Chlorpromazine overcomes temozolomide resistance in glioblastoma by inhibiting Cx43 and important DNA restore pathways | Journal of Translational Drugs


  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbruzzese C, Matteoni S, Signore M, Cardone L, Nath Okay, Glickson JD, et al. Drug repurposing for the therapy of glioblastoma multiforme. J Exp Clin Most cancers Res. 2017;36(1):169–x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alonso MM, Gomez-Manzano C, Bekele BN, Yung WKA, Fueyo J. Adenovirus-based methods overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Most cancers Res. 2007;67(24):11499–504.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strobel H, Baisch T, Fitzel R, Schilberg Okay, Siegelin MD, Karpel-Massler G, et al. Temozolomide and different alkylating brokers in glioblastoma remedy. Biomedicines. 2019;7(3):69. https://doi.org/10.3390/biomedicines7030069.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hegi ME, Diserens A, Gorlia T, Hamou M, de Tribolet N, Weller M, et al. MGMT gene silencing and profit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016;3(3):198–210.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M, et al. Mechanisms of chemoresistance to alkylating brokers in malignant glioma. Clin Most cancers Res. 2008;14(10):2900–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Li Y, Yu T, McKay RM, Burns DK, Kernie SG, et al. A restricted cell inhabitants propagates glioblastoma development after chemotherapy. Nature. 2012;488(7412):522–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Safari M, Khoshnevisan A. Most cancers stem cells and chemoresistance in glioblastoma multiform: a evaluate article. J Stem Cells. 2015;10(4):271–85.

    CAS 
    PubMed 

    Google Scholar
     

  • Campos-Sandoval JA, Gómez-García MC, Santos-Jiménez JDL, Matés JM, Alonso FJ, Márquez J. Antioxidant responses associated to temozolomide resistance in glioblastoma. Neurochem Int. 2021;149: 105136.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cockfield JA, Schafer ZT. Antioxidant defenses: a context-specific vulnerability of most cancers cells. Cancers (Basel). 2019;11(8):1208. https://doi.org/10.3390/cancers11081208.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loewenstein WR, Kanno Y. Intercellular communication and the management of tissue development: lack of communication between most cancers cells. Nature. 1966;209(5029):1248–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goodenough DA, Paul DL. Past the hole: capabilities of unpaired connexon channels. Nat Rev Mol Cell Biol. 2003;4(4):285–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, et al. Mind tumour cells interconnect to a purposeful and resistant community. Nature. 2015;528(7580):93–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gielen PR, Aftab Q, Ma N, Chen VC, Hong X, Lozinsky S, et al. Connexin43 confers Temozolomide resistance in human glioma cells by modulating the mitochondrial apoptosis pathway. Neuropharmacology. 2013;75:539–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grek CL, Sheng Z, Naus CC, Sin WC, Gourdie RG, Ghatnekar GG. Novel method to temozolomide resistance in malignant glioma: connexin43-directed therapeutics. Curr Opin Pharmacol. 2018;41:79–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crespin S, Fromont G, Wager M, Levillain P, Cronier L, Monvoisin A, et al. Expression of a niche junction protein, connexin43, in a big panel of human gliomas: new insights. Most cancers Med. 2016;5(8):1742–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cottin S, Gould PV, Cantin L, Caruso M. Hole junctions in human glioblastomas: implications for suicide gene remedy. Most cancers Gene Ther. 2011;18(9):674–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy SF, Varghese RT, Lamouille S, Guo S, Pridham KJ, Kanabur P, et al. Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to temozolomide. Most cancers Res. 2016;76(1):139–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le HT, Sin WC, Lozinsky S, Bechberger J, Vega JL, Guo XQ, et al. Hole junction intercellular communication mediated by connexin43 in astrocytes is important for his or her resistance to oxidative stress. J Biol Chem. 2014;289(3):1345–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao C, Fang J, Li C, Zhang M. Connexin43 and AMPK have important function in resistance to oxidative stress induced necrosis. Biomed Res Int. 2017;2017:3962173.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkler F. Silencing glioblastoma networks to make temozolomide more practical. Neuro Oncol. 2021;23(11):1807–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang G, Wang Y, Wang S, Zhu L. Down-regulation of CX43 expression by miR-1 inhibits the proliferation and invasion of glioma cells. Transl Most cancers Res. 2022;11(11):4126–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Che J, DePalma TJ, Sivakumar H, Mezache LS, Tallman MM, Venere M, et al. αCT1 peptide sensitizes glioma cells to temozolomide in a glioblastoma organoid platform. Biotechnol Bioeng. 2023;120(4):1108–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mesnil M, Crespin S, Avanzo J, Zaidan-Dagli M. Faulty hole junctional intercellular communication within the carcinogenic course of. Biochim Biophys Acta. 2005;1719(1–2):125–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strale P, Clarhaut J, Lamiche C, Cronier L, Mesnil M, Defamie N. Down-regulation of Connexin43 expression reveals the involvement of caveolin-1 containing lipid rafts in human U251 glioblastoma cell invasion. Mol Carcinog. 2012;51(11):845–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin JHC, Takano T, Cotrina ML, Arcuino G, Kang J, Liu S, et al. Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells. J Neurosci. 2002;22(11):4302–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chepied A, Daoud-Omar Z, Meunier-Balandre A, Laird DW, Mesnil M, Defamie N. Involvement of the hole junction protein, Connexin43, within the formation and performance of invadopodia within the human U251 glioblastoma cell line. Cells. 2020;9(1):117. https://doi.org/10.3390/cells9010117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin SY, Lee KS, Choi Y, Lim HJ, Lee HG, Lim Y, et al. The antipsychotic agent chlorpromazine induces autophagic cell demise by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells. Carcinogenesis. 2013;34(9):2080–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbruzzese C, Matteoni S, Persico M, Villani V, Paggi MG. Repurposing chlorpromazine within the therapy of glioblastoma multiforme: evaluation of literature and forthcoming steps. J Exp Clin Most cancers Res. 2020;39(1):26-z.

    Article 

    Google Scholar
     

  • Matteoni S, Matarrese P, Ascione B, Ricci-Vitiani L, Pallini R, Villani V, et al. Chlorpromazine induces cytotoxic autophagy in glioblastoma cells through endoplasmic reticulum stress and unfolded protein response. J Exp Clin Most cancers Res. 2021;40(1):347-w.

    Article 

    Google Scholar
     

  • Oliva CR, Zhang W, Langford C, Suto MJ, Griguer CE. Repositioning chlorpromazine for treating chemoresistant glioma by means of the inhibition of cytochrome c oxidase bearing the COX4-1 regulatory subunit. Oncotarget. 2017;8(23):37568–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbruzzese C, Matteoni S, Matarrese P, Signore M, Ascione B, Iessi E, et al. Chlorpromazine impacts glioblastoma bioenergetics by interfering with pyruvate kinase M2. Cell Loss of life Dis. 2023;14(12):821–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, et al. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019;573(7775):539–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L, Kessler T, et al. Glutamatergic synaptic enter to glioma cells drives mind tumour development. Nature. 2019;573(7775):532–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matteoni S, Matarrese P, Ascione B, Buccarelli M, Ricci-Vitiani L, Pallini R, et al. Anticancer properties of the antipsychotic drug chlorpromazine and its synergism with temozolomide in restraining human glioblastoma proliferation in vitro. Entrance Oncol. 2021;26(11): 635472.

    Article 

    Google Scholar
     

  • Tempo A, Lombardi G, Villani V, Benincasa D, Abbruzzese C, Cestonaro I, et al. Efficacy and security of chlorpromazine as an adjuvant remedy for glioblastoma in sufferers with unmethylated MGMT gene promoter: RACTAC, a part II multicenter trial. Entrance Oncol. 2023;14(13):1320710.

    Article 

    Google Scholar
     

  • Visconti P, Parodi F, Parodi B, Casarino L, Romano P, Buccarelli M, et al. Brief tandem repeat profiling for the authentication of most cancers stem-like cells. Int J Most cancers. 2021;148(6):1489–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matarrese P, Vona R, Ascione B, Cittadini C, Tocci A, Mileo AM. Tumor microenvironmental cytokines drive NSCLC cell aggressiveness and drug-resistance through YAP-mediated autophagy. Cells. 2023;12(7):1048. https://doi.org/10.3390/cells12071048.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Signore M, Manganelli V. Reverse part protein arrays in most cancers stem cells. Strategies Cell Biol. 2022;171:33–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Signore M, Alfonsi R, Federici G, Nanni S, Addario A, Bertuccini L, et al. Diagnostic and prognostic potential of the proteomic profiling of serum-derived extracellular vesicles in prostate most cancers. Cell Loss of life Dis. 2021;12(7):636-z.

    Article 

    Google Scholar
     

  • Laemmli UK. Cleavage of structural proteins through the meeting of the top of bacteriophage T4. Nature. 1970;227(5259):680–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding J, Li X, Khan S, Zhang C, Gao F, Sen S, et al. EGFR suppresses p53 operate by selling p53 binding to DNA-PKcs: a noncanonical regulatory axis between EGFR and wild-type p53 in glioblastoma. Neuro Oncol. 2022;24(10):1712–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma Q. Function of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sajadimajd S, Khazaei M. Oxidative stress and most cancers: the function of Nrf2. Curr Most cancers Drug Targets. 2018;18(6):538–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harris IS, DeNicola GM. The complicated interaction between antioxidants and ROS in most cancers. Traits Cell Biol. 2020;30(6):440–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lau A, Wang X, Zhao F, Villeneuve NF, Wu T, Jiang T, et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interplay between Keap1 and p62. Mol Cell Biol. 2010;30(13):3275–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W. The Nrf2-ARE signaling pathway: an replace on its regulation and potential function in most cancers prevention and therapy. Pharmacol Rep. 2017;69(3):393–402.

    Article 
    PubMed 

    Google Scholar
     

  • Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Most cancers chemoprevention mechanisms mediated by means of the Keap1-Nrf2 pathway. Antioxid Redox Sign. 2010;13(11):1713–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Z, Zhang L, Bi Q, Gan L, Wei M, Hong T, et al. Exosomal connexin 43 regulates the resistance of glioma cells to temozolomide. Oncol Rep. 2021;45(4):44. https://doi.org/10.3892/or.2021.7995.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Guan Y, Chen X, Yang J, Cheng Y. DNA restore pathways in most cancers remedy and resistance. Entrance Pharmacol. 2021;8(11): 629266.

    Article 

    Google Scholar
     

  • Podhorecka M, Skladanowski A, Bozko P. H2AX phosphorylation: its function in DNA harm response and most cancers remedy. J Nucleic Acids. 2010. https://doi.org/10.4061/2010/920161.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boccard SG, Marand SV, Geraci S, Pycroft L, Berger FR, Pelletier LA. Inhibition of DNA-repair genes Ercc1 and Mgmt enhances temozolomide efficacy in gliomas therapy: a pre-clinical examine. Oncotarget. 2015;6(30):29456–68.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agnihotri S, Zadeh G. Metabolic reprogramming in glioblastoma: the affect of most cancers metabolism on epigenetics and unanswered questions. Neuro Oncol. 2016;18(2):160–72.

    Article 
    PubMed 

    Google Scholar
     

  • Katayama Okay, Fujita N, Tsuruo T. Akt/protein kinase B-dependent phosphorylation and inactivation of WEE1Hu promote cell cycle development at G2/M transition. Mol Cell Biol. 2005;25(13):5725–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niida H, Katsuno Y, Banerjee B, Hande MP, Nakanishi M. Particular function of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol. 2007;27(7):2572–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Hunter T. Roles of Chk1 in cell biology and most cancers remedy. Int J Most cancers. 2014;134(5):1013–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmucker S, Sumara I. Molecular dynamics of PLK1 throughout mitosis. Mol Cell Oncol. 2014;1(2): e954507.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castellano-Pozo M, Santos-Pereira JM, Rondón AG, Barroso S, Andújar E, Pérez-Alegre M, et al. R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Mol Cell. 2013;52(4):583–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin JH, Yang J, Liu S, Takano T, Wang X, Gao Q, et al. Connexin mediates hole junction-independent resistance to mobile harm. J Neurosci. 2003;23(2):430–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonm A, Kesari S. DNA harm response in glioblastoma: mechanism for therapy resistance and rising therapeutic methods. Most cancers J. 2021;27(5):379–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagel ZD, Kitange GJ, Gupta SK, Joughin BA, Chaim IA, Mazzucato P, et al. DNA restore capability in a number of pathways predicts chemoresistance in glioblastoma multiforme. Most cancers Res. 2017;77(1):198–206.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erasimus H, Gobin M, Niclou S, Van Dyck E. DNA restore mechanisms and their medical impression in glioblastoma. Mutat Res Rev Mutat Res. 2016;769:19–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Annovazzi L, Mellai M, Schiffer D. Chemotherapeutic medication: DNA harm and restore in glioblastoma. Cancers (Basel). 2017;9(6):57. https://doi.org/10.3390/cancers9060057.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyai M, Tomita H, Soeda A, Yano H, Iwama T, Hara A. Present tendencies in mouse fashions of glioblastoma. J Neurooncol. 2017;135(3):423–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hicks WH, Hen CE, Traylor JI, Shi DD, El Ahmadieh TY, Richardson TE, et al. Up to date mouse fashions in glioma analysis. Cells. 2021;10(3):712. https://doi.org/10.3390/cells10030712.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hot Topics

    Related Articles