Assessing the antioxidant properties of Naringin and Rutin and investigating their oxidative DNA harm results in breast most cancers


  • Srinivas, U. S. et al. ROS and the DNA harm response in most cancers. Redox Biol. 25, 101084 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parplys, A. C. et al. DNA harm by X-rays and their impression on replication processes. Radiother. Oncol. 102, 466–471 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salar, R. Okay. & Purewal, S. S. Enchancment of DNA harm safety and antioxidant exercise of biotransformed pearl millet. Biocatal. Agric. Biotechnol. 8, 221–227 (2016).

    Article 

    Google Scholar
     

  • Cadet, J., Douki, T. & Ravanat, J. L. Oxidatively generated base harm to mobile DNA. Free Radic. Biol. Med. 49, 9–21 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sedelnikova, O. A. et al. Position of oxidatively induced DNA lesions in human pathogenesis. Mut. Res. 704, 152–159 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Hwang, E. S. & Bowen, P. E. DNA harm, a biomarker of carcinogenesis: its measurement and modulation by food regimen and setting. Crit. Rev. Meals Sci. Nutr. 47, 27–50 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and illness. Nature 461, 1071–1078. https://doi.org/10.1038/nature08467 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur, R., Kaur, M. & Purewal, S. S. Impact of incorporation of flaxseed to wheat rusks: Antioxidant, dietary, sensory traits, and in vitro DNA harm safety exercise. J. Meals Course of. Preserv. 42, e13585 (2018).

    Article 

    Google Scholar
     

  • Salar, R. Okay. & Purewal, S. S. Phenolic content material, antioxidant potential and DNA harm safety of pearl millet cultivars of the North Indian area. Meals Meas. 11, 126–133 (2017).

    Article 

    Google Scholar
     

  • Dexheimer, T.S. DNA restore pathways and mechanisms. In DNA Restore of Most cancers Stem Cells, 19–32 (Springer, 2013).

  • Lindahl, T. & Barnes, D. E. Restore of endogenous DNA harm. Chilly Spring Harb. Symp. Quant. Biol. 65, 127–133 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoeijmakers, J. H. DNA harm, growing old, and most cancers. N. Engl. J. Med. 361, 1475–1485 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Driscoll, M. et al. An outline of three new issues related to genetic instability: LIG4 syndrome, RS-SCID, and ATR-Seckel syndrome. DNA Restore 3, 1227–1235 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Altieri, F. et al. DNA harm and restore: From molecular mechanisms to well being implications. Antioxid. Redox Sign. 10, 891–938 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molinaro, C., Martoriati, A. & Cailliau, Okay. Proteins from the DNA harm response: Regulation, dysfunction, and anticancer methods. Cancers 13, 3819 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Radiosensitization by irinotecan is attributed to G2/M part arrest, adopted by enhanced apoptosis, most likely via the ATM/Chk/Cdc25C/Cdc2 pathway in p53-mutant colorectal most cancers cells. Int. J. Oncol. 53, 1667–1680 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez Besteiro, M. A. & Gottifredi, V. The fork and the kinase: A DNA replication story from a CHK1 perspective. Mutat. Res. Rev. Mutat. Res. 763, 168–180 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fakhri, S., Abbaszadeh, F., Jorjani, M. & Pourgholami, M. H. The results of anticancer medicinal herbs on vascular endothelial development issue primarily based on pharmacological facets: A evaluation examine. Nutr. Most cancers 73, 1–15 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zou, L. & Elledge, S. J. Sensing DNA harm via ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber, A. M. & Ryan, A. J. ATM and ATR as therapeutic targets in most cancers. Pharmacol. Ther. 149, 124–138 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Y. Y. et al. Anti-tumor results of Wee1 kinase inhibitor with radiotherapy in human cervical most cancers. Sci. Rep. 9, 15394 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, Okay. & Linn, S. Molecular mechanisms of mammalian DNA restore and the DNA harm checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ochwang’i, D. O. et al. Medicinal crops utilized in remedy and administration of most cancers in Kakamega County Kenya. J. Ethnopharmacol. 151, 1040–1055 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Pandey, P., Khan, F., Qari, H. A. & Oves, M. Rutin (Bioflavonoid) as cell signaling pathway modulator: Prospects in remedy and chemoprevention. Prescribed drugs (Basel) 14, 1069 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nadaf, Okay. & Badhe, P. In-silico examine of oyster mushroom (Pleurotus ostreatus) focusing on PARP protein (4UND). Preprints 2021, 2021080512 (2021). https://doi.org/10.20944/preprints202108.0512.v1

  • Gosavi, H.D. & Badhe, P. In silico examine of Silybum marianum focusing on PARP protein (4UND protein). Preprints 2021, 2021080384 (2021). https://doi.org/10.20944/preprints202108.0384.v1

  • Shelke, S. & Badhe, P. In-silico examine of Agaricus bisporus on DNA damaging protein. Preprints 2021, 2021090138 (2021). https://doi.org/10.20944/preprints202109.0138.v1

  • Jacob, Reed B., “Dockomatic: An Rising Useful resource to Handle Molecular Docking” (2012). Boise State College Theses and Dissertations. 297.

  • Daina, A., Michielin, O. & Zoete, V. SwissADME: A free internet software to guage pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pires, D. E., Blundell, T. L. & Ascher, D. B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties utilizing graph-based signatures. J. Med. Chem. 58(9), 4066–4072 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badhe, P. Characterisation of fractions from Andrographis paniculata and Silybum marianum plant extracts that shield human cells
    towards DNA harm. Accessible at: http://bura.brunel.ac.uk/deal with/2438/14796 (Brunel College London, 2016).

  • Saad, B. et al. Analysis of medicinal plant hepatotoxicity in co-cultures of hepatocytes and monocytes. Evid.-Based mostly Comp. Different Med. 3, 93–98 (2006).

    Article 

    Google Scholar
     

  • Patlolla, A. Okay., Barnes, C., Hackett, D. & Tchounwou, P. B. Potassium dichromate induced cytotoxicity, genotoxicity and oxidative stress in human liver carcinoma (HepG2) cells. Int. J. Environ. Res. Public Well being 6(2), 643–653 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prakash, A., Rigelhof, F. & Miller, E. Antioxidant exercise. Medallion Laboratories Analytical Progress 19, 1–4 (2001).

  • Kalim, M. D., Bhattacharyya, D., Banerjee, A. & Chattopadhyay, S. Oxidative DNA harm preventive exercise and antioxidant potential of crops utilized in Unani system of medication. BMC Complement. Altern. Med. 10, 1–11 (2010).

    Article 

    Google Scholar
     

  • Hazra, B., Biswas, S. & Mandal, N. Antioxidant and free radical scavenging exercise of Spondias pinata. BMC Complement. Altern. Med. 8, 1 (2008).

    Article 

    Google Scholar
     

  • Fontana, M., Mosca, L. & Rosei, M. A. Interplay of enkephalins with oxyradicals. Biochem. Pharmacol. 61, 1253–1257 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amaya, A., Stopper, H., Žegura, B., Dusinska, M., & Møller, P. Do cytotoxicity and cell demise trigger false constructive ends in the in vitro comet assay? Mutat. Res. Genet. Toxicol. Environ. Mutagen. https://doi.org/10.1016/j.mrgentox.2022.503520 (2022).

    Article 

    Google Scholar
     

  • Ji, Y. et al. A high-throughput comet assay strategy for
    assessing mobile DNA harm. J. Vis. Exp. https://doi.org/10.3791/63559 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Alshwyeh, H. A. et al. Mangifera indica L. kernel ethanol extract inhibits cell viability and proliferation with induction of cell cycle arrest and apoptosis in lung most cancers cells. Mol. Cell. Oncol. https://doi.org/10.1080/23723556.2023.2299046 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nahar, J. et al. Roasting extract of Handroanthus impetiginosus enhances its anticancer exercise in A549 lung most cancers cells and improves its antioxidant and anti inflammatory results in regular cells. Appl. Sci. 13, 13171. https://doi.org/10.3390/app132413171 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, Q. et al. Rutin’s results on cell viability and apoptosis in gastric most cancers. J. Most cancers Res. Ther. 11, 6407210. https://doi.org/10.1155/2019/6407210 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ganash, M. Genotoxic and antitumor exercise of pollen grains towards prostate most cancers cell line: Pharmaceutical Science-Botany for Medicinal Science. Int. J. Life Sci. Pharma Res. 11, 36–46. https://doi.org/10.22376/ijpbs/lpr.2021.12.3.P36-46 (2022).

    Article 

    Google Scholar
     

  • Rusmana, D. et al. Antioxidant exercise of Phyllanthus niruri extract, rutin and quercetin. Indones. Biomed. J. 9, 84–90 (2017).

    Article 

    Google Scholar
     

  • Limanto, A., Simamora, A., Santoso, A. W. & Timotius, Okay. H. Antioxidant, α-glucosidase inhibitory exercise and molecular docking examine of gallic acid, quercetin and rutin: A comparative examine. Mol. Cell. Biomed. Sci. 3, 67–74. https://doi.org/10.21705/mcbs.v3i2.60 (2019).

    Article 

    Google Scholar
     

  • Rana, M. N. & Tangpong, J. In vitro free radical scavenging and anti-genotoxic actions of Thunbergia laurifolia aqueous leaf extract. J. Well being Res. 31, 127–133. https://doi.org/10.14556/jhr.2017.16 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Fu, H., Lin, M., Katsumura, Y. & Muroya, Y. Free-radical scavenging actions of silybin and its analogues: A pulse radiolysis examine. Int. J. Chem. Kinet. 43, 590–597 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Moon, J. Y. et al. Free radical-scavenging actions and cytoprotective impact of polyphenol-rich ethyl acetate fraction of guava (Psidium cattleianum) leaves on H2O2-treated HepG2 cell. J. Korean Soc. Appl. Biol. Chem. 56, 687–694. https://doi.org/10.1007/s13765-013-3156-z (2013).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X., Zhao, Y., Gu, Q., Chen, W. & Guo, X. Results of naringin on postharvest storage high quality of bean sprouts. Meals 11, 2294. https://doi.org/10.3390/foods11152294 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, F. et al. The appliance of deep eutectic solvent on the extraction and in vitro antioxidant exercise of rutin from Sophora japonica bud. J. Meals Sci. Technol. 55, 2326–2333. https://doi.org/10.1007/s13197-018-3151-9 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marthandan, S., Priebe, S., Hemmerich, P., Klement, Okay. & Diekmann, S. Lengthy-term quiescent fibroblast cells transit into senescence. PLoS One 9, e115597. https://doi.org/10.1371/journal.pone.0115597 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, B. R. et al. Quiescent fibroblasts are extra energetic in mounting strong inflammatory responses than proliferative fibroblasts. PLoS One 7, e49232. https://doi.org/10.1371/journal.pone.0049232 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryant, H. E. et al. Particular killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Farmer, H. et al. Focusing on the DNA restore defect in BRCA mutant cells as a therapeutic technique. Nature 434, 917–921 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Rajhi, A. M. H. et al. Anticancer, anticoagulant, antioxidant and antimicrobial actions of Thevetia peruviana latex with molecular docking of antimicrobial and anticancer actions. Molecules 27, 3165. https://doi.org/10.3390/molecules27103165 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Areer, N. W. et al. Quantitative evaluation of whole phenolic and flavonoid compounds in numerous extracts from ginger plant (Zingiber officinale) and analysis of their anticancer impact towards colorectal most cancers cell strains. Pharmacia 70, 905–919. https://doi.org/10.3897/pharmacia.70.e103936 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ghasemzadeh, A., Jaafar, H. Z., Rahmat, A. & Devarajan, T. Analysis of bioactive compounds, pharmaceutical high quality, and anticancer exercise of curry leaf (Murraya koenigii L.). Evid. Based mostly Complement. Alternat. Med. 2014, 873803. https://doi.org/10.1155/2014/873803 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cirmi, S. et al. Chemopreventive brokers and inhibitors of most cancers hallmarks: Might citrus supply new views?. Vitamins 8, 698. https://doi.org/10.3390/nu8110698 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madureira, M. B. et al. Naringenin and hesperidin as promising alternate options for prevention and co-adjuvant remedy for breast most cancers. Antioxidants 12, 586. https://doi.org/10.3390/antiox12030586 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jing, L. J., Mohamed, M., Rahmat, A. & Abu Bakar, M. F. Phytochemicals, antioxidant properties and anticancer investigations of the completely different components of a number of gingers species (Boesenbergia rotunda, Boesenbergia pulchella var attenuata and Boesenbergia armeniaca). J. Med. Vegetation Res. 4, 27–32. https://doi.org/10.5897/JMPR09.308 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Stabrauskiene, J., Kopustinskiene, D. M., Lazauskas, R. & Bernatoniene, J. Naringin and naringenin: Their mechanisms of motion and the potential anticancer actions. Biomedicines 10, 1686. https://doi.org/10.3390/biomedicines10071686 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egbuna, C. et al. Wnt/β-catenin signaling pathway inhibitors, glycyrrhizic acid, solanine, polyphyllin I, crocin, hypericin, tubeimoside-1, diosmin, and rutin in medicinal crops have higher binding affinities and anticancer properties: Molecular docking and ADMET examine. Meals Sci. Nutr. 11, 4155–4169. https://doi.org/10.1002/fsn3.3405 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hot Topics

    Related Articles