Cell competitors in major and metastatic colorectal most cancers


  • Di Gregorio A, Bowling S, Rodriguez TA. Cell competitors and its position within the regulation of cell health from growth to most cancers. Dev Cell. 2016;38:621–34. https://doi.org/10.1016/j.devcel.2016.08.012.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morata G, Ripoll P. Minutes: mutants of Drosophila autonomously affecting cell division fee. Dev Biol. 1975;42:211–21. https://doi.org/10.1016/0012-1606(75)90330-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreno E, Basler Okay, Morata G. Cells compete for decapentaplegic survival issue to stop apoptosis in Drosophila wing growth. Nature. 2002;416:755–9. https://doi.org/10.1038/416755A.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliver ER, Saunders TL, Tarlé SA, Glaser T. Ribosomal protein L24 defect in Stomach spot and tail (Bst), a mouse Minute. Growth. 2004;131:3907. https://doi.org/10.1242/DEV.01268.

    Article 
    PubMed 

    Google Scholar
     

  • Abrams JM. Competitors and compensation: coupled to demise in growth and most cancers. Cell. 2002;110:403–6. https://doi.org/10.1016/S0092-8674(02)00904-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreno E, Basler Okay. dMyc transforms cells into super-competitors. Cell. 2004;117:117–29. https://doi.org/10.1016/S0092-8674(04)00262-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De La Cova C, Abril M, Bellosta P, Gallant P, Johnston LA. Drosophila myc regulates organ dimension by inducing cell competitors. Cell. 2004;117:107–16. https://doi.org/10.1016/S0092-8674(04)00214-4.

    Article 
    PubMed 

    Google Scholar
     

  • Clavería C, Giovinazzo G, Sierra R, Torres M. Myc-driven endogenous cell competitors within the early mammalian embryo. Nature. 2013;500:39–44. https://doi.org/10.1038/NATURE12389.

    Article 
    PubMed 

    Google Scholar
     

  • Sancho M, Di-Gregorio A, George N, Pozzi S, Sánchez JM, Pernaute B, et al. Aggressive interactions get rid of unfit embryonic stem cells on the onset of differentiation. Dev Cell. 2013;26:19–30. https://doi.org/10.1016/J.DEVCEL.2013.06.012.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villa del Campo C, Clavería C, Sierra R, Torres M. Cell competitors promotes phenotypically silent cardiomyocyte substitute within the mammalian coronary heart. Cell Rep. 2014;8:1741–51. https://doi.org/10.1016/J.CELREP.2014.08.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Neerven SM, Vermeulen L. Cell competitors in growth, homeostasis and most cancers. Nat Rev Mol Cell Biol. 2022. https://doi.org/10.1038/s41580-022-00538-y.

    Article 
    PubMed 

    Google Scholar
     

  • Fuchs E, Chen T. A matter of life and demise: self-renewal in stem cells. EMBO Rep. 2013;14:39–48. https://doi.org/10.1038/EMBOR.2012.197.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vermeulen L, Snippert HJ. Stem cell dynamics in homeostasis and most cancers of the gut. Nat Rev Most cancers. 2014;14:468–80. https://doi.org/10.1038/NRC3744.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klein AM, Simons BD. Common patterns of stem cell destiny in biking grownup tissues. Growth. 2011;138:3103–11. https://doi.org/10.1242/DEV.060103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, et al. Intestinal crypt homeostasis outcomes from impartial competitors between symmetrically dividing Lgr5 stem cells. Cell. 2010;143:134–44. https://doi.org/10.1016/J.CELL.2010.09.016.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez-Garcia C, Klein AM, Simons BD, Winton DJ. Intestinal stem cell substitute follows a sample of impartial drift. Science. 2010;330:822–5. https://doi.org/10.1126/SCIENCE.1196236/SUPPL_FILE/LOPEZ.SOM.PDF.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ritsma L, Ellenbroek SIJ, Zomer A, Snippert HJ, De Sauvage FJ, Simons BD, et al. Intestinal crypt homeostasis revealed at single-stem-cell degree by in vivo stay imaging. Nature. 2014;507:362–5. https://doi.org/10.1038/NATURE12972.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snippert HJ, Schepers AG, Van Es JH, Simons BD, Clevers H. Biased competitors between Lgr5 intestinal stem cells pushed by oncogenic mutation induces clonal growth. EMBO Rep. 2014;15:62–9. https://doi.org/10.1002/EMBR.201337799.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vermeulen L, Morrissey E, Van Der Heijden M, Nicholson AM, Sottoriva A, Buczacki S, et al. Defining stem cell dynamics in fashions of intestinal tumor initiation. Science. 2013;342:995–8. https://doi.org/10.1126/SCIENCE.1243148/SUPPL_FILE/VERMEULEN.SM.PDF.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baumgartner ME, Dinan MP, Langton PF, Kucinski I, Piddini E. Proteotoxic stress is a driver of the loser standing and cell competitors. Nat Cell Biol. 2021;23:136–46. https://doi.org/10.1038/s41556-020-00627-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnston LA, Prober DA, Edgar BA, Eisenman RN, Gallant P. Drosophila myc regulates mobile development throughout growth. Cell. 1999;98:779–90. https://doi.org/10.1016/S0092-8674(00)81512-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raff MC. Social controls on cell survival and cell demise. Nature. 1992;356:397–400. https://doi.org/10.1038/356397A0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zoranovic T, Grmai L, Bach EA. Regulation of proliferation, cell competitors, and mobile development by the Drosophila JAK-STAT pathway. JAKSTAT. 2013;2:e25408. https://doi.org/10.4161/JKST.25408.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodrigues AB, Zoranovic T, Ayala-Camargo A, Grewal S, Reyes-Robles T, Krasny M, et al. Activated STAT regulates development and induces aggressive interactions independently of Myc, Yorkie, Wingless and ribosome biogenesis. Growth. 2012;139:4051–61. https://doi.org/10.1242/DEV.076760/-/DC1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mamada H, Sato T, Ota M, Sasaki H. Cell competitors in mouse NIH3T3 embryonic fibroblasts is managed by the exercise of Tead household proteins and Myc. J Cell Sci. 2015;128:790–803. https://doi.org/10.1242/JCS.163675.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tyler DM, Li W, Zhuo N, Pellock B, Baker NE. Genes affecting cell competitors in Drosophila. Genetics. 2007;175:643–57. https://doi.org/10.1534/GENETICS.106.061929.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humbert PO, Russell SM, Smith L, Richardson HE. The scribble–Dlg–Lgl module in cell polarity regulation. Cell polarity 1: organic position and primary mechanisms. In: Ebnet, Okay. (eds) Cell Polarity 1. Springer, Cham. 2015. pp. 65–111. https://doi.org/10.1007/978-3-319-14463-4_4.

  • Bilder D, Li M, Perrimon N. Cooperative regulation of cell polarity and development by Drosophila tumor suppressors. Science. 2000;289:113–6. https://doi.org/10.1126/SCIENCE.289.5476.113.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Vreede G, Gerlach SU, Bilder D. Epithelial monitoring by ligand-receptor segregation ensures malignant cell elimination. Science. 2022;376:297–301. https://doi.org/10.1126/SCIENCE.ABL4213/SUPPL_FILE/SCIENCE.ABL4213_MDAR_REPRODUCIBILITY_CHECKLIST.PDF.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersen DS, Colombani J, Palmerini V, Chakrabandhu Okay, Boone E, Röthlisberger M, et al. The Drosophila TNF receptor Grindelwald {couples} lack of cell polarity and neoplastic development. Nature. 2015;522:482–6. https://doi.org/10.1038/nature14298.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rhiner C, López-Homosexual JM, Soldini D, Casas-Tinto S, Martín FA, Lombardía L, et al. Flower types an extracellular code that reveals the health of a cell to its neighbors in Drosophila. Dev Cell. 2010;18:985–98. https://doi.org/10.1016/J.DEVCEL.2010.05.010.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merino MM, Rhiner C, Portela M, Moreno E. “Health fingerprints” mediate physiological culling of undesirable neurons in Drosophila. Curr Biol. 2013;23:1300–9. https://doi.org/10.1016/J.CUB.2013.05.053.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levayer R, Hauert B, Moreno E. Cell mixing induced by myc is required for aggressive tissue invasion and destruction. Nature. 2015;524:476–80. https://doi.org/10.1038/nature14684.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madan E, Pelham CJ, Nagane M, Parker TM, Canas-Marques R, Fazio Okay, et al. Flower isoforms promote aggressive development in most cancers. Nature. 2019;572:260–4. https://doi.org/10.1038/s41586-019-1429-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shraiman BI. Mechanical suggestions as a doable regulator of tissue development. Proc Natl Acad Sci USA. 2005;102:3318–23. https://doi.org/10.1073/PNAS.0404782102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brás-Pereira C, Moreno E. Mechanical cell competitors. Curr Opin Cell Biol. 2018;51:15–21. https://doi.org/10.1016/J.CEB.2017.10.003.

    Article 
    PubMed 

    Google Scholar
     

  • Levayer R, Dupont C, Moreno E. Tissue crowding induces caspase-dependent competitors for house. Curr Biol. 2016;26:670–7. https://doi.org/10.1016/J.CUB.2015.12.072.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suijkerbuijk SJE, Kolahgar G, Kucinski I, Piddini E. Cell competitors drives the expansion of intestinal adenomas in Drosophila. Curr Biol. 2016;26:428–38. https://doi.org/10.1016/J.CUB.2015.12.043.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brumby AM, Richardson HE. scribble mutants cooperate with oncogenic Ras or Notch to trigger neoplastic overgrowth in Drosophila. EMBO J. 2003;22:5769–79. https://doi.org/10.1093/EMBOJ/CDG548.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamori Y, Bialucha CU, Tian AG, Kajita M, Huang YC, Norman M, et al. Involvement of Lgl and Mahjong/VprBP in Cell Competitors. PLoS Biol. 2010;8:e1000422. https://doi.org/10.1371/JOURNAL.PBIO.1000422.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagstaff L, Goschorska M, Kozyrska Okay, Duclos G, Kucinski I, Chessel A, et al. Mechanical cell competitors kills cells through induction of deadly p53 ranges. Nat Commun. 2016;7:11373. https://doi.org/10.1038/NCOMMS11373.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De La Cova C, Senoo-Matsuda N, Ziosi M, Wu DC, Bellosta P, Quinzii CM, et al. Supercompetitor standing of Drosophila Myc cells requires p53 as a health sensor to reprogram metabolism and promote viability. Cell Metab. 2014;19:470–83. https://doi.org/10.1016/J.CMET.2014.01.012.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gribble FM, Reimann F. Perform and mechanisms of enteroendocrine cells and intestine hormones in metabolism. Nat Rev Endocrinol. 2019;15:226–37. https://doi.org/10.1038/s41574-019-0168-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50:1–9. https://doi.org/10.1038/s12276-018-0126-x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mejías-Luque R, Lindén SK, Garrido M, Tye H, Najdovska M, Jenkins BJ, et al. Irritation modulates the expression of the intestinal mucins MUC2 and MUC4 in gastric tumors. Oncogene. 2010;29:1753–62. https://doi.org/10.1038/onc.2009.467.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura Okay, Yokoi Y, Fukaya R, Ohira S, Shinozaki R, Nishida T, et al. Expression and localization of paneth cells and their α-defensins within the small gut of grownup mouse. Entrance Immunol. 2020;11:2588. https://doi.org/10.3389/FIMMU.2020.570296/BIBTEX.

    Article 

    Google Scholar
     

  • Yu S, Balasubramanian I, Laubitz D, Tong Okay, Bandyopadhyay S, Lin X, et al. Paneth cell-derived lysozyme defines the composition of mucolytic microbiota and the inflammatory tone of the gut. Immunity. 2020;53:398–416.e8. https://doi.org/10.1016/J.IMMUNI.2020.07.010.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bel S, Pendse M, Wang Y, Li Y, Ruhn KA, Hassell B, et al. Paneth cells secrete lysozyme through secretory autophagy throughout bacterial an infection of the gut. Science. 2017;357:1047–52. https://doi.org/10.1126/SCIENCE.AAL4677/SUPPL_FILE/AAL4677_BEL_SM.PDF.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer-Hoffert U, Hornef MW, Henriques-Normark B, Axelsson LG, Midtvedt T, Pütsep Okay, et al. Secreted enteric antimicrobial exercise localises to the mucus floor layer. Intestine. 2008;57:764–71. https://doi.org/10.1136/GUT.2007.141481.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to micro organism. Nat Immunol. 2000;1:113–8. https://doi.org/10.1038/77783.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barker N, Van Es JH, Kuipers J, Kujala P, Van Den Born M, Cozijnsen M, et al. Identification of stem cells in small gut and colon by marker gene Lgr5. Nature. 2007;449:1003–7. https://doi.org/10.1038/nature06196.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerbe F, Van Es JH, Makrini L, Brulin B, Mellitzer G, Robine S, et al. Distinct ATOH1 and Neurog3 necessities outline tuft cells as a brand new secretory cell kind within the intestinal epithelium. J Cell Biol. 2011;192:767–80. https://doi.org/10.1083/JCB.201010127.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones JC, Brindley CD, Elder NH, Myers MG, Rajala MW, Dekaney CM, et al. Mobile plasticity of Defa4Cre-expressing Paneth cells in response to notch activation and intestinal damage. Cell Mol Gastroenterol Hepatol. 2019;7:533–54. https://doi.org/10.1016/J.JCMGH.2018.11.004.

    Article 
    PubMed 

    Google Scholar
     

  • Aoki R, Shoshkes-Carmel M, Gao N, Shin S, Might CL, Golson ML, et al. Foxl1-expressing mesenchymal cells represent the intestinal stem cell area of interest. Cell Mol Gastroenterol Hepatol. 2016;2:175–88. https://doi.org/10.1016/J.JCMGH.2015.12.004.

    Article 
    PubMed 

    Google Scholar
     

  • Stzepourginski I, Nigro G, Jacob JM, Dulauroy S, Sansonetti PJ, Eberl G, et al. CD34+ mesenchymal cells are a serious element of the intestinal stem cells area of interest at homeostasis and after damage. Proc Natl Acad Sci USA. 2017;114:E506-13. https://doi.org/10.1073/PNAS.1620059114/SUPPL_FILE/PNAS.201620059SI.PDF.

    Article 

    Google Scholar
     

  • Sehgal A, Donaldson DS, Pridans C, Sauter KA, Hume DA, Mabbott NA. The position of CSF1R-dependent macrophages in charge of the intestinal stem-cell area of interest. Nat Commun. 2018;9:1–17. https://doi.org/10.1038/s41467-018-03638-6.

    Article 
    CAS 

    Google Scholar
     

  • Baghdadi MB, Ayyaz A, Coquenlorge S, Chu B, Kumar S, Streutker C, et al. Enteric glial cell heterogeneity regulates intestinal stem cell niches. Cell Stem Cell. 2022;29:86–100.e6. https://doi.org/10.1016/J.STEM.2021.10.004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farin HF, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DVF, et al. Visualization of a short-range Wnt gradient within the intestinal stem-cell area of interest. Nature. 2016;530:340–3. https://doi.org/10.1038/nature16937.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muñoz J, Stange DE, Schepers AG, Van De Wetering M, Koo BK, Itzkovitz S, et al. The Lgr5 intestinal stem cell signature: sturdy expression of proposed quiescent ‘+4’ cell markers. EMBO J. 2012;31:3079–91. https://doi.org/10.1038/EMBOJ.2012.166.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pentinmikko N, Iqbal S, Mana M, Andersson S, Cognetta AB, Suciu RM, et al. Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium. Nature. 2019;571:398–402. https://doi.org/10.1038/s41586-019-1383-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Böttcher A, Büttner M, Tritschler S, Sterr M, Aliluev A, Oppenländer L, et al. Non-canonical Wnt/PCP signalling regulates intestinal stem cell lineage priming in direction of enteroendocrine and Paneth cell fates. Nat Cell Biol. 2021;23:23–31. https://doi.org/10.1038/s41556-020-00617-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andoh A, Bamba S, Fujiyama Y, Brittan M, Wright NA. Colonic subepithelial myofibroblasts in mucosal irritation and restore: contribution of bone marrow-derived stem cells to the intestine regenerative response. J Gastroenterol. 2005;40:1089–99. https://doi.org/10.1007/S00535-005-1727-4/METRICS.

    Article 
    PubMed 

    Google Scholar
     

  • Guo Z, Ohlstein B. Bidirectional Notch signaling regulates Drosophila intestinal stem cell multipotency. Science. 2015;350:927. https://doi.org/10.1126/science.aab0988.

    Article 
    CAS 

    Google Scholar
     

  • Ohlstein B, Spradling A. Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science. 2007;315:988–92. https://doi.org/10.1126/SCIENCE.1136606/SUPPL_FILE/OHLSTEIN.SOM.PDF.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Es JH, Van Gijn ME, Riccio O, Van Den Born M, Vooijs M, Begthel H, et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005;435:959–63. https://doi.org/10.1038/nature03659.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • VanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST, et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Growth. 2012;139:488–97. https://doi.org/10.1242/DEV.070763.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F, Gadient R, et al. Modulation of notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes recognized to specify intestine secretory lineage differentiation. Toxicol Sci. 2004;82:341–58. https://doi.org/10.1093/TOXSCI/KFH254.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stanger BZ, Datar R, Murtaugh LC, Melton DA. Direct regulation of intestinal destiny by Notch. Proc Natl Acad Sci USA. 2005;102:12443–8. https://doi.org/10.1073/PNAS.0505690102/SUPPL_FILE/05690TABLE1.PDF.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch indicators management the destiny of immature progenitor cells within the gut. Nature. 2005;435:964–8. https://doi.org/10.1038/nature03589.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poliakov A, Cotrina M, Wilkinson DG. Numerous roles of Eph receptors and ephrins within the regulation of cell migration and tissue meeting. Dev Cell. 2004;7:465–80. https://doi.org/10.1016/J.DEVCEL.2004.09.006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mellitzer G, Xu Q, Wilkinson DG. Eph receptors and ephrins prohibit cell intermingling and communication. Nature. 1999;400:77–81. https://doi.org/10.1038/21907.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noren NK, Pasquale EB. Eph receptor–ephrin bidirectional indicators that focus on Ras and Rho proteins. Cell Sign. 2004;16:655–66. https://doi.org/10.1016/J.CELLSIG.2003.10.006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van de Wetering M, Sancho E, Verweij C, De Lau W, Oving I, Hurlstone A, et al. The β-catenin/TCF-4 complicated imposes a crypt progenitor phenotype on colorectal most cancers cells. Cell. 2002;111:241–50. https://doi.org/10.1016/S0092-8674(02)01014-0.

    Article 
    PubMed 

    Google Scholar
     

  • Batlle E, Henderson JT, Beghtel H, Van den Born MMW, Sancho E, Huls G, et al. β-catenin and TCF mediate cell positioning within the intestinal epithelium by controlling the expression of EphB/EphrinB. Cell. 2002;111:251–63. https://doi.org/10.1016/S0092-8674(02)01015-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Es JH, Jay P, Gregorieff A, van Gijn ME, Jonkheer S, Hatzis P, et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol. 2005;7:381–6. https://doi.org/10.1038/ncb1240.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barry ER, Morikawa T, Butler BL, Shrestha Okay, De La Rosa R, Yan KS, et al. Restriction of intestinal stem cell growth and the regenerative response by YAP. Nature. 2012;493:106–10. https://doi.org/10.1038/nature11693.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gregorieff A, Liu Y, Inanlou MR, Khomchuk Y, Wrana JL. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and most cancers. Nature. 2015;526:715–8. https://doi.org/10.1038/nature15382.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou D, Zhang Y, Wu H, Barryg E, Yin Y, Lawrence E, et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Sure-associated protein (Yap) overabundance. Proc Natl Acad Sci USA. 2011;108:E1312–20. https://doi.org/10.1073/PNAS.1110428108/SUPPL_FILE/SAPP.PDF.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim NG, Koh E, Chen X, Gumbiner BM. E-cadherin mediates contact inhibition of proliferation by Hippo signaling-pathway elements. Proc Natl Acad Sci USA. 2011;108:11930–5. https://doi.org/10.1073/PNAS.1103345108/SUPPL_FILE/PNAS.201103345SI.PDF.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell inhabitants in small gut renders Lgr5-positive cells dispensable. Nature. 2011;478:255–9. https://doi.org/10.1038/nature10408.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suh HN, Kim MJ, Jung YS, Lien EM, Jun S, Park JI. Quiescence exit of Tert+ stem cells by Wnt/β-catenin is indispensable for intestinal regeneration. Cell Rep. 2017;21:2571. https://doi.org/10.1016/J.CELREP.2017.10.118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metcalfe C, Kljavin NM, Ybarra R, De Sauvage FJ. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell. 2014;14:149–59. https://doi.org/10.1016/J.STEM.2013.11.008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higa T, Okita Y, Matsumoto A, Nakayama S, Oka T, Sugahara O, et al. Spatiotemporal reprogramming of differentiated cells underlies regeneration and neoplasia within the intestinal epithelium. Nat Commun. 2022;13:1–17. https://doi.org/10.1038/s41467-022-29165-z.

    Article 
    CAS 

    Google Scholar
     

  • Tetteh PW, Basak O, Farin HF, Wiebrands Okay, Kretzschmar Okay, Begthel H, et al. Substitute of misplaced Lgr5-positive stem cells by plasticity of their enterocyte-lineage daughters. Cell Stem Cell. 2016;18:203–13. https://doi.org/10.1016/J.STEM.2016.01.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buczacki SJA, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R, et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature. 2013;495:65–9. https://doi.org/10.1038/nature11965.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mustata RC, Vasile G, Fernandez-Vallone V, Strollo S, Lefort A, Libert F, et al. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep. 2013;5:421–32. https://doi.org/10.1016/J.CELREP.2013.09.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fazilaty H, Brügger MD, Valenta T, Szczerba BM, Berkova L, Doumpas N, et al. Tracing colonic embryonic transcriptional profiles and their reactivation upon intestinal injury. Cell Rep. 2021;36:109484. https://doi.org/10.1016/j.celrep.2021.109484.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yui S, Azzolin L, Maimets M, Pedersen MT, Fordham RP, Hansen SL, et al. YAP/TAZ-dependent reprogramming of colonic epithelium hyperlinks ECM reworking to tissue regeneration. Cell Stem Cell. 2018;22:35–49.e7. https://doi.org/10.1016/J.STEM.2017.11.001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flanagan Okay, Modrusan Z, Cornelius J, Chavali A, Kasman I, Komuves L, et al. Intestinal epithelial cell up-regulation of LY6 molecules throughout colitis leads to enhanced chemokine secretion. J Immunol. 2008;180:3874–81. https://doi.org/10.4049/JIMMUNOL.180.6.3874.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ayyaz A, Kumar S, Sangiorgi B, Ghoshal B, Gosio J, Ouladan S, et al. Single-cell transcriptomes of the regenerating gut reveal a revival stem cell. Nature. 2019;569:121–5. https://doi.org/10.1038/s41586-019-1154-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai J, Zhang N, Zheng Y, De Wilde RF, Maitra A, Pan D. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev. 2010;24:2383–8. https://doi.org/10.1101/GAD.1978810.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jardé T, Chan WH, Rossello FJ, Kaur Kahlon T, Theocharous M, Kurian Arackal T, et al. Mesenchymal niche-derived neuregulin-1 drives intestinal stem cell proliferation and regeneration of broken epithelium. Cell Stem Cell. 2020;27:646–62.e7. https://doi.org/10.1016/J.STEM.2020.06.021.

    Article 
    PubMed 

    Google Scholar
     

  • Nusse YM, Savage AK, Marangoni P, Rosendahl-Huber AKM, Landman TA, De Sauvage FJ, et al. Parasitic helminths induce fetal-like reversion within the intestinal stem cell area of interest. Nature. 2018;559:109–13. https://doi.org/10.1038/S41586-018-0257-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ekbom A, Helmick C, Zack M, Adami H-O. Ulcerative colitis and colorectal most cancers. N Engl J Med. 1990;323:1228–33. https://doi.org/10.1056/NEJM199011013231802.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serra D, Mayr U, Boni A, Lukonin I, Rempfler M, Challet Meylan L, et al. Self-organization and symmetry breaking in intestinal organoid growth. Nature. 2019;569:66–72. https://doi.org/10.1038/S41586-019-1146-Y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sprangers J, Zaalberg IC, Maurice MM. Organoid-based modeling of intestinal growth, regeneration, and restore. Cell Demise Differ. 2020;28:95–107. https://doi.org/10.1038/s41418-020-00665-z.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hageman JH, Heinz MC, Kretzschmar Okay, van der Vaart J, Clevers H, Snippert HJG. Intestinal regeneration: regulation by the microenvironment. Dev Cell. 2020;54:435–46. https://doi.org/10.1016/j.devcel.2020.07.009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roshandel G, Ghasemi-Kebria F, Malekzadeh R. Colorectal Most cancers: Epidemiology, Danger Elements, and Prevention. Cancers (Basel). 2024;16:1530. https://doi.org/10.3390/cancers16081530.

    Article 
    PubMed 

    Google Scholar
     

  • Stigliano V, Sanchez-Mete L, Martayan A, Anti M. Early-onset colorectal most cancers: a sporadic or inherited illness. World J Gastroenterol. 2014;20:12420–30. https://doi.org/10.3748/wjg.v20.i35.12420.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pearlman R, Frankel WL, Swanson B, Zhao W, Yilmaz A, Miller Okay, et al. Prevalence and spectrum of germline most cancers susceptibility gene mutations amongst sufferers with early-onset colorectal most cancers. JAMA Oncol. 2017;3:464–71. https://doi.org/10.1001/JAMAONCOL.2016.5194.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon most cancers. Gastroenterology. 2010;138:2044–58. https://doi.org/10.1053/J.GASTRO.2010.01.054.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lakatos PL, Lakatos L. Danger for colorectal most cancers in ulcerative colitis: adjustments, causes and administration methods. World J Gastroenterol. 2008;14:3937–47. https://doi.org/10.3748/wjg.14.3937.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fearon ER, Vogelstein B. A genetic mannequin for colorectal tumorigenesis. Cell. 1990;61:759–67. https://doi.org/10.1016/0092-8674(90)90186-I.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194:23–8. https://doi.org/10.1126/SCIENCE.959840.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vendramin R, Litchfield Okay, Swanton C. Most cancers evolution: Darwin and past. EMBO J. 2021;40:e108389. https://doi.org/10.15252/EMBJ.2021108389.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Black JRM, McGranahan N. Genetic and non-genetic clonal variety in most cancers evolution. Nat Rev Most cancers. 2021;21:379–92. https://doi.org/10.1038/s41568-021-00336-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Neerven SM, Vermeulen L. Cell competitors in growth, homeostasis and most cancers. Nat Rev Mol Cell Biol. 2023;24:221–36. https://doi.org/10.1038/s41580-022-00538-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madan E, Peixoto ML, Dimitrion P, Eubank TD, Yekelchyk M, Talukdar S, et al. Cell competitors boosts clonal evolution and hypoxic choice in most cancers. Developments Cell Biol. 2020;30:967–78. https://doi.org/10.1016/J.TCB.2020.10.002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yum MK, Han S, Fink J, Wu S-HS, Dabrowska C, Trendafilova T, et al. Tracing oncogene-driven remodelling of the intestinal stem cell area of interest. Nature. 2021. https://doi.org/10.1038/s41586-021-03605-0.

  • Kajita M, Sugimura Okay, Ohoka A, Burden J, Suganuma H, Ikegawa M, et al. Filamin acts as a key regulator in epithelial defence towards remodeled cells. Nat Commun. 2014;5:1–13. https://doi.org/10.1038/ncomms5428.

    Article 
    CAS 

    Google Scholar
     

  • Watanabe H, Ishibashi Okay, Mano H, Kitamoto S, Sato N, Hoshiba Okay, et al. Mutant p53-expressing cells bear necroptosis through cell competitors with the neighboring regular epithelial cells. Cell Rep. 2018;23:3721–9. https://doi.org/10.1016/J.CELREP.2018.05.081.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kajita M, Hogan C, Harris AR, Dupre-Crochet S, Itasaki N, Kawakami Okay, et al. Interplay with surrounding regular epithelial cells influences signalling pathways and behavior of Src-transformed cells. J Cell Sci. 2010;123:171–80. https://doi.org/10.1242/JCS.057976.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leung CT, Brugge JS. Outgrowth of single oncogene-expressing cells from suppressive epithelial environments. Nature. 2012;482:410–3. https://doi.org/10.1038/NATURE10826.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kon S, Ishibashi Okay, Katoh H, Kitamoto S, Shirai T, Tanaka S, et al. Cell competitors with regular epithelial cells promotes apical extrusion of remodeled cells by metabolic adjustments. Nat Cell Biol. 2017;19:530–41. https://doi.org/10.1038/ncb3509.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krotenberg Garcia A, Fumagalli A, Le HQ, Jackstadt R, Lannagan TRM, Sansom OJ, et al. Energetic elimination of intestinal cells drives oncogenic development in organoids. Cell Rep. 2021;36:109307. https://doi.org/10.1016/J.CELREP.2021.109307.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasaki A, Nagatake T, Egami R, Gu G, Takigawa I, Ikeda W, et al. Weight problems suppresses cell-competition-mediated apical elimination of RasV12-transformed cells from epithelial tissues. Cell Rep. 2018;23:974–82. https://doi.org/10.1016/j.celrep.2018.03.104.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of β-catenin-Tcf signaling in colon most cancers by mutations in β-catenin or APC. Science. 1997;275:1787–90. https://doi.org/10.1126/SCIENCE.275.5307.1787/ASSET/749B83BE-0076-4652-98AA-C6D03392BDAC/ASSETS/GRAPHIC/SE127492604A.JPEG.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korinek V, Barker N, Morin PJ, Van Wichen D, De Weger R, Kinzler KW, et al. Constitutive transcriptional activation by a β-catenin-Tcf complicated in APC(-/-) colon carcinoma. Science. 1997;275:1784–7. https://doi.org/10.1126/SCIENCE.275.5307.1784/ASSET/ADCB468C-A233-4E01-AB4F-F6A6D22310FF/ASSETS/GRAPHIC/SE1274928004.JPEG.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flanagan DJ, Pentinmikko N, Luopajärvi Okay, Willis NJ, Gilroy Okay, Raven AP, et al. NOTUM from Apc-mutant cells biases clonal competitors to provoke most cancers. Nature. 2021. https://doi.org/10.1038/s41586-021-03525-z.

  • van Neerven SM, de Groot NE, Nijman LE, Scicluna BP, van Driel MS, Lecca MC, et al. Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature. 2021. https://doi.org/10.1038/s41586-021-03558-4.

  • Bugter JM, El Bouazzaoui L, Küçükköse E, Hong Y, Sprangers J, Jordens I, et al. RNF43 mutations facilitate colorectal most cancers metastasis through formation of a tumour-intrinsic area of interest. BioRxiv. 2023. https://doi.org/10.1101/2022.12.22.521159.

  • Huang R, Zhang X, Gracia-Sancho J, Xie W-F. Liver regeneration: mobile origin and molecular mechanisms. Liver Int. 2022;42:1486–95. https://doi.org/10.1111/liv.15174.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuchiya A, Lu W-Y. Liver stem cells: plasticity of the liver epithelium. World J Gastroenterol. 2019;25:1037–49. https://doi.org/10.3748/wjg.v25.i9.1037.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006;43:S45–53. https://doi.org/10.1002/hep.20969.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver growth, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14:561–74. https://doi.org/10.1016/j.stem.2014.04.010.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen-Lefebvre AT, Horuzsko A. Kupffer cell metabolism and performance. J Enzymol Metab. 2015;1:101.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michalopoulos GK. Liver regeneration. J Cell Physiol. 2007;213:286–300. https://doi.org/10.1002/jcp.21172.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michalopoulos GK, Bhushan B. Liver regeneration: organic and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 2021;18:40–55. https://doi.org/10.1038/s41575-020-0342-4.

    Article 
    PubMed 

    Google Scholar
     

  • Michalopoulos GK, Barua L, Bowen WC. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and poisonous biliary damage. Hepatology. 2005;41:535–44. https://doi.org/10.1002/hep.20600.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenhard Rudolph Okay, Trautwein C, Kubicka S, Rakemann T, Bahr MJ, Sedlaczek N, et al. Differential regulation of extracellular matrix synthesis throughout liver regeneration after partial hepatectomy in rats. Hepatology. 1999;30:1159–66. https://doi.org/10.1002/hep.510300502.

    Article 

    Google Scholar
     

  • Solar T, Annunziato S, Bergling S, Sheng C, Orsini V, Forcella P, et al. ZNRF3 and RNF43 cooperate to safeguard metabolic liver zonation and hepatocyte proliferation. Cell Stem Cell. 2021;28:1822–37.e10. https://doi.org/10.1016/j.stem.2021.05.013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paris J, Henderson NC. Liver zonation, revisited. Hepatology. 2022;76:1219–30. https://doi.org/10.1002/hep.32408.

    Article 
    PubMed 

    Google Scholar
     

  • Hu S, Liu S, Bian Y, Poddar M, Singh S, Cao C, et al. Single-cell spatial transcriptomics reveals a dynamic management of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b. Cell Rep Med. 2022;3:100754. https://doi.org/10.1016/j.xcrm.2022.100754.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kietzmann T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 2017;11:622–30. https://doi.org/10.1016/j.redox.2017.01.012.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benhamouche S, Decaens T, Godard C, Chambrey R, Rickman DS, Moinard C, et al. Apc tumor suppressor gene is the “Zonation-Keeper” of mouse liver. Dev Cell. 2006;10:759–70. https://doi.org/10.1016/j.devcel.2006.03.015.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torre C, Perret C, Colnot S. Transcription dynamics in a physiological course of: β-catenin signaling directs liver metabolic zonation. Int J Biochem Cell Biol. 2011;43:271–8. https://doi.org/10.1016/j.biocel.2009.11.004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He L, Pu W, Liu X, Zhang Z, Han M, Li Y, et al. Proliferation tracing reveals regional hepatocyte technology in liver homeostasis and restore. Science. 2021;371:eabc4346. https://doi.org/10.1126/science.abc4346.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hishida T, Yamamoto M, Hishida-Nozaki Y, Shao C, Huang L, Wang C, et al. In vivo partial mobile reprogramming enhances liver plasticity and regeneration. Cell Rep. 2022;39:110730. https://doi.org/10.1016/j.celrep.2022.110730.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayhurst GP, Lee Y-H, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear issue 4α (nuclear receptor 2A1) is important for upkeep of hepatic gene expression and lipid homeostasis. Mol Cell Biol. 2001;21:1393–403. https://doi.org/10.1128/mcb.21.4.1393-1403.2001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheung AC, Lorenzo Pisarello MJ, LaRusso NF. Pathobiology of biliary epithelia. Biochim Biophys Acta Mol Foundation Dis. 2018;1864:1220–31. https://doi.org/10.1016/j.bbadis.2017.06.024.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ. Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol. 2019;16:269–81. https://doi.org/10.1038/s41575-019-0125-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawai T, Yasuchika Okay, Ishii T, Miyauchi Y, Kojima H, Yamaoka R, et al. SOX9 is a novel most cancers stem cell marker surrogated by osteopontin in human hepatocellular carcinoma. Sci Rep. 2016;6:30489. https://doi.org/10.1038/srep30489.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sampaziotis F, Muraro D, Tysoe OC, Sawiak S, Seashore TE, Godfrey EM, et al. Cholangiocyte organoids can restore bile ducts after transplantation within the human liver. Science. 2021;371:839–46. https://doi.org/10.1126/science.aaz6964.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanimizu N, Ichinohe N, Sasaki Y, Itoh T, Sudo R, Yamaguchi T, et al. Technology of purposeful liver organoids on combining hepatocytes and cholangiocytes with hepatobiliary connections ex vivo. Nat Commun. 2021;12:3390. https://doi.org/10.1038/s41467-021-23575-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alpini G, McGill JM, LaRusso NF. The pathobiology of biliary epithelia. Hepatology. 2002;35:1256–68. https://doi.org/10.1053/jhep.2002.33541.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ludwig J, Ritman EL, LaRusso NF, Sheedy PF, Zumpe G. Anatomy of the human biliary system studied by quantitative computer-aided three-dimensional imaging methods. Hepatology. 1998;27:893–9. https://doi.org/10.1002/hep.510270401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mancinelli R, Franchitto A, Glaser S, Meng F, Onori P, Demorrow S, et al. GABA induces the differentiation of small into giant cholangiocytes by activation of Ca2+/CaMK I-dependent adenylyl cyclase 8. Hepatology. 2013;58:251–63. https://doi.org/10.1002/hep.26308.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huch M, Dorrell C, Boj SF, Van Es JH, Li VSW, Van De Wetering M, et al. In vitro growth of single Lgr5 + liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494:247–50. https://doi.org/10.1038/nature11826.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernal W, Wendon J. Acute Liver Failure. N Engl J Med. 2013;369:2525–34. https://doi.org/10.1056/NEJMra1208937.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujii H, Hirose T, Oe S, Yasuchika Okay, Azuma H, Fujikawa T, et al. Contribution of bone marrow cells to liver regeneration after partial hepatectomy in mice. J Hepatol. 2002;36:653–9. https://doi.org/10.1016/S0168-8278(02)00043-0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malato Y, Naqvi S, Schürmann N, Ng R, Wang B, Zape J, et al. Destiny tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Investig. 2011;121:4850–60. https://doi.org/10.1172/JCI59261.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyaoka Y, Ebato Okay, Kato H, Arakawa S, Shimizu S, Miyajima A. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr Biol. 2012;22:1166–75. https://doi.org/10.1016/j.cub.2012.05.016.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ang CH, Hsu SH, Guo F, Tan CT, Yu VC, Visvader JE, et al. Lgr5+ pericentral hepatocytes are self-maintained in regular liver regeneration and vulnerable to hepatocarcinogenesis. Proc Natl Acad Sci USA. 2019;116:19530–40. https://doi.org/10.1073/pnas.1908099116.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huck I, Gunewardena S, Espanol-Suner R, Willenbring H, Apte U. Hepatocyte nuclear issue 4 alpha activation is important for termination of liver regeneration in mice. Hepatology. 2019;70:666–81. https://doi.org/10.1002/hep.30405.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raven A, Lu WY, Man TY, Ferreira-Gonzalez S, O’Duibhir E, Dwyer BJ, et al. Cholangiocytes act as facultative liver stem cells throughout impaired hepatocyte regeneration. Nature. 2017;547:350–4. https://doi.org/10.1038/nature23015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaneko Okay, Kamimoto Okay, Miyajima A, Itoh T. Adaptive reworking of the biliary structure underlies liver homeostasis. Hepatology. 2015;61:2056–66. https://doi.org/10.1002/HEP.27685.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodrigo-Torres D, Affò S, Coll M, Morales-Ibanez O, Millán C, Blaya D, et al. The biliary epithelium offers rise to liver progenitor cells. Hepatology. 2014;60:1367–77. https://doi.org/10.1002/hep.27078.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Español-Suñer R, Carpentier R, Van Hul N, Legry V, Achouri Y, Cordi S, et al. Liver progenitor cells yield purposeful hepatocytes in response to persistent liver damage in mice. Gastroenterology. 2012;143:1564–75.e7. https://doi.org/10.1053/j.gastro.2012.08.024.

    Article 
    PubMed 

    Google Scholar
     

  • Yanger Okay, Zong Y, Maggs LR, Shapira SN, Maddipati R, Aiello NM, et al. Strong mobile reprogramming happens spontaneously throughout liver regeneration. Genes Dev. 2013;27:719–24. https://doi.org/10.1101/gad.207803.112.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huch M, Gehart H, Van Boxtel R, Hamer Okay, Blokzijl F, Verstegen MMA, et al. Lengthy-term tradition of genome-stable bipotent stem cells from grownup human liver. Cell. 2015;160:299–312. https://doi.org/10.1016/j.cell.2014.11.050.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasaki M, Ikeda H, Yamaguchi J, Miyakoshi M, Sato Y, Nakanuma Y. Bile ductular cells present process mobile senescence improve in persistent liver illnesses together with fibrous development. Am J Clin Pathol. 2010;133:212–23. https://doi.org/10.1309/AJCPWMX47TREYWZG.

    Article 
    PubMed 

    Google Scholar
     

  • Tabibian JH, O’Hara SP, Splinter PL, Trussoni CE, Larusso NF. Cholangiocyte senescence by the use of N-Ras activation is a attribute of major sclerosing cholangitis. Hepatology. 2014;59:2263–75. https://doi.org/10.1002/hep.26993.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loft A, Alfaro AJ, Schmidt SF, Pedersen FB, Terkelsen MK, Puglia M, et al. Liver-fibrosis-activated transcriptional networks govern hepatocyte reprogramming and intra-hepatic communication. Cell Metab. 2021;33:1685–700.e9. https://doi.org/10.1016/j.cmet.2021.06.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merrell AJ, Peng T, Li J, Solar Okay, Li B, Katsuda T, et al. Dynamic transcriptional and epigenetic adjustments drive mobile plasticity within the liver. Hepatology. 2021;74:444–57. https://doi.org/10.1002/hep.31704.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bou Saleh M, Louvet A, Ntandja-Wandji LC, Boleslawski E, Gnemmi V, Lassailly G, et al. Lack of hepatocyte identification following aberrant YAP activation: a key mechanism in alcoholic hepatitis. J Hepatol. 2021;75:912–23. https://doi.org/10.1016/j.jhep.2021.05.041.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schaub JR, Huppert KA, Kurial SNT, Hsu BY, Solid AE, Donnelly B, et al. De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature. 2018;557:247–51. https://doi.org/10.1038/s41586-018-0075-5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katsuda T, Kawamata M, Hagiwara Okay, Takahashi RU, Yamamoto Y, Camargo FD, et al. Conversion of terminally dedicated hepatocytes to culturable bipotent progenitor cells with regenerative capability. Cell Stem Cell. 2017;20:41–55. https://doi.org/10.1016/j.stem.2016.10.007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim Y, Kang Okay, Lee SB, Search engine optimization D, Yoon S, Kim SJ, et al. Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J Hepatol. 2019;70:97–107. https://doi.org/10.1016/j.jhep.2018.09.007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han Y, Glaser S, Meng F, Francis H, Marzioni M, McDaniel Okay, et al. Latest advances within the morphological and purposeful heterogeneity of the biliary epithelium. Exp Biol Med. 2013;238:549–65. https://doi.org/10.1177/1535370213489926.

    Article 
    CAS 

    Google Scholar
     

  • Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM, Finegold MJ, et al. Bipotential grownup liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell. 2014;15:605–18. https://doi.org/10.1016/j.stem.2014.09.008.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Annunziato S, Solar T, Tchorz JS. The RSPO-LGR4/5-ZNRF3/RNF43 module in liver homeostasis, regeneration, and illness. Hepatology. 2022;76:888–99. https://doi.org/10.1002/hep.32328.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Planas-Paz L, Orsini V, Boulter L, Calabrese D, Pikiolek M, Nigsch F, et al. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and dimension. Nat Cell Biol. 2016;18:467–79. https://doi.org/10.1038/ncb3337.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell JO, Camargo FD. Hippo signalling within the liver: position in growth, regeneration and illness. Nat Rev Gastroenterol Hepatol. 2022;19:297–312. https://doi.org/10.1038/s41575-021-00571-w.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan D. Hippo signaling in organ dimension management. Genes Dev. 2007;21:886–97. https://doi.org/10.1101/gad.1536007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai H, Zhang N, Xu Y, Chen Q, Khan M, Potter JJ, et al. Sure-associated protein regulates the hepatic response after bile duct ligation. Hepatology. 2012;56:1097–107. https://doi.org/10.1002/hep.25769.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pepe-Mooney BJ, Dill MT, Alemany A, Ordovas-Montanes J, Matsushita Y, Rao A, et al. Single-cell evaluation of the liver epithelium reveals dynamic heterogeneity and an important position for YAP in homeostasis and regeneration. Cell Stem Cell. 2019;25:23–38.e8. https://doi.org/10.1016/j.stem.2019.04.004.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yimlamai D, Christodoulou C, Galli GG, Yanger Okay, Pepe-Mooney B, Gurung B, et al. Hippo pathway exercise influences liver cell destiny. Cell. 2014;157:1324–38. https://doi.org/10.1016/j.cell.2014.03.060.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar P, Zhang G, Su X, Jin C, Yu B, Yu X, et al. Upkeep of major hepatocyte features in vitro by inhibiting mechanical tension-induced YAP activation. Cell Rep. 2019;29:3212–22.e4. https://doi.org/10.1016/j.celrep.2019.10.128.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grijalva JL, Huizenga M, Mueller Okay, Rodriguez S, Brazzo J, Camargo F, et al. Dynamic alterations in Hippo signaling pathway and YAP activation throughout liver regeneration. J Physiol Gastrointest Liver Physiol. 2014;307:196–204. https://doi.org/10.1152/ajpgi.00077.2014.

    Article 
    CAS 

    Google Scholar
     

  • Lu L, Finegold MJ, Johnson RL. Hippo pathway coactivators yap and taz are required to coordinate mammalian liver regeneration. Exp Mol Med. 2018;50:e423. https://doi.org/10.1038/emm.2017.205.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verboven E, Moya IM, Sansores-Garcia L, Xie J, Hillen H, Kowalczyk W, et al. Regeneration defects in Yap and Taz mutant mouse livers are attributable to bile duct disruption and cholestasis. Gastroenterology. 2021;160:847–62. https://doi.org/10.1053/j.gastro.2020.10.035.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rhim JA, Sandgren EP, Degen JL, Palmiter RD, Brinster RL. Substitute of diseased mouse liver by hepatic cell transplantation. Science. 1994;263:1149–52. https://doi.org/10.1126/science.8108734.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guha S, Sharma A, Gupta S, Alfieri A, Gorla G, Gagandeep S, et al. Amelioration of radiation-induced liver injury in partially hepatectomized rats by hepatocyte transplantation. Most cancers Res. 1999;59:5871–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Overturf Okay, Al-Dhalimy M, Tanguay R, Brantly M, Ou C-N, Finegold M, et al. Hepatocytes corrected by gene remedy are chosen in vivo in a murine mannequin of hereditary tyrosinaemia kind I. Nat Genet. 1996;12:266-73.

  • Laconi E, Oren R, Mukhopadhyay DK, Hurston E, Laconi S, Pani P, et al. Lengthy-term, near-total liver substitute by transplantation of remoted hepatocytes in rats handled with retrorsine. Am J Pathol. 1998;153:319–29. https://doi.org/10.1016/S0002-9440(10)65574-5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Shao Y, Li L, Tian F, Cen J, Chen X, et al. Environment friendly liver repopulation of transplanted hepatocyte prevents cirrhosis in a rat mannequin of hereditary tyrosinemia kind i. Sci Rep. 2016;6:31460. https://doi.org/10.1038/srep31460.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malhi H, Gorla GR, Irani AN, Annamaneni P, Gupta S. Cell transplantation after oxidative hepatic preconditioning with radiation and ischemia–reperfusion results in intensive liver repopulation. Proc Natl Acad Sci USA. 2002;99:13114–9. https://doi.org/10.1073/pnas.192365499.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oertel M, Menthena A, Dabeva MD, Shafritz DA. Cell competitors results in a excessive degree of regular liver reconstitution by transplanted fetal liver stem/progenitor cells. Gastroenterology. 2006;130:507–20. https://doi.org/10.1053/j.gastro.2005.10.049.

    Article 
    PubMed 

    Google Scholar
     

  • Haridoss S, Yovchev MI, Schweizer H, Megherhi S, Beecher M, Locker J, et al. Activin A is a distinguished autocrine regulator of hepatocyte development arrest. Hepatol Commun. 2017;1:852–70. https://doi.org/10.1002/hep4.1106/full.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menthena A, Koehler CI, Sandhu JS, Yovchev MI, Hurston E, Shafritz DA, et al. Activin A, p15INK4b signaling, and cell competitors promote stem/progenitor cell repopulation of livers in ageing rats. Gastroenterology. 2011;140:1009–20. https://doi.org/10.1053/j.gastro.2010.12.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marongiu F, Laconi E. Cell competitors in liver carcinogenesis. World J Hepatol. 2020;12:475–84. https://doi.org/10.4254/wjh.v12.i8.475.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laconi S, Pani P, Pillai S, Pasciu D, Sarma DSR, Laconi E. A growth-constrained surroundings drives tumor development in vivo. Proc Natl Acad Sci USA. 2001;98:7806–11.

  • Marongiu F, Doratiotto S, Montisci S, Pani P, Laconi E. Liver repopulation and carcinogenesis: two sides of the identical coin. Am J Pathol. 2008;172:857–64. https://doi.org/10.2353/ajpath.2008.070910.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moya IM, Castaldo SA, van den Mooter L, Soheily S, Sansores-Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver most cancers in mice. Science. 2019;366:1029–34. https://doi.org/10.1126/science.aaw9886.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clark AM, Ma B, Taylor DL, Griffith L, Wells A. Liver metastases: microenvironments and ex-vivo fashions. Exp Biol Med. 2016;241:1639–52. https://doi.org/10.1177/1535370216658144.

    Article 
    CAS 

    Google Scholar
     

  • Mielgo A, Schmid MC. Liver tropism in most cancers: the hepatic metastatic area of interest. Chilly Spring Harb Perspect Med. 2020;10:a037259. https://doi.org/10.1101/cshperspect.a037259.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brodt P. Function of the microenvironment in liver metastasis: from pre- to prometastatic niches. Clin Most cancers Res. 2016;22:5971–82. https://doi.org/10.1158/1078-0432.CCR-16-0460.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, et al. Pre-metastatic niches: organ-specific houses for metastases. Nat Rev Most cancers. 2017;17:302–17. https://doi.org/10.1038/nrc.2017.6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Latacz E, Höppener D, Bohlok A, Leduc S, Tabariès S, Fernández Moro C, et al. Histopathological development patterns of liver metastasis: up to date consensus tips for sample scoring, views and up to date mechanistic insights. Br J Most cancers. 2022;127:988–1013. https://doi.org/10.1038/s41416-022-01859-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galjart B, Nierop PMH, van der Stok EP, van den Braak RRJC, Höppener DJ, Daelemans S, et al. Angiogenic desmoplastic histopathological development sample as a prognostic marker of excellent end result in sufferers with colorectal liver metastases. Angiogenesis. 2019;22:355–68. https://doi.org/10.1007/s10456-019-09661-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, et al. Colorectal liver metastasis: molecular mechanism and interventional remedy. Sign Transduct Goal Ther. 2022;7:70. https://doi.org/10.1038/s41392-022-00922-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chafe SC, Lou Y, Sceneay J, Vallejo M, Hamilton MJ, McDonald PC, et al. Carbonic anhydrase IX promotes myeloid-derived suppressor cell mobilization and institution of a metastatic area of interest by stimulating G-CSF manufacturing. Most cancers Res. 2015;75:996–1008. https://doi.org/10.1158/0008-5472.CAN-14-3000.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erler JT, Bennewith KL, Cox TR, Lang G, Hen D, Koong A, et al. Hypoxia-induced lysyl oxidase is a crucial mediator of bone marrow cell recruitment to type the premetastatic area of interest. Most cancers Cell. 2009;15:35–44. https://doi.org/10.1016/j.ccr.2008.11.012.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li T, Liu J, Wang Y, Zhou C, Shi Q, Huang S, et al. Liver fibrosis promotes immunity escape however limits the scale of liver tumor in a rat orthotopic transplantation mannequin. Sci Rep. 2021;11:22846. https://doi.org/10.1038/s41598-021-02155-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee JW, Stone ML, Porrett PM, Thomas SK, Komar CA, Li JH, et al. Hepatocytes direct the formation of a pro-metastatic area of interest within the liver. Nature. 2019;567:249–52. https://doi.org/10.1038/s41586-019-1004-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kok SY, Oshima H, Takahashi Okay, Nakayama M, Murakami Okay, Ueda HR, et al. Malignant subclone drives metastasis of genetically and phenotypically heterogenous cell clusters by fibrotic area of interest technology. Nat Commun. 2021;12:863. https://doi.org/10.1038/s41467-021-21160-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsilimigras DI, Ntanasis-Stathopoulos I, Pawlik TM. Molecular mechanisms of colorectal liver metastases. Cells. 2023;12:1657. https://doi.org/10.3390/cells12121657.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Gu Y, Cao X. The exosomes in tumor immunity. Oncoimmunology. 2015;4:1–8. https://doi.org/10.1080/2162402X.2015.1027472.

    Article 
    CAS 

    Google Scholar
     

  • Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in most cancers: exosomes, microvesicles and the rising position of huge oncosomes. Semin Cell Dev Biol. 2015;40:41–51. https://doi.org/10.1016/J.SEMCDB.2015.02.010.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ou J, Peng Y, Deng J, Miao H, Zhou J, Zha L, et al. Endothelial cell-derived fibronectin further area A promotes colorectal most cancers metastasis through inducing epithelial–mesenchymal transition. Carcinogenesis. 2014;35:1661–70. https://doi.org/10.1093/CARCIN/BGU090.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu C-Y, Li J-B, Wang J-Z, Wang W, Li F-X, Guo Y-L, et al. Comparability of gross tumor quantity of major oesophageal most cancers based mostly on contrast-enhanced three-dimensional, four-dimensional, and cone beam computed tomography. Oncotarget. 2017;8:95577–85. https://doi.org/10.18632/ONCOTARGET.21520.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganesh Okay, Basnet H, Kaygusuz Y, Laughney AM, He L, Sharma R, et al. L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal most cancers. Nat Most cancers. 2020;1:28–45. https://doi.org/10.1038/s43018-019-0006-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fender AW, Nutter JM, Fitzgerald TL, Bertrand FE, Sigounas G. Notch‐1 promotes stemness and epithelial to mesenchymal transition in colorectal most cancers. J Cell Biochem. 2015;116:2517–27. https://doi.org/10.1002/jcb.25196.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Döme B, Hendrix MJC, Paku S, Tóvári J, Tímár J. Different vascularization mechanisms in most cancers: pathology and therapeutic implications. Am J Pathol. 2007;170:1–15. https://doi.org/10.2353/ajpath.2007.060302.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Fan X, Stoicov C, Liu JH, Zubair S, Tsai E, et al. Human and mouse colon most cancers makes use of CD95 signaling for native development and metastatic unfold to liver. Gastroenterology. 2009;137:934–44. https://doi.org/10.1053/j.gastro.2009.06.004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krotenberg García A, Ledesma-Terrón M, Lamprou M, Vriend J, van Luyk ME, Suijkerbuijk SJE. Cell competitors promotes metastatic intestinal most cancers by a multistage course of. IScience. 2024;27:109718. https://doi.org/10.1016/j.isci.2024.109718.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Ruan Q, Chen C, Yu H, Guan S, Hu D, et al. Activin A/ACVR2A axis inhibits epithelial-to-mesenchymal transition in colon most cancers by activating SMAD2. Mol Carcinog. 2023;62:1585–98. https://doi.org/10.1002/MC.23601.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuo C, Hu D, Li J, Yu H, Lin X, Chen Y, et al. Downregulation of activin A receptor kind 2A is related to metastatic potential and poor prognosis of colon most cancers. J Most cancers. 2018;9:3626–33. https://doi.org/10.7150/JCA.26790.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinz MC, Peters NA, Oost KC, Lindeboom RGH, van Voorthuijsen L, Fumagalli A, et al. Liver colonization by colorectal most cancers metastases requires YAP-controlled plasticity on the micrometastatic stage. Most cancers Res. 2022;82:1953. https://doi.org/10.1158/0008-5472.CAN-21-0933.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linssen JDG, van Neerven SM, Aelvoet AS, Elbers CC, Vermeulen L, Dekker E. The CHAMP-study: the CHemopreventive impact of lithium in familial AdenoMatous Polyposis; research protocol of a part II trial. BMC Gastroenterol. 2022;22:1–9. https://doi.org/10.1186/S12876-022-02442-3/TABLES/1.

    Article 

    Google Scholar
     

  • Hot Topics

    Related Articles