose tissue microenvironment and most cancers. The roles of fatty acid binding protein 4 and fatty acid binding protein 5. Mol Cell Endocrinol. 462, 107–118 (2018).
Kowalewska, M. et al. Estimation of groin recurrence danger in sufferers with squamous cell vulvar carcinoma by the evaluation of marker gene expression within the lymph nodes. BMC Most cancers 12, 223–234 (2012).
Wei, W. et al. FABP5 correlates with poor prognosis and promotes tumor cell progress and metastasis in cervical most cancers. Tumour Biol. 37, 14873–14883 (2016).
Lu, J. B., Cai, S. H., Pan, Y. H. & Yun, J. P. Altered epidermal fatty acid-binding protein expression in hepatocellular carcinoma predicts unfavorable outcomes. Most cancers Manag. Res. 10, 6275–6284 (2018).
Wu, G. et al. FABP5 is correlated with poor prognosis and promotes tumour cell progress and metastasis in clear cell renal cell carcinoma. Eur. J. Pharmacol. 862, 172637–172649 (2019).
Xu, Y., Xu, W. H., Yang, X. L., Zhang, H. L. & Zhang, X. F. Fatty acid-binding protein 5 predicts poor prognosis in sufferers with uveal melanoma. Oncol. Lett. 19, 1771–1780 (2020).
Glatz, J. F. et al. Cytoplasmic fatty acid-binding protein facilitates fatty acid utilization by skeletal muscle. Acta Physiol. Scand. 178, 367–371 (2003).
Levi, L. et al. Genetic ablation of the fatty acid-binding protein FABP5 suppresses HER2-induced mammary tumorigenesis. Most cancers Res. 73, 4770–4780 (2013).
Ogawa, R. et al. Identification of candidate genes concerned within the radiosensitivity of esophageal most cancers cells by microarray evaluation. Dis. Esophagus. 21, 288–297 (2008).
Jing, C. et al. Human cutaneous fatty acid-binding protein induces metastasis by up-regulating the expression of vascular endothelial progress issue gene in rat Rama 37 mannequin cells. Most cancers Res. 61, 4357–4364 (2001).
Fang, L. Y., Wong, T. Y., Chiang, W. F. & Chen, Y. L. Fatty-acid-binding protein 5 promotes cell proliferation and invasion in oral squamous cell carcinoma. J. Oral. Pathol. Med. 39, 342–348 (2010).
Ohata, T. et al. Fatty acid-binding protein 5 perform in hepatocellular carcinoma via induction of epithelial-mesenchymal transition. Most cancers Med. 6, 1049–1061 (2017).
Adamson, J. et al. Excessive-level expression of cutaneous fatty acid-binding protein in prostatic carcinomas and its impact on tumorigenicity. Oncogene 22, 2739–2749 (2003).
Zhao, G., Wu, M., Wang, X., Du, Z. & Zhang, G. Impact of FABP5 gene silencing on the proliferation, apoptosis and invasion of human gastric SGC-7901 most cancers cells. Oncol. Lett. 14, 4772–4778 (2017).
Hammamieh, R., Chakraborty, N., Barmada, M., Das, R. & Jett, M. Expression patterns of fatty acid binding proteins in breast most cancers cells. J. Exp. Ther. Oncol. 5, 133–143 (2005).
Moog-Lutz, C. et al. Comparative expression of the psoriasin (S100A7) and S100C genes in breast carcinoma and co-localization to human chromosome 1q21-q22. Int. J. Most cancers 63, 297–303 (1995).
Brouard, M. C., Saurat, J. H., Ghanem, G. & Siegenthaler, G. Urinary excretion of epidermal-type fatty acid-binding protein and S100A7 protein in sufferers with cutaneous melanoma. Melanoma Res. 12, 627–631 (2002).
Uma, R. S., Naresh, Ok. N., D’Cruz, A. Ok., Mulherkar, R. & Borges, A. M. Metastasis of squamous cell carcinoma of the oral tongue is related to down-regulation of epidermal fatty acid binding protein (E-FABP). Oral. Oncol. 43, 27–32 (2007).
Morgan, E., Kannan-Thulasiraman, P. & Noy, N. Involvement of fatty acid binding protein 5 and PPARβ/δ in prostate most cancers cell progress. PPAR Res. 2010, 234629–234638 (2010).
Boiteux, G. et al. A-FABP, a candidate development marker of human transitional cell carcinoma of the bladder, is differentially regulated by PPAR in urothelial most cancers cells. Int. J. Most cancers 124, 1820–1828 (2009).

