Hess, Ok. R. et al. Metastatic patterns in adenocarcinoma. Most cancers 106, 1624–1633 (2006).
Kuchuk, I. et al. Incidence, penalties and therapy of bone metastases in breast most cancers sufferers—expertise from a single most cancers centre. J. Bone Oncol. 2, 137–144 (2013).
Braun, S. et al. A pooled evaluation of bone marrow micrometastasis in breast most cancers. N. Engl. J. Med. 353, 793–802 (2005).
Guise, T. A. The vicious cycle of bone metastases. J. Musculoskelet. Neuronal Work together. 2, 570–572 (2002).
Lawson, M. A. et al. Osteoclasts management reactivation of dormant myeloma cells by remodelling the endosteal area of interest. Nat. Commun. 6, 8983 (2015).
Hüsemann, Y. et al. Systemic unfold is an early step in breast most cancers. Most cancers Cell 13, 58–68 (2008).
Risson, E., Nobre, A. R., Maguer-Satta, V. & Aguirre-Ghiso, J. A. The present paradigm and challenges forward for the dormancy of disseminated tumor cells. Nat. Most cancers 1, 672–680 (2020).
Phan, T. G. & Croucher, P. I. The dormant most cancers cell life cycle. Nat. Rev. Most cancers 20, 398–411 (2020).
Croucher, P. I., McDonald, M. M. & Martin, T. J. Bone metastasis: the significance of the neighbourhood. Nat. Rev. Most cancers 16, 373–386 (2016).
Wang, H. et al. The osteogenic area of interest promotes early-stage bone colonization of disseminated breast most cancers cells. Most cancers Cell 27, 193–210 (2015).
Luo, X. et al. Stromal-initiated modifications within the bone promote metastatic area of interest improvement. Cell Rep. 14, 82–92 (2016).
Yao, Z. et al. Remedy-induced senescence drives bone loss. Most cancers Res. 80, 1171–1182 (2020).
Nobre, A. R. et al. Bone marrow NG2+/Nestin+ mesenchymal stem cells drive DTC dormancy by way of TGF-β2. Nat. Most cancers 2, 327–339 (2021).
Andersen, T. L. et al. A bodily mechanism for coupling bone resorption and formation in grownup human bone. Am. J. Pathol. 174, 239–247 (2009).
Kraemer, B. et al. Impaired bone microenvironment: correlation between bone density and presence of disseminated tumor cells. Anticancer Res. 31, 4423–4428 (2011).
Chen, H. M., Chen, F. P., Yang, Ok. C. & Yuan, S. S. Affiliation of bone metastasis with early-stage breast most cancers in ladies with and with out precancer osteoporosis in line with osteoporosis remedy standing. JAMA Netw. Open 2, e190429 (2019).
Blair, H. C. et al. Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng. B Rev. 23, 268–280 (2017).
Reznikov, N., Bilton, M., Lari, L., Stevens, M. M. & Kröger, R. Fractal-like hierarchical group of bone begins on the nanoscale. Science 360, eaao2189 (2018).
Ping, H. et al. Mineralization generates megapascal contractile stresses in collagen fibrils. Science 376, 188–192 (2022).
Choi, S. et al. Intrafibrillar, bone-mimetic collagen mineralization regulates breast most cancers cell adhesion and migration. Biomaterials 198, 95–106 (2019).
Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Results of extracellular matrix viscoelasticity on mobile behaviour. Nature 584, 535–546 (2020).
Web page, J. M. et al. Matrix rigidity regulates the transition of tumor cells to a bone-destructive phenotype via integrin β3 and TGF-β receptor kind II. Biomaterials 64, 33–44 (2015).
Turunen, M. J., Prantner, V., Jurvelin, J. S., Kröger, H. & Isaksson, H. Composition and microarchitecture of human trabecular bone change with age and differ between anatomical areas. Bone 54, 118–125 (2013).
Donnelly, E., Boskey, A. L., Baker, S. P. & van der Meulen, M. C. H. Results of tissue age on bone tissue materials composition and nanomechanical properties within the rat cortex. J. Biomed. Mater. Res. A 92, 1048–1056 (2010).
Burke, M. V., Atkins, A., Akens, M., Willett, T. L. & Whyne, C. M. Osteolytic and blended most cancers metastasis modulates collagen and mineral parameters inside rat vertebral bone matrix. J. Orthop. Res. 34, 2126–2136 (2016).
Paschalis, E. P., Betts, F., DiCarlo, E., Mendelsohn, R. & Boskey, A. L. FTIR microspectroscopic evaluation of regular human cortical and trabecular bone. Calcif. Tissue Int. 61, 480–486 (1997).
Mathis, Ok. M. et al. Bone resorption and bone metastasis danger. Med. Hypotheses 118, 36–41 (2018).
Lynch, M. E. et al. In vivo tibial compression decreases osteolysis and tumor formation in a human metastatic breast most cancers mannequin. J. Bone Miner. Res. 28, 2357–2367 (2013).
Swami, S. et al. Prevention of breast most cancers skeletal metastases with parathyroid hormone. JCI Perception 2, e90874 (2017).
Farr, J. N. et al. Concentrating on mobile senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).
Ooi, L. L. et al. Vitamin D deficiency promotes human breast most cancers progress in a murine mannequin of bone metastasis. Most cancers Res. 70, 1835–1844 (2010).
Wang, H. et al. Bone-in-culture array as a platform to mannequin early-stage bone metastases and uncover anti-metastasis therapies. Nat. Commun. 8, 15045 (2017).
Fratzl, P., Gupta, H. S., Paschalis, E. P. & Roschger, P. Construction and mechanical high quality of the collagen–mineral nano-composite in bone. J. Mater. Chem. 14, 2115–2123 (2004).
Gower, L. & Elias, J. Colloid meeting and transformation (CAT): the connection of PILP to biomineralization. J. Struct. Biol. X 6, 100059 (2022).
Chiou, A. E. et al. Fluorescent silica nanoparticles to label metastatic tumor cells in mineralized bone microenvironments. Small 17, e2001432 (2021).
Carlson, P. et al. Concentrating on the perivascular area of interest sensitizes disseminated tumour cells to chemotherapy. Nat. Cell Biol. 21, 238–250 (2019).
Olszta, M. J. et al. Bone construction and formation: a brand new perspective. Mater. Sci. Eng. R 58, 77–116 (2007).
Reznikov, N., Chase, H., Brumfeld, V., Shahar, R. & Weiner, S. The 3D construction of the collagen fibril community in human trabecular bone: relation to trabecular group. Bone 71, 189–195 (2015).
Londoño-Restrepo, S. M., Jeronimo-Cruz, R., Millán-Malo, B. M., Rivera-Muñoz, E. M. & Rodriguez-García, M. E. Impact of the nano crystal measurement on the X-ray diffraction patterns of biogenic hydroxyapatite from human, bovine, and porcine bones. Sci. Rep. 9, 5915 (2019).
Nam, S., Lee, J., Brownfield, D. G. & Chaudhuri, O. Viscoplasticity permits mechanical reworking of matrix by cells. Biophys. J. 111, 2296–2308 (2016).
Corridor, M. S. et al. Fibrous nonlinear elasticity permits constructive mechanical suggestions between cells and ECMs. Proc. Natl Acad. Sci. USA 113, 14043–14048 (2016).
Masuda, T. et al. ANGPTL2 will increase bone metastasis of breast most cancers cells via enhancing CXCR4 signaling. Sci. Rep. 5, 9789 (2015).
Bergamaschi, A. et al. CAMK1D amplification implicated in epithelial-mesenchymal transition in basal-like breast most cancers. Mol. Oncol. 2, 327–339 (2008).
Dong, X., Yang, Y., Yuan, Q., Hou, J. & Wu, G. Excessive expression of CEMIP correlates poor prognosis and the tumor microenvironment in breast most cancers as a promisingly prognostic biomarker. Entrance. Genet. 12, 768140 (2021).
Che, M. I. et al. β1, 4-N-acetylgalactosaminyltransferase III modulates most cancers stemness via EGFR signaling pathway in colon most cancers cells. Oncotarget 5, 3673–3684 (2014).
Yu, J. M. et al. TRIB3 helps breast most cancers stemness by suppressing FOXO1 degradation and enhancing SOX2 transcription. Nat. Commun. 10, 5720 (2019).
Choate, J. J. & Mosher, D. F. Fibronectin focus in plasma of sufferers with breast most cancers, colon most cancers, and acute leukemia. Most cancers 51, 1142–1147 (1983).
Pathi, S. P., Lin, D. D. W., Dorvee, J. R., Estroff, L. A. & Fischbach, C. Hydroxyapatite nanoparticle-containing scaffolds for the examine of breast most cancers bone metastasis. Biomaterials 32, 5112–5122 (2011).
Bruning, P. F. et al. Bone mineral density after adjuvant chemotherapy for premenopausal breast most cancers. Br. J. Most cancers 61, 308–310 (1990).
Balestrini, J. L., Chaudhry, S., Sarrazy, V., Koehler, A. & Hinz, B. The mechanical reminiscence of lung myofibroblasts. Integr. Biol. 4, 410–421 (2012).
Li, C. X. et al. MicroRNA-21 preserves the fibrotic mechanical reminiscence of mesenchymal stem cells. Nat. Mater. 16, 379–389 (2016).
He, F. et al. Hydroxyapatite mineral enhances malignant potential in a tissue-engineered mannequin of ductal carcinoma in situ (DCIS). Biomaterials 224, 119489 (2019).
Chiou, A. E. et al. Breast cancer-secreted components perturb murine bone progress in areas susceptible to metastasis. Sci. Adv. 7, eabf2283 (2021).
Zhang, W. et al. The bone microenvironment invigorates metastatic seeds for additional dissemination. Cell 184, 2471–2486.e20 (2021).
Thiagarajan, P. S. et al. Growth of a fluorescent reporter system to delineate most cancers stem cells in triple-negative breast most cancers. Stem Cells 33, 2114–2125 (2015).
Ginestier, C. et al. ALDH1 is a marker of regular and malignant human mammary stem cells and a predictor of poor medical final result. Cell Stem Cell 1, 555–567 (2007).
Raha, D. et al. The most cancers stem cell marker aldehyde dehydrogenase is required to keep up a drug-tolerant tumor cell subpopulation. Most cancers Res. 74, 3579–3590 (2014).
Pan, G. et al. A damaging suggestions loop of transcription components that controls stem cell pluripotency and self-renewal. FASEB J. 20, 1730–1732 (2006).
Krishnakumar, R. et al. FOXD3 regulates pluripotent stem cell potential by concurrently initiating and repressing enhancer exercise. Cell Stem Cell 18, 104–117 (2016).
Chu, T. L. et al. FoxD3 deficiency promotes breast most cancers development by induction of epithelial–mesenchymal transition. Biochem. Biophys. Res. Commun. 446, 580–584 (2014).
Li, W. et al. Unraveling the roles of CD44/CD24 and ALDH1 as most cancers stem cell markers in tumorigenesis and metastasis. Sci. Rep. 7, 13856 (2017).
Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Most cancers Cell 8, 241–254 (2005).
Website positioning, B. R. et al. Collagen microarchitecture mechanically controls myofibroblast differentiation. Proc. Natl Acad. Sci. USA 117, 11387–11398 (2020).
Barney, L. E. et al. Tumor cell-organized fibronectin upkeep of a dormant breast most cancers inhabitants. Sci. Adv. 6, eaaz4157 (2020).
Reznikov, N. et al. Organic stenciling of mineralization within the skeleton: native enzymatic removing of inhibitors within the extracellular matrix. Bone 138, 115447 (2020).
Boys, A. J. et al. High-down fabrication of spatially managed mineral-gradient scaffolds for interfacial tissue engineering. ACS Biomater. Sci. Eng. https://doi.org/10.1021/acsbiomaterials.9b00176 (2019).
Zhou, H., Boys, A. J., Harrod, J. B., Bonassar, L. J. & Estroff, L. A. Mineral distribution spatially patterns bone marrow stromal cell conduct on monolithic bone scaffolds. Acta Biomater. 112, 274–285 (2020).
Fornetti, J., Welm, A. L. & Stewart, S. A. Understanding the bone in most cancers metastasis. J. Bone Miner. Res. 33, 2099–2113 (2018).
Crapo, P. M., Gilbert, T. W. & Badylak, S. F. An summary of tissue and entire organ decellularization processes. Biomaterials 32, 3233–3243 (2011).
Gao, Y. et al. Metastasis organotropism: redefining the congenial soil. Dev. Cell 49, 375–391 (2019).
Cox, T. R. The matrix in most cancers. Nat. Rev. Most cancers 21, 217–238 (2021).
Reuten, R. et al. Basement membrane stiffness determines metastases formation. Nat. Mater. 20, 892–903 (2021).
Nam, S., Hu, Ok. H., Butte, M. J. & Chaudhuri, O. Pressure-enhanced stress rest impacts nonlinear elasticity in collagen gels. Proc. Natl Acad. Sci. USA 113, 5492–5497 (2016).
Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, Ok. & Ossowski, L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) exercise ratios that decide carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell 12, 863–879 (2001).
Margadant, C. & Sonnenberg, A. Integrin-TGF-Β crosstalk in fibrosis, most cancers and wound therapeutic. EMBO Rep. 11, 97–105 (2010).
Ruppender, N. et al. Mobile adhesion promotes prostate most cancers cells escape from dormancy. PLoS ONE 10, e0130565 (2015).
Bragado, P. et al. TGF-β2 dictates disseminated tumour cell destiny in goal organs via TGF-β-RIII and p38α/β signalling. Nat. Cell Biol. 15, 1351–1361 (2013).
Sosa, M. S. et al. NR2F1 controls tumour cell dormancy by way of SOX9- and RARβ-driven quiescence programmes. Nat. Commun. 6, 6170 (2015).
Marturano-Kruik, A. et al. Human bone perivascular niche-on-a-chip for finding out metastatic colonization. Proc. Natl Acad. Sci. USA 115, 1256–1261 (2018).
Thrivikraman, G. et al. Fast fabrication of vascularized and innervated cell-laden bone fashions with biomimetic intrafibrillar collagen mineralization. Nat. Commun. 10, 3520 (2019).
Singh, D. Ok., Patel, V. G., Oh, W. Ok. & Aguirre-Ghiso, J. A. Prostate most cancers dormancy and reactivation in bone marrow. J. Clin. Med. 10, 2648 (2021).
Boskey, A. L. & Coleman, R. Essential opinions in oral biology and medication: ageing and bone. J. Dent. Res. 89, 1333–1348 (2010).
Azarin, S. M. et al. In vivo seize and label-free detection of early metastatic cells. Nat. Commun. 6, 8094 (2015).
Sadtler, Ok. et al. Divergent immune responses to artificial and organic scaffolds. Biomaterials 192, 405–415 (2019).
Coleman, R. et al. Adjuvant bisphosphonate therapy in early breast most cancers: meta-analyses of particular person affected person information from randomised trials. Lancet 386, 1353–1361 (2015).
Coleman, R. E. et al. Breast-cancer adjuvant remedy with zoledronic acid. N. Engl. J. Med. 365, 1396–1405 (2011).
Pelham, R. J. & Wang, Y. L. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661 (1997).
Przybyla, L., Lakins, J. N., Sunyer, R., Trepat, X. & Weaver, V. M. Monitoring developmental pressure distributions in reconstituted embryonic epithelia. Strategies 94, 101–113 (2016).
Han, S. J., Oak, Y., Groisman, A. & Danuser, G. Traction microscopy to establish pressure modulation in subresolution adhesions. Nat. Strategies 12, 653–656 (2015).
Dobin, A. & Gingeras, T. R. Mapping RNA-seq reads with STAR. Curr. Protoc. Bioinformatics 51, 11.14.1–11.14.19 (2015).
Liao, Y., Smyth, G. Ok. & Shi, W. featureCounts: an environment friendly normal goal program for assigning sequence reads to genomic options. Bioinformatics 30, 923–930 (2014).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 550 (2014).
Grüneboom, A. et al. A community of trans-cortical capillaries as mainstay for blood circulation in lengthy bones. Nat .Metab. 1, 236–250 (2019).
Bankhead, P. et al. QuPath: open supply software program for digital pathology picture evaluation. Sci. Rep. 7, 16878 (2017).

