Di Gregorio A, Bowling S, Rodriguez TA. Cell competitors and its position within the regulation of cell health from growth to most cancers. Dev Cell. 2016;38:621–34. https://doi.org/10.1016/j.devcel.2016.08.012.
Morata G, Ripoll P. Minutes: mutants of Drosophila autonomously affecting cell division fee. Dev Biol. 1975;42:211–21. https://doi.org/10.1016/0012-1606(75)90330-9.
Moreno E, Basler Okay, Morata G. Cells compete for decapentaplegic survival issue to stop apoptosis in Drosophila wing growth. Nature. 2002;416:755–9. https://doi.org/10.1038/416755A.
Oliver ER, Saunders TL, Tarlé SA, Glaser T. Ribosomal protein L24 defect in Stomach spot and tail (Bst), a mouse Minute. Growth. 2004;131:3907. https://doi.org/10.1242/DEV.01268.
Abrams JM. Competitors and compensation: coupled to demise in growth and most cancers. Cell. 2002;110:403–6. https://doi.org/10.1016/S0092-8674(02)00904-2.
Moreno E, Basler Okay. dMyc transforms cells into super-competitors. Cell. 2004;117:117–29. https://doi.org/10.1016/S0092-8674(04)00262-4.
De La Cova C, Abril M, Bellosta P, Gallant P, Johnston LA. Drosophila myc regulates organ dimension by inducing cell competitors. Cell. 2004;117:107–16. https://doi.org/10.1016/S0092-8674(04)00214-4.
Clavería C, Giovinazzo G, Sierra R, Torres M. Myc-driven endogenous cell competitors within the early mammalian embryo. Nature. 2013;500:39–44. https://doi.org/10.1038/NATURE12389.
Sancho M, Di-Gregorio A, George N, Pozzi S, Sánchez JM, Pernaute B, et al. Aggressive interactions get rid of unfit embryonic stem cells on the onset of differentiation. Dev Cell. 2013;26:19–30. https://doi.org/10.1016/J.DEVCEL.2013.06.012.
Villa del Campo C, Clavería C, Sierra R, Torres M. Cell competitors promotes phenotypically silent cardiomyocyte substitute within the mammalian coronary heart. Cell Rep. 2014;8:1741–51. https://doi.org/10.1016/J.CELREP.2014.08.005.
van Neerven SM, Vermeulen L. Cell competitors in growth, homeostasis and most cancers. Nat Rev Mol Cell Biol. 2022. https://doi.org/10.1038/s41580-022-00538-y.
Fuchs E, Chen T. A matter of life and demise: self-renewal in stem cells. EMBO Rep. 2013;14:39–48. https://doi.org/10.1038/EMBOR.2012.197.
Vermeulen L, Snippert HJ. Stem cell dynamics in homeostasis and most cancers of the gut. Nat Rev Most cancers. 2014;14:468–80. https://doi.org/10.1038/NRC3744.
Klein AM, Simons BD. Common patterns of stem cell destiny in biking grownup tissues. Growth. 2011;138:3103–11. https://doi.org/10.1242/DEV.060103.
Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, et al. Intestinal crypt homeostasis outcomes from impartial competitors between symmetrically dividing Lgr5 stem cells. Cell. 2010;143:134–44. https://doi.org/10.1016/J.CELL.2010.09.016.
Lopez-Garcia C, Klein AM, Simons BD, Winton DJ. Intestinal stem cell substitute follows a sample of impartial drift. Science. 2010;330:822–5. https://doi.org/10.1126/SCIENCE.1196236/SUPPL_FILE/LOPEZ.SOM.PDF.
Ritsma L, Ellenbroek SIJ, Zomer A, Snippert HJ, De Sauvage FJ, Simons BD, et al. Intestinal crypt homeostasis revealed at single-stem-cell degree by in vivo stay imaging. Nature. 2014;507:362–5. https://doi.org/10.1038/NATURE12972.
Snippert HJ, Schepers AG, Van Es JH, Simons BD, Clevers H. Biased competitors between Lgr5 intestinal stem cells pushed by oncogenic mutation induces clonal growth. EMBO Rep. 2014;15:62–9. https://doi.org/10.1002/EMBR.201337799.
Vermeulen L, Morrissey E, Van Der Heijden M, Nicholson AM, Sottoriva A, Buczacki S, et al. Defining stem cell dynamics in fashions of intestinal tumor initiation. Science. 2013;342:995–8. https://doi.org/10.1126/SCIENCE.1243148/SUPPL_FILE/VERMEULEN.SM.PDF.
Baumgartner ME, Dinan MP, Langton PF, Kucinski I, Piddini E. Proteotoxic stress is a driver of the loser standing and cell competitors. Nat Cell Biol. 2021;23:136–46. https://doi.org/10.1038/s41556-020-00627-0.
Johnston LA, Prober DA, Edgar BA, Eisenman RN, Gallant P. Drosophila myc regulates mobile development throughout growth. Cell. 1999;98:779–90. https://doi.org/10.1016/S0092-8674(00)81512-3.
Raff MC. Social controls on cell survival and cell demise. Nature. 1992;356:397–400. https://doi.org/10.1038/356397A0.
Zoranovic T, Grmai L, Bach EA. Regulation of proliferation, cell competitors, and mobile development by the Drosophila JAK-STAT pathway. JAKSTAT. 2013;2:e25408. https://doi.org/10.4161/JKST.25408.
Rodrigues AB, Zoranovic T, Ayala-Camargo A, Grewal S, Reyes-Robles T, Krasny M, et al. Activated STAT regulates development and induces aggressive interactions independently of Myc, Yorkie, Wingless and ribosome biogenesis. Growth. 2012;139:4051–61. https://doi.org/10.1242/DEV.076760/-/DC1.
Mamada H, Sato T, Ota M, Sasaki H. Cell competitors in mouse NIH3T3 embryonic fibroblasts is managed by the exercise of Tead household proteins and Myc. J Cell Sci. 2015;128:790–803. https://doi.org/10.1242/JCS.163675.
Tyler DM, Li W, Zhuo N, Pellock B, Baker NE. Genes affecting cell competitors in Drosophila. Genetics. 2007;175:643–57. https://doi.org/10.1534/GENETICS.106.061929.
Humbert PO, Russell SM, Smith L, Richardson HE. The scribble–Dlg–Lgl module in cell polarity regulation. Cell polarity 1: organic position and primary mechanisms. In: Ebnet, Okay. (eds) Cell Polarity 1. Springer, Cham. 2015. pp. 65–111. https://doi.org/10.1007/978-3-319-14463-4_4.
Bilder D, Li M, Perrimon N. Cooperative regulation of cell polarity and development by Drosophila tumor suppressors. Science. 2000;289:113–6. https://doi.org/10.1126/SCIENCE.289.5476.113.
de Vreede G, Gerlach SU, Bilder D. Epithelial monitoring by ligand-receptor segregation ensures malignant cell elimination. Science. 2022;376:297–301. https://doi.org/10.1126/SCIENCE.ABL4213/SUPPL_FILE/SCIENCE.ABL4213_MDAR_REPRODUCIBILITY_CHECKLIST.PDF.
Andersen DS, Colombani J, Palmerini V, Chakrabandhu Okay, Boone E, Röthlisberger M, et al. The Drosophila TNF receptor Grindelwald {couples} lack of cell polarity and neoplastic development. Nature. 2015;522:482–6. https://doi.org/10.1038/nature14298.
Rhiner C, López-Homosexual JM, Soldini D, Casas-Tinto S, Martín FA, Lombardía L, et al. Flower types an extracellular code that reveals the health of a cell to its neighbors in Drosophila. Dev Cell. 2010;18:985–98. https://doi.org/10.1016/J.DEVCEL.2010.05.010.
Merino MM, Rhiner C, Portela M, Moreno E. “Health fingerprints” mediate physiological culling of undesirable neurons in Drosophila. Curr Biol. 2013;23:1300–9. https://doi.org/10.1016/J.CUB.2013.05.053.
Levayer R, Hauert B, Moreno E. Cell mixing induced by myc is required for aggressive tissue invasion and destruction. Nature. 2015;524:476–80. https://doi.org/10.1038/nature14684.
Madan E, Pelham CJ, Nagane M, Parker TM, Canas-Marques R, Fazio Okay, et al. Flower isoforms promote aggressive development in most cancers. Nature. 2019;572:260–4. https://doi.org/10.1038/s41586-019-1429-3.
Shraiman BI. Mechanical suggestions as a doable regulator of tissue development. Proc Natl Acad Sci USA. 2005;102:3318–23. https://doi.org/10.1073/PNAS.0404782102.
Brás-Pereira C, Moreno E. Mechanical cell competitors. Curr Opin Cell Biol. 2018;51:15–21. https://doi.org/10.1016/J.CEB.2017.10.003.
Levayer R, Dupont C, Moreno E. Tissue crowding induces caspase-dependent competitors for house. Curr Biol. 2016;26:670–7. https://doi.org/10.1016/J.CUB.2015.12.072.
Suijkerbuijk SJE, Kolahgar G, Kucinski I, Piddini E. Cell competitors drives the expansion of intestinal adenomas in Drosophila. Curr Biol. 2016;26:428–38. https://doi.org/10.1016/J.CUB.2015.12.043.
Brumby AM, Richardson HE. scribble mutants cooperate with oncogenic Ras or Notch to trigger neoplastic overgrowth in Drosophila. EMBO J. 2003;22:5769–79. https://doi.org/10.1093/EMBOJ/CDG548.
Tamori Y, Bialucha CU, Tian AG, Kajita M, Huang YC, Norman M, et al. Involvement of Lgl and Mahjong/VprBP in Cell Competitors. PLoS Biol. 2010;8:e1000422. https://doi.org/10.1371/JOURNAL.PBIO.1000422.
Wagstaff L, Goschorska M, Kozyrska Okay, Duclos G, Kucinski I, Chessel A, et al. Mechanical cell competitors kills cells through induction of deadly p53 ranges. Nat Commun. 2016;7:11373. https://doi.org/10.1038/NCOMMS11373.
De La Cova C, Senoo-Matsuda N, Ziosi M, Wu DC, Bellosta P, Quinzii CM, et al. Supercompetitor standing of Drosophila Myc cells requires p53 as a health sensor to reprogram metabolism and promote viability. Cell Metab. 2014;19:470–83. https://doi.org/10.1016/J.CMET.2014.01.012.
Gribble FM, Reimann F. Perform and mechanisms of enteroendocrine cells and intestine hormones in metabolism. Nat Rev Endocrinol. 2019;15:226–37. https://doi.org/10.1038/s41574-019-0168-8.
Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50:1–9. https://doi.org/10.1038/s12276-018-0126-x.
Mejías-Luque R, Lindén SK, Garrido M, Tye H, Najdovska M, Jenkins BJ, et al. Irritation modulates the expression of the intestinal mucins MUC2 and MUC4 in gastric tumors. Oncogene. 2010;29:1753–62. https://doi.org/10.1038/onc.2009.467.
Nakamura Okay, Yokoi Y, Fukaya R, Ohira S, Shinozaki R, Nishida T, et al. Expression and localization of paneth cells and their α-defensins within the small gut of grownup mouse. Entrance Immunol. 2020;11:2588. https://doi.org/10.3389/FIMMU.2020.570296/BIBTEX.
Yu S, Balasubramanian I, Laubitz D, Tong Okay, Bandyopadhyay S, Lin X, et al. Paneth cell-derived lysozyme defines the composition of mucolytic microbiota and the inflammatory tone of the gut. Immunity. 2020;53:398–416.e8. https://doi.org/10.1016/J.IMMUNI.2020.07.010.
Bel S, Pendse M, Wang Y, Li Y, Ruhn KA, Hassell B, et al. Paneth cells secrete lysozyme through secretory autophagy throughout bacterial an infection of the gut. Science. 2017;357:1047–52. https://doi.org/10.1126/SCIENCE.AAL4677/SUPPL_FILE/AAL4677_BEL_SM.PDF.
Meyer-Hoffert U, Hornef MW, Henriques-Normark B, Axelsson LG, Midtvedt T, Pütsep Okay, et al. Secreted enteric antimicrobial exercise localises to the mucus floor layer. Intestine. 2008;57:764–71. https://doi.org/10.1136/GUT.2007.141481.
Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to micro organism. Nat Immunol. 2000;1:113–8. https://doi.org/10.1038/77783.
Barker N, Van Es JH, Kuipers J, Kujala P, Van Den Born M, Cozijnsen M, et al. Identification of stem cells in small gut and colon by marker gene Lgr5. Nature. 2007;449:1003–7. https://doi.org/10.1038/nature06196.
Gerbe F, Van Es JH, Makrini L, Brulin B, Mellitzer G, Robine S, et al. Distinct ATOH1 and Neurog3 necessities outline tuft cells as a brand new secretory cell kind within the intestinal epithelium. J Cell Biol. 2011;192:767–80. https://doi.org/10.1083/JCB.201010127.
Jones JC, Brindley CD, Elder NH, Myers MG, Rajala MW, Dekaney CM, et al. Mobile plasticity of Defa4Cre-expressing Paneth cells in response to notch activation and intestinal damage. Cell Mol Gastroenterol Hepatol. 2019;7:533–54. https://doi.org/10.1016/J.JCMGH.2018.11.004.
Aoki R, Shoshkes-Carmel M, Gao N, Shin S, Might CL, Golson ML, et al. Foxl1-expressing mesenchymal cells represent the intestinal stem cell area of interest. Cell Mol Gastroenterol Hepatol. 2016;2:175–88. https://doi.org/10.1016/J.JCMGH.2015.12.004.
Stzepourginski I, Nigro G, Jacob JM, Dulauroy S, Sansonetti PJ, Eberl G, et al. CD34+ mesenchymal cells are a serious element of the intestinal stem cells area of interest at homeostasis and after damage. Proc Natl Acad Sci USA. 2017;114:E506-13. https://doi.org/10.1073/PNAS.1620059114/SUPPL_FILE/PNAS.201620059SI.PDF.
Sehgal A, Donaldson DS, Pridans C, Sauter KA, Hume DA, Mabbott NA. The position of CSF1R-dependent macrophages in charge of the intestinal stem-cell area of interest. Nat Commun. 2018;9:1–17. https://doi.org/10.1038/s41467-018-03638-6.
Baghdadi MB, Ayyaz A, Coquenlorge S, Chu B, Kumar S, Streutker C, et al. Enteric glial cell heterogeneity regulates intestinal stem cell niches. Cell Stem Cell. 2022;29:86–100.e6. https://doi.org/10.1016/J.STEM.2021.10.004.
Farin HF, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DVF, et al. Visualization of a short-range Wnt gradient within the intestinal stem-cell area of interest. Nature. 2016;530:340–3. https://doi.org/10.1038/nature16937.
Muñoz J, Stange DE, Schepers AG, Van De Wetering M, Koo BK, Itzkovitz S, et al. The Lgr5 intestinal stem cell signature: sturdy expression of proposed quiescent ‘+4’ cell markers. EMBO J. 2012;31:3079–91. https://doi.org/10.1038/EMBOJ.2012.166.
Pentinmikko N, Iqbal S, Mana M, Andersson S, Cognetta AB, Suciu RM, et al. Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium. Nature. 2019;571:398–402. https://doi.org/10.1038/s41586-019-1383-0.
Böttcher A, Büttner M, Tritschler S, Sterr M, Aliluev A, Oppenländer L, et al. Non-canonical Wnt/PCP signalling regulates intestinal stem cell lineage priming in direction of enteroendocrine and Paneth cell fates. Nat Cell Biol. 2021;23:23–31. https://doi.org/10.1038/s41556-020-00617-2.
Andoh A, Bamba S, Fujiyama Y, Brittan M, Wright NA. Colonic subepithelial myofibroblasts in mucosal irritation and restore: contribution of bone marrow-derived stem cells to the intestine regenerative response. J Gastroenterol. 2005;40:1089–99. https://doi.org/10.1007/S00535-005-1727-4/METRICS.
Guo Z, Ohlstein B. Bidirectional Notch signaling regulates Drosophila intestinal stem cell multipotency. Science. 2015;350:927. https://doi.org/10.1126/science.aab0988.
Ohlstein B, Spradling A. Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science. 2007;315:988–92. https://doi.org/10.1126/SCIENCE.1136606/SUPPL_FILE/OHLSTEIN.SOM.PDF.
Van Es JH, Van Gijn ME, Riccio O, Van Den Born M, Vooijs M, Begthel H, et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005;435:959–63. https://doi.org/10.1038/nature03659.
VanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST, et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Growth. 2012;139:488–97. https://doi.org/10.1242/DEV.070763.
Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F, Gadient R, et al. Modulation of notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes recognized to specify intestine secretory lineage differentiation. Toxicol Sci. 2004;82:341–58. https://doi.org/10.1093/TOXSCI/KFH254.
Stanger BZ, Datar R, Murtaugh LC, Melton DA. Direct regulation of intestinal destiny by Notch. Proc Natl Acad Sci USA. 2005;102:12443–8. https://doi.org/10.1073/PNAS.0505690102/SUPPL_FILE/05690TABLE1.PDF.
Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch indicators management the destiny of immature progenitor cells within the gut. Nature. 2005;435:964–8. https://doi.org/10.1038/nature03589.
Poliakov A, Cotrina M, Wilkinson DG. Numerous roles of Eph receptors and ephrins within the regulation of cell migration and tissue meeting. Dev Cell. 2004;7:465–80. https://doi.org/10.1016/J.DEVCEL.2004.09.006.
Mellitzer G, Xu Q, Wilkinson DG. Eph receptors and ephrins prohibit cell intermingling and communication. Nature. 1999;400:77–81. https://doi.org/10.1038/21907.
Noren NK, Pasquale EB. Eph receptor–ephrin bidirectional indicators that focus on Ras and Rho proteins. Cell Sign. 2004;16:655–66. https://doi.org/10.1016/J.CELLSIG.2003.10.006.
Van de Wetering M, Sancho E, Verweij C, De Lau W, Oving I, Hurlstone A, et al. The β-catenin/TCF-4 complicated imposes a crypt progenitor phenotype on colorectal most cancers cells. Cell. 2002;111:241–50. https://doi.org/10.1016/S0092-8674(02)01014-0.
Batlle E, Henderson JT, Beghtel H, Van den Born MMW, Sancho E, Huls G, et al. β-catenin and TCF mediate cell positioning within the intestinal epithelium by controlling the expression of EphB/EphrinB. Cell. 2002;111:251–63. https://doi.org/10.1016/S0092-8674(02)01015-2.
van Es JH, Jay P, Gregorieff A, van Gijn ME, Jonkheer S, Hatzis P, et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol. 2005;7:381–6. https://doi.org/10.1038/ncb1240.
Barry ER, Morikawa T, Butler BL, Shrestha Okay, De La Rosa R, Yan KS, et al. Restriction of intestinal stem cell growth and the regenerative response by YAP. Nature. 2012;493:106–10. https://doi.org/10.1038/nature11693.
Gregorieff A, Liu Y, Inanlou MR, Khomchuk Y, Wrana JL. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and most cancers. Nature. 2015;526:715–8. https://doi.org/10.1038/nature15382.
Zhou D, Zhang Y, Wu H, Barryg E, Yin Y, Lawrence E, et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Sure-associated protein (Yap) overabundance. Proc Natl Acad Sci USA. 2011;108:E1312–20. https://doi.org/10.1073/PNAS.1110428108/SUPPL_FILE/SAPP.PDF.
Kim NG, Koh E, Chen X, Gumbiner BM. E-cadherin mediates contact inhibition of proliferation by Hippo signaling-pathway elements. Proc Natl Acad Sci USA. 2011;108:11930–5. https://doi.org/10.1073/PNAS.1103345108/SUPPL_FILE/PNAS.201103345SI.PDF.
Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell inhabitants in small gut renders Lgr5-positive cells dispensable. Nature. 2011;478:255–9. https://doi.org/10.1038/nature10408.
Suh HN, Kim MJ, Jung YS, Lien EM, Jun S, Park JI. Quiescence exit of Tert+ stem cells by Wnt/β-catenin is indispensable for intestinal regeneration. Cell Rep. 2017;21:2571. https://doi.org/10.1016/J.CELREP.2017.10.118.
Metcalfe C, Kljavin NM, Ybarra R, De Sauvage FJ. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell. 2014;14:149–59. https://doi.org/10.1016/J.STEM.2013.11.008.
Higa T, Okita Y, Matsumoto A, Nakayama S, Oka T, Sugahara O, et al. Spatiotemporal reprogramming of differentiated cells underlies regeneration and neoplasia within the intestinal epithelium. Nat Commun. 2022;13:1–17. https://doi.org/10.1038/s41467-022-29165-z.
Tetteh PW, Basak O, Farin HF, Wiebrands Okay, Kretzschmar Okay, Begthel H, et al. Substitute of misplaced Lgr5-positive stem cells by plasticity of their enterocyte-lineage daughters. Cell Stem Cell. 2016;18:203–13. https://doi.org/10.1016/J.STEM.2016.01.001.
Buczacki SJA, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R, et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature. 2013;495:65–9. https://doi.org/10.1038/nature11965.
Mustata RC, Vasile G, Fernandez-Vallone V, Strollo S, Lefort A, Libert F, et al. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep. 2013;5:421–32. https://doi.org/10.1016/J.CELREP.2013.09.005.
Fazilaty H, Brügger MD, Valenta T, Szczerba BM, Berkova L, Doumpas N, et al. Tracing colonic embryonic transcriptional profiles and their reactivation upon intestinal injury. Cell Rep. 2021;36:109484. https://doi.org/10.1016/j.celrep.2021.109484.
Yui S, Azzolin L, Maimets M, Pedersen MT, Fordham RP, Hansen SL, et al. YAP/TAZ-dependent reprogramming of colonic epithelium hyperlinks ECM reworking to tissue regeneration. Cell Stem Cell. 2018;22:35–49.e7. https://doi.org/10.1016/J.STEM.2017.11.001.
Flanagan Okay, Modrusan Z, Cornelius J, Chavali A, Kasman I, Komuves L, et al. Intestinal epithelial cell up-regulation of LY6 molecules throughout colitis leads to enhanced chemokine secretion. J Immunol. 2008;180:3874–81. https://doi.org/10.4049/JIMMUNOL.180.6.3874.
Ayyaz A, Kumar S, Sangiorgi B, Ghoshal B, Gosio J, Ouladan S, et al. Single-cell transcriptomes of the regenerating gut reveal a revival stem cell. Nature. 2019;569:121–5. https://doi.org/10.1038/s41586-019-1154-y.
Cai J, Zhang N, Zheng Y, De Wilde RF, Maitra A, Pan D. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev. 2010;24:2383–8. https://doi.org/10.1101/GAD.1978810.
Jardé T, Chan WH, Rossello FJ, Kaur Kahlon T, Theocharous M, Kurian Arackal T, et al. Mesenchymal niche-derived neuregulin-1 drives intestinal stem cell proliferation and regeneration of broken epithelium. Cell Stem Cell. 2020;27:646–62.e7. https://doi.org/10.1016/J.STEM.2020.06.021.
Nusse YM, Savage AK, Marangoni P, Rosendahl-Huber AKM, Landman TA, De Sauvage FJ, et al. Parasitic helminths induce fetal-like reversion within the intestinal stem cell area of interest. Nature. 2018;559:109–13. https://doi.org/10.1038/S41586-018-0257-1.
Ekbom A, Helmick C, Zack M, Adami H-O. Ulcerative colitis and colorectal most cancers. N Engl J Med. 1990;323:1228–33. https://doi.org/10.1056/NEJM199011013231802.
Serra D, Mayr U, Boni A, Lukonin I, Rempfler M, Challet Meylan L, et al. Self-organization and symmetry breaking in intestinal organoid growth. Nature. 2019;569:66–72. https://doi.org/10.1038/S41586-019-1146-Y.
Sprangers J, Zaalberg IC, Maurice MM. Organoid-based modeling of intestinal growth, regeneration, and restore. Cell Demise Differ. 2020;28:95–107. https://doi.org/10.1038/s41418-020-00665-z.
Hageman JH, Heinz MC, Kretzschmar Okay, van der Vaart J, Clevers H, Snippert HJG. Intestinal regeneration: regulation by the microenvironment. Dev Cell. 2020;54:435–46. https://doi.org/10.1016/j.devcel.2020.07.009.
Roshandel G, Ghasemi-Kebria F, Malekzadeh R. Colorectal Most cancers: Epidemiology, Danger Elements, and Prevention. Cancers (Basel). 2024;16:1530. https://doi.org/10.3390/cancers16081530.
Stigliano V, Sanchez-Mete L, Martayan A, Anti M. Early-onset colorectal most cancers: a sporadic or inherited illness. World J Gastroenterol. 2014;20:12420–30. https://doi.org/10.3748/wjg.v20.i35.12420.
Pearlman R, Frankel WL, Swanson B, Zhao W, Yilmaz A, Miller Okay, et al. Prevalence and spectrum of germline most cancers susceptibility gene mutations amongst sufferers with early-onset colorectal most cancers. JAMA Oncol. 2017;3:464–71. https://doi.org/10.1001/JAMAONCOL.2016.5194.
Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon most cancers. Gastroenterology. 2010;138:2044–58. https://doi.org/10.1053/J.GASTRO.2010.01.054.
Lakatos PL, Lakatos L. Danger for colorectal most cancers in ulcerative colitis: adjustments, causes and administration methods. World J Gastroenterol. 2008;14:3937–47. https://doi.org/10.3748/wjg.14.3937.
Fearon ER, Vogelstein B. A genetic mannequin for colorectal tumorigenesis. Cell. 1990;61:759–67. https://doi.org/10.1016/0092-8674(90)90186-I.
Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194:23–8. https://doi.org/10.1126/SCIENCE.959840.
Vendramin R, Litchfield Okay, Swanton C. Most cancers evolution: Darwin and past. EMBO J. 2021;40:e108389. https://doi.org/10.15252/EMBJ.2021108389.
Black JRM, McGranahan N. Genetic and non-genetic clonal variety in most cancers evolution. Nat Rev Most cancers. 2021;21:379–92. https://doi.org/10.1038/s41568-021-00336-2.
van Neerven SM, Vermeulen L. Cell competitors in growth, homeostasis and most cancers. Nat Rev Mol Cell Biol. 2023;24:221–36. https://doi.org/10.1038/s41580-022-00538-y.
Madan E, Peixoto ML, Dimitrion P, Eubank TD, Yekelchyk M, Talukdar S, et al. Cell competitors boosts clonal evolution and hypoxic choice in most cancers. Developments Cell Biol. 2020;30:967–78. https://doi.org/10.1016/J.TCB.2020.10.002.
Yum MK, Han S, Fink J, Wu S-HS, Dabrowska C, Trendafilova T, et al. Tracing oncogene-driven remodelling of the intestinal stem cell area of interest. Nature. 2021. https://doi.org/10.1038/s41586-021-03605-0.
Kajita M, Sugimura Okay, Ohoka A, Burden J, Suganuma H, Ikegawa M, et al. Filamin acts as a key regulator in epithelial defence towards remodeled cells. Nat Commun. 2014;5:1–13. https://doi.org/10.1038/ncomms5428.
Watanabe H, Ishibashi Okay, Mano H, Kitamoto S, Sato N, Hoshiba Okay, et al. Mutant p53-expressing cells bear necroptosis through cell competitors with the neighboring regular epithelial cells. Cell Rep. 2018;23:3721–9. https://doi.org/10.1016/J.CELREP.2018.05.081.
Kajita M, Hogan C, Harris AR, Dupre-Crochet S, Itasaki N, Kawakami Okay, et al. Interplay with surrounding regular epithelial cells influences signalling pathways and behavior of Src-transformed cells. J Cell Sci. 2010;123:171–80. https://doi.org/10.1242/JCS.057976.
Leung CT, Brugge JS. Outgrowth of single oncogene-expressing cells from suppressive epithelial environments. Nature. 2012;482:410–3. https://doi.org/10.1038/NATURE10826.
Kon S, Ishibashi Okay, Katoh H, Kitamoto S, Shirai T, Tanaka S, et al. Cell competitors with regular epithelial cells promotes apical extrusion of remodeled cells by metabolic adjustments. Nat Cell Biol. 2017;19:530–41. https://doi.org/10.1038/ncb3509.
Krotenberg Garcia A, Fumagalli A, Le HQ, Jackstadt R, Lannagan TRM, Sansom OJ, et al. Energetic elimination of intestinal cells drives oncogenic development in organoids. Cell Rep. 2021;36:109307. https://doi.org/10.1016/J.CELREP.2021.109307.
Sasaki A, Nagatake T, Egami R, Gu G, Takigawa I, Ikeda W, et al. Weight problems suppresses cell-competition-mediated apical elimination of RasV12-transformed cells from epithelial tissues. Cell Rep. 2018;23:974–82. https://doi.org/10.1016/j.celrep.2018.03.104.
Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of β-catenin-Tcf signaling in colon most cancers by mutations in β-catenin or APC. Science. 1997;275:1787–90. https://doi.org/10.1126/SCIENCE.275.5307.1787/ASSET/749B83BE-0076-4652-98AA-C6D03392BDAC/ASSETS/GRAPHIC/SE127492604A.JPEG.
Korinek V, Barker N, Morin PJ, Van Wichen D, De Weger R, Kinzler KW, et al. Constitutive transcriptional activation by a β-catenin-Tcf complicated in APC(-/-) colon carcinoma. Science. 1997;275:1784–7. https://doi.org/10.1126/SCIENCE.275.5307.1784/ASSET/ADCB468C-A233-4E01-AB4F-F6A6D22310FF/ASSETS/GRAPHIC/SE1274928004.JPEG.
Flanagan DJ, Pentinmikko N, Luopajärvi Okay, Willis NJ, Gilroy Okay, Raven AP, et al. NOTUM from Apc-mutant cells biases clonal competitors to provoke most cancers. Nature. 2021. https://doi.org/10.1038/s41586-021-03525-z.
van Neerven SM, de Groot NE, Nijman LE, Scicluna BP, van Driel MS, Lecca MC, et al. Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature. 2021. https://doi.org/10.1038/s41586-021-03558-4.
Bugter JM, El Bouazzaoui L, Küçükköse E, Hong Y, Sprangers J, Jordens I, et al. RNF43 mutations facilitate colorectal most cancers metastasis through formation of a tumour-intrinsic area of interest. BioRxiv. 2023. https://doi.org/10.1101/2022.12.22.521159.
Huang R, Zhang X, Gracia-Sancho J, Xie W-F. Liver regeneration: mobile origin and molecular mechanisms. Liver Int. 2022;42:1486–95. https://doi.org/10.1111/liv.15174.
Tsuchiya A, Lu W-Y. Liver stem cells: plasticity of the liver epithelium. World J Gastroenterol. 2019;25:1037–49. https://doi.org/10.3748/wjg.v25.i9.1037.
Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006;43:S45–53. https://doi.org/10.1002/hep.20969.
Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver growth, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14:561–74. https://doi.org/10.1016/j.stem.2014.04.010.
Nguyen-Lefebvre AT, Horuzsko A. Kupffer cell metabolism and performance. J Enzymol Metab. 2015;1:101.
Michalopoulos GK. Liver regeneration. J Cell Physiol. 2007;213:286–300. https://doi.org/10.1002/jcp.21172.
Michalopoulos GK, Bhushan B. Liver regeneration: organic and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 2021;18:40–55. https://doi.org/10.1038/s41575-020-0342-4.
Michalopoulos GK, Barua L, Bowen WC. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and poisonous biliary damage. Hepatology. 2005;41:535–44. https://doi.org/10.1002/hep.20600.
Lenhard Rudolph Okay, Trautwein C, Kubicka S, Rakemann T, Bahr MJ, Sedlaczek N, et al. Differential regulation of extracellular matrix synthesis throughout liver regeneration after partial hepatectomy in rats. Hepatology. 1999;30:1159–66. https://doi.org/10.1002/hep.510300502.
Solar T, Annunziato S, Bergling S, Sheng C, Orsini V, Forcella P, et al. ZNRF3 and RNF43 cooperate to safeguard metabolic liver zonation and hepatocyte proliferation. Cell Stem Cell. 2021;28:1822–37.e10. https://doi.org/10.1016/j.stem.2021.05.013.
Paris J, Henderson NC. Liver zonation, revisited. Hepatology. 2022;76:1219–30. https://doi.org/10.1002/hep.32408.
Hu S, Liu S, Bian Y, Poddar M, Singh S, Cao C, et al. Single-cell spatial transcriptomics reveals a dynamic management of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b. Cell Rep Med. 2022;3:100754. https://doi.org/10.1016/j.xcrm.2022.100754.
Kietzmann T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 2017;11:622–30. https://doi.org/10.1016/j.redox.2017.01.012.
Benhamouche S, Decaens T, Godard C, Chambrey R, Rickman DS, Moinard C, et al. Apc tumor suppressor gene is the “Zonation-Keeper” of mouse liver. Dev Cell. 2006;10:759–70. https://doi.org/10.1016/j.devcel.2006.03.015.
Torre C, Perret C, Colnot S. Transcription dynamics in a physiological course of: β-catenin signaling directs liver metabolic zonation. Int J Biochem Cell Biol. 2011;43:271–8. https://doi.org/10.1016/j.biocel.2009.11.004.
He L, Pu W, Liu X, Zhang Z, Han M, Li Y, et al. Proliferation tracing reveals regional hepatocyte technology in liver homeostasis and restore. Science. 2021;371:eabc4346. https://doi.org/10.1126/science.abc4346.
Hishida T, Yamamoto M, Hishida-Nozaki Y, Shao C, Huang L, Wang C, et al. In vivo partial mobile reprogramming enhances liver plasticity and regeneration. Cell Rep. 2022;39:110730. https://doi.org/10.1016/j.celrep.2022.110730.
Hayhurst GP, Lee Y-H, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear issue 4α (nuclear receptor 2A1) is important for upkeep of hepatic gene expression and lipid homeostasis. Mol Cell Biol. 2001;21:1393–403. https://doi.org/10.1128/mcb.21.4.1393-1403.2001.
Cheung AC, Lorenzo Pisarello MJ, LaRusso NF. Pathobiology of biliary epithelia. Biochim Biophys Acta Mol Foundation Dis. 2018;1864:1220–31. https://doi.org/10.1016/j.bbadis.2017.06.024.
Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ. Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol. 2019;16:269–81. https://doi.org/10.1038/s41575-019-0125-y.
Kawai T, Yasuchika Okay, Ishii T, Miyauchi Y, Kojima H, Yamaoka R, et al. SOX9 is a novel most cancers stem cell marker surrogated by osteopontin in human hepatocellular carcinoma. Sci Rep. 2016;6:30489. https://doi.org/10.1038/srep30489.
Sampaziotis F, Muraro D, Tysoe OC, Sawiak S, Seashore TE, Godfrey EM, et al. Cholangiocyte organoids can restore bile ducts after transplantation within the human liver. Science. 2021;371:839–46. https://doi.org/10.1126/science.aaz6964.
Tanimizu N, Ichinohe N, Sasaki Y, Itoh T, Sudo R, Yamaguchi T, et al. Technology of purposeful liver organoids on combining hepatocytes and cholangiocytes with hepatobiliary connections ex vivo. Nat Commun. 2021;12:3390. https://doi.org/10.1038/s41467-021-23575-1.
Alpini G, McGill JM, LaRusso NF. The pathobiology of biliary epithelia. Hepatology. 2002;35:1256–68. https://doi.org/10.1053/jhep.2002.33541.
Ludwig J, Ritman EL, LaRusso NF, Sheedy PF, Zumpe G. Anatomy of the human biliary system studied by quantitative computer-aided three-dimensional imaging methods. Hepatology. 1998;27:893–9. https://doi.org/10.1002/hep.510270401.
Mancinelli R, Franchitto A, Glaser S, Meng F, Onori P, Demorrow S, et al. GABA induces the differentiation of small into giant cholangiocytes by activation of Ca2+/CaMK I-dependent adenylyl cyclase 8. Hepatology. 2013;58:251–63. https://doi.org/10.1002/hep.26308.
Huch M, Dorrell C, Boj SF, Van Es JH, Li VSW, Van De Wetering M, et al. In vitro growth of single Lgr5 + liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494:247–50. https://doi.org/10.1038/nature11826.
Bernal W, Wendon J. Acute Liver Failure. N Engl J Med. 2013;369:2525–34. https://doi.org/10.1056/NEJMra1208937.
Fujii H, Hirose T, Oe S, Yasuchika Okay, Azuma H, Fujikawa T, et al. Contribution of bone marrow cells to liver regeneration after partial hepatectomy in mice. J Hepatol. 2002;36:653–9. https://doi.org/10.1016/S0168-8278(02)00043-0.
Malato Y, Naqvi S, Schürmann N, Ng R, Wang B, Zape J, et al. Destiny tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Investig. 2011;121:4850–60. https://doi.org/10.1172/JCI59261.
Miyaoka Y, Ebato Okay, Kato H, Arakawa S, Shimizu S, Miyajima A. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr Biol. 2012;22:1166–75. https://doi.org/10.1016/j.cub.2012.05.016.
Ang CH, Hsu SH, Guo F, Tan CT, Yu VC, Visvader JE, et al. Lgr5+ pericentral hepatocytes are self-maintained in regular liver regeneration and vulnerable to hepatocarcinogenesis. Proc Natl Acad Sci USA. 2019;116:19530–40. https://doi.org/10.1073/pnas.1908099116.
Huck I, Gunewardena S, Espanol-Suner R, Willenbring H, Apte U. Hepatocyte nuclear issue 4 alpha activation is important for termination of liver regeneration in mice. Hepatology. 2019;70:666–81. https://doi.org/10.1002/hep.30405.
Raven A, Lu WY, Man TY, Ferreira-Gonzalez S, O’Duibhir E, Dwyer BJ, et al. Cholangiocytes act as facultative liver stem cells throughout impaired hepatocyte regeneration. Nature. 2017;547:350–4. https://doi.org/10.1038/nature23015.
Kaneko Okay, Kamimoto Okay, Miyajima A, Itoh T. Adaptive reworking of the biliary structure underlies liver homeostasis. Hepatology. 2015;61:2056–66. https://doi.org/10.1002/HEP.27685.
Rodrigo-Torres D, Affò S, Coll M, Morales-Ibanez O, Millán C, Blaya D, et al. The biliary epithelium offers rise to liver progenitor cells. Hepatology. 2014;60:1367–77. https://doi.org/10.1002/hep.27078.
Español-Suñer R, Carpentier R, Van Hul N, Legry V, Achouri Y, Cordi S, et al. Liver progenitor cells yield purposeful hepatocytes in response to persistent liver damage in mice. Gastroenterology. 2012;143:1564–75.e7. https://doi.org/10.1053/j.gastro.2012.08.024.
Yanger Okay, Zong Y, Maggs LR, Shapira SN, Maddipati R, Aiello NM, et al. Strong mobile reprogramming happens spontaneously throughout liver regeneration. Genes Dev. 2013;27:719–24. https://doi.org/10.1101/gad.207803.112.
Huch M, Gehart H, Van Boxtel R, Hamer Okay, Blokzijl F, Verstegen MMA, et al. Lengthy-term tradition of genome-stable bipotent stem cells from grownup human liver. Cell. 2015;160:299–312. https://doi.org/10.1016/j.cell.2014.11.050.
Sasaki M, Ikeda H, Yamaguchi J, Miyakoshi M, Sato Y, Nakanuma Y. Bile ductular cells present process mobile senescence improve in persistent liver illnesses together with fibrous development. Am J Clin Pathol. 2010;133:212–23. https://doi.org/10.1309/AJCPWMX47TREYWZG.
Tabibian JH, O’Hara SP, Splinter PL, Trussoni CE, Larusso NF. Cholangiocyte senescence by the use of N-Ras activation is a attribute of major sclerosing cholangitis. Hepatology. 2014;59:2263–75. https://doi.org/10.1002/hep.26993.
Loft A, Alfaro AJ, Schmidt SF, Pedersen FB, Terkelsen MK, Puglia M, et al. Liver-fibrosis-activated transcriptional networks govern hepatocyte reprogramming and intra-hepatic communication. Cell Metab. 2021;33:1685–700.e9. https://doi.org/10.1016/j.cmet.2021.06.005.
Merrell AJ, Peng T, Li J, Solar Okay, Li B, Katsuda T, et al. Dynamic transcriptional and epigenetic adjustments drive mobile plasticity within the liver. Hepatology. 2021;74:444–57. https://doi.org/10.1002/hep.31704.
Bou Saleh M, Louvet A, Ntandja-Wandji LC, Boleslawski E, Gnemmi V, Lassailly G, et al. Lack of hepatocyte identification following aberrant YAP activation: a key mechanism in alcoholic hepatitis. J Hepatol. 2021;75:912–23. https://doi.org/10.1016/j.jhep.2021.05.041.
Schaub JR, Huppert KA, Kurial SNT, Hsu BY, Solid AE, Donnelly B, et al. De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature. 2018;557:247–51. https://doi.org/10.1038/s41586-018-0075-5.
Katsuda T, Kawamata M, Hagiwara Okay, Takahashi RU, Yamamoto Y, Camargo FD, et al. Conversion of terminally dedicated hepatocytes to culturable bipotent progenitor cells with regenerative capability. Cell Stem Cell. 2017;20:41–55. https://doi.org/10.1016/j.stem.2016.10.007.
Kim Y, Kang Okay, Lee SB, Search engine optimization D, Yoon S, Kim SJ, et al. Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J Hepatol. 2019;70:97–107. https://doi.org/10.1016/j.jhep.2018.09.007.
Han Y, Glaser S, Meng F, Francis H, Marzioni M, McDaniel Okay, et al. Latest advances within the morphological and purposeful heterogeneity of the biliary epithelium. Exp Biol Med. 2013;238:549–65. https://doi.org/10.1177/1535370213489926.
Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM, Finegold MJ, et al. Bipotential grownup liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell. 2014;15:605–18. https://doi.org/10.1016/j.stem.2014.09.008.
Annunziato S, Solar T, Tchorz JS. The RSPO-LGR4/5-ZNRF3/RNF43 module in liver homeostasis, regeneration, and illness. Hepatology. 2022;76:888–99. https://doi.org/10.1002/hep.32328.
Planas-Paz L, Orsini V, Boulter L, Calabrese D, Pikiolek M, Nigsch F, et al. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and dimension. Nat Cell Biol. 2016;18:467–79. https://doi.org/10.1038/ncb3337.
Russell JO, Camargo FD. Hippo signalling within the liver: position in growth, regeneration and illness. Nat Rev Gastroenterol Hepatol. 2022;19:297–312. https://doi.org/10.1038/s41575-021-00571-w.
Pan D. Hippo signaling in organ dimension management. Genes Dev. 2007;21:886–97. https://doi.org/10.1101/gad.1536007.
Bai H, Zhang N, Xu Y, Chen Q, Khan M, Potter JJ, et al. Sure-associated protein regulates the hepatic response after bile duct ligation. Hepatology. 2012;56:1097–107. https://doi.org/10.1002/hep.25769.
Pepe-Mooney BJ, Dill MT, Alemany A, Ordovas-Montanes J, Matsushita Y, Rao A, et al. Single-cell evaluation of the liver epithelium reveals dynamic heterogeneity and an important position for YAP in homeostasis and regeneration. Cell Stem Cell. 2019;25:23–38.e8. https://doi.org/10.1016/j.stem.2019.04.004.
Yimlamai D, Christodoulou C, Galli GG, Yanger Okay, Pepe-Mooney B, Gurung B, et al. Hippo pathway exercise influences liver cell destiny. Cell. 2014;157:1324–38. https://doi.org/10.1016/j.cell.2014.03.060.
Solar P, Zhang G, Su X, Jin C, Yu B, Yu X, et al. Upkeep of major hepatocyte features in vitro by inhibiting mechanical tension-induced YAP activation. Cell Rep. 2019;29:3212–22.e4. https://doi.org/10.1016/j.celrep.2019.10.128.
Grijalva JL, Huizenga M, Mueller Okay, Rodriguez S, Brazzo J, Camargo F, et al. Dynamic alterations in Hippo signaling pathway and YAP activation throughout liver regeneration. J Physiol Gastrointest Liver Physiol. 2014;307:196–204. https://doi.org/10.1152/ajpgi.00077.2014.
Lu L, Finegold MJ, Johnson RL. Hippo pathway coactivators yap and taz are required to coordinate mammalian liver regeneration. Exp Mol Med. 2018;50:e423. https://doi.org/10.1038/emm.2017.205.
Verboven E, Moya IM, Sansores-Garcia L, Xie J, Hillen H, Kowalczyk W, et al. Regeneration defects in Yap and Taz mutant mouse livers are attributable to bile duct disruption and cholestasis. Gastroenterology. 2021;160:847–62. https://doi.org/10.1053/j.gastro.2020.10.035.
Rhim JA, Sandgren EP, Degen JL, Palmiter RD, Brinster RL. Substitute of diseased mouse liver by hepatic cell transplantation. Science. 1994;263:1149–52. https://doi.org/10.1126/science.8108734.
Guha S, Sharma A, Gupta S, Alfieri A, Gorla G, Gagandeep S, et al. Amelioration of radiation-induced liver injury in partially hepatectomized rats by hepatocyte transplantation. Most cancers Res. 1999;59:5871–4.
Overturf Okay, Al-Dhalimy M, Tanguay R, Brantly M, Ou C-N, Finegold M, et al. Hepatocytes corrected by gene remedy are chosen in vivo in a murine mannequin of hereditary tyrosinaemia kind I. Nat Genet. 1996;12:266-73.
Laconi E, Oren R, Mukhopadhyay DK, Hurston E, Laconi S, Pani P, et al. Lengthy-term, near-total liver substitute by transplantation of remoted hepatocytes in rats handled with retrorsine. Am J Pathol. 1998;153:319–29. https://doi.org/10.1016/S0002-9440(10)65574-5.
Zhang L, Shao Y, Li L, Tian F, Cen J, Chen X, et al. Environment friendly liver repopulation of transplanted hepatocyte prevents cirrhosis in a rat mannequin of hereditary tyrosinemia kind i. Sci Rep. 2016;6:31460. https://doi.org/10.1038/srep31460.
Malhi H, Gorla GR, Irani AN, Annamaneni P, Gupta S. Cell transplantation after oxidative hepatic preconditioning with radiation and ischemia–reperfusion results in intensive liver repopulation. Proc Natl Acad Sci USA. 2002;99:13114–9. https://doi.org/10.1073/pnas.192365499.
Oertel M, Menthena A, Dabeva MD, Shafritz DA. Cell competitors results in a excessive degree of regular liver reconstitution by transplanted fetal liver stem/progenitor cells. Gastroenterology. 2006;130:507–20. https://doi.org/10.1053/j.gastro.2005.10.049.
Haridoss S, Yovchev MI, Schweizer H, Megherhi S, Beecher M, Locker J, et al. Activin A is a distinguished autocrine regulator of hepatocyte development arrest. Hepatol Commun. 2017;1:852–70. https://doi.org/10.1002/hep4.1106/full.
Menthena A, Koehler CI, Sandhu JS, Yovchev MI, Hurston E, Shafritz DA, et al. Activin A, p15INK4b signaling, and cell competitors promote stem/progenitor cell repopulation of livers in ageing rats. Gastroenterology. 2011;140:1009–20. https://doi.org/10.1053/j.gastro.2010.12.003.
Marongiu F, Laconi E. Cell competitors in liver carcinogenesis. World J Hepatol. 2020;12:475–84. https://doi.org/10.4254/wjh.v12.i8.475.
Laconi S, Pani P, Pillai S, Pasciu D, Sarma DSR, Laconi E. A growth-constrained surroundings drives tumor development in vivo. Proc Natl Acad Sci USA. 2001;98:7806–11.
Marongiu F, Doratiotto S, Montisci S, Pani P, Laconi E. Liver repopulation and carcinogenesis: two sides of the identical coin. Am J Pathol. 2008;172:857–64. https://doi.org/10.2353/ajpath.2008.070910.
Moya IM, Castaldo SA, van den Mooter L, Soheily S, Sansores-Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver most cancers in mice. Science. 2019;366:1029–34. https://doi.org/10.1126/science.aaw9886.
Clark AM, Ma B, Taylor DL, Griffith L, Wells A. Liver metastases: microenvironments and ex-vivo fashions. Exp Biol Med. 2016;241:1639–52. https://doi.org/10.1177/1535370216658144.
Mielgo A, Schmid MC. Liver tropism in most cancers: the hepatic metastatic area of interest. Chilly Spring Harb Perspect Med. 2020;10:a037259. https://doi.org/10.1101/cshperspect.a037259.
Brodt P. Function of the microenvironment in liver metastasis: from pre- to prometastatic niches. Clin Most cancers Res. 2016;22:5971–82. https://doi.org/10.1158/1078-0432.CCR-16-0460.
Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, et al. Pre-metastatic niches: organ-specific houses for metastases. Nat Rev Most cancers. 2017;17:302–17. https://doi.org/10.1038/nrc.2017.6.
Latacz E, Höppener D, Bohlok A, Leduc S, Tabariès S, Fernández Moro C, et al. Histopathological development patterns of liver metastasis: up to date consensus tips for sample scoring, views and up to date mechanistic insights. Br J Most cancers. 2022;127:988–1013. https://doi.org/10.1038/s41416-022-01859-7.
Galjart B, Nierop PMH, van der Stok EP, van den Braak RRJC, Höppener DJ, Daelemans S, et al. Angiogenic desmoplastic histopathological development sample as a prognostic marker of excellent end result in sufferers with colorectal liver metastases. Angiogenesis. 2019;22:355–68. https://doi.org/10.1007/s10456-019-09661-5.
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, et al. Colorectal liver metastasis: molecular mechanism and interventional remedy. Sign Transduct Goal Ther. 2022;7:70. https://doi.org/10.1038/s41392-022-00922-2.
Chafe SC, Lou Y, Sceneay J, Vallejo M, Hamilton MJ, McDonald PC, et al. Carbonic anhydrase IX promotes myeloid-derived suppressor cell mobilization and institution of a metastatic area of interest by stimulating G-CSF manufacturing. Most cancers Res. 2015;75:996–1008. https://doi.org/10.1158/0008-5472.CAN-14-3000.
Erler JT, Bennewith KL, Cox TR, Lang G, Hen D, Koong A, et al. Hypoxia-induced lysyl oxidase is a crucial mediator of bone marrow cell recruitment to type the premetastatic area of interest. Most cancers Cell. 2009;15:35–44. https://doi.org/10.1016/j.ccr.2008.11.012.
Li T, Liu J, Wang Y, Zhou C, Shi Q, Huang S, et al. Liver fibrosis promotes immunity escape however limits the scale of liver tumor in a rat orthotopic transplantation mannequin. Sci Rep. 2021;11:22846. https://doi.org/10.1038/s41598-021-02155-9.
Lee JW, Stone ML, Porrett PM, Thomas SK, Komar CA, Li JH, et al. Hepatocytes direct the formation of a pro-metastatic area of interest within the liver. Nature. 2019;567:249–52. https://doi.org/10.1038/s41586-019-1004-y.
Kok SY, Oshima H, Takahashi Okay, Nakayama M, Murakami Okay, Ueda HR, et al. Malignant subclone drives metastasis of genetically and phenotypically heterogenous cell clusters by fibrotic area of interest technology. Nat Commun. 2021;12:863. https://doi.org/10.1038/s41467-021-21160-0.
Tsilimigras DI, Ntanasis-Stathopoulos I, Pawlik TM. Molecular mechanisms of colorectal liver metastases. Cells. 2023;12:1657. https://doi.org/10.3390/cells12121657.
Liu Y, Gu Y, Cao X. The exosomes in tumor immunity. Oncoimmunology. 2015;4:1–8. https://doi.org/10.1080/2162402X.2015.1027472.
Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in most cancers: exosomes, microvesicles and the rising position of huge oncosomes. Semin Cell Dev Biol. 2015;40:41–51. https://doi.org/10.1016/J.SEMCDB.2015.02.010.
Ou J, Peng Y, Deng J, Miao H, Zhou J, Zha L, et al. Endothelial cell-derived fibronectin further area A promotes colorectal most cancers metastasis through inducing epithelial–mesenchymal transition. Carcinogenesis. 2014;35:1661–70. https://doi.org/10.1093/CARCIN/BGU090.
Hu C-Y, Li J-B, Wang J-Z, Wang W, Li F-X, Guo Y-L, et al. Comparability of gross tumor quantity of major oesophageal most cancers based mostly on contrast-enhanced three-dimensional, four-dimensional, and cone beam computed tomography. Oncotarget. 2017;8:95577–85. https://doi.org/10.18632/ONCOTARGET.21520.
Ganesh Okay, Basnet H, Kaygusuz Y, Laughney AM, He L, Sharma R, et al. L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal most cancers. Nat Most cancers. 2020;1:28–45. https://doi.org/10.1038/s43018-019-0006-x.
Fender AW, Nutter JM, Fitzgerald TL, Bertrand FE, Sigounas G. Notch‐1 promotes stemness and epithelial to mesenchymal transition in colorectal most cancers. J Cell Biochem. 2015;116:2517–27. https://doi.org/10.1002/jcb.25196.
Döme B, Hendrix MJC, Paku S, Tóvári J, Tímár J. Different vascularization mechanisms in most cancers: pathology and therapeutic implications. Am J Pathol. 2007;170:1–15. https://doi.org/10.2353/ajpath.2007.060302.
Li H, Fan X, Stoicov C, Liu JH, Zubair S, Tsai E, et al. Human and mouse colon most cancers makes use of CD95 signaling for native development and metastatic unfold to liver. Gastroenterology. 2009;137:934–44. https://doi.org/10.1053/j.gastro.2009.06.004.
Krotenberg García A, Ledesma-Terrón M, Lamprou M, Vriend J, van Luyk ME, Suijkerbuijk SJE. Cell competitors promotes metastatic intestinal most cancers by a multistage course of. IScience. 2024;27:109718. https://doi.org/10.1016/j.isci.2024.109718.
Zhang H, Ruan Q, Chen C, Yu H, Guan S, Hu D, et al. Activin A/ACVR2A axis inhibits epithelial-to-mesenchymal transition in colon most cancers by activating SMAD2. Mol Carcinog. 2023;62:1585–98. https://doi.org/10.1002/MC.23601.
Zhuo C, Hu D, Li J, Yu H, Lin X, Chen Y, et al. Downregulation of activin A receptor kind 2A is related to metastatic potential and poor prognosis of colon most cancers. J Most cancers. 2018;9:3626–33. https://doi.org/10.7150/JCA.26790.
Heinz MC, Peters NA, Oost KC, Lindeboom RGH, van Voorthuijsen L, Fumagalli A, et al. Liver colonization by colorectal most cancers metastases requires YAP-controlled plasticity on the micrometastatic stage. Most cancers Res. 2022;82:1953. https://doi.org/10.1158/0008-5472.CAN-21-0933.
Linssen JDG, van Neerven SM, Aelvoet AS, Elbers CC, Vermeulen L, Dekker E. The CHAMP-study: the CHemopreventive impact of lithium in familial AdenoMatous Polyposis; research protocol of a part II trial. BMC Gastroenterol. 2022;22:1–9. https://doi.org/10.1186/S12876-022-02442-3/TABLES/1.

