A Lung Nodule Dataset with Histopathology-based Most cancers Kind Annotation


  • Sung, H. et al. World most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA: a most cancers journal for clinicians 71, 209–249 (2021).

    PubMed 

    Google Scholar
     

  • Siegel, R. L., Giaquinto, A. N. & Jemal, A. Most cancers statistics 2024. CA: a most cancers journal for clinicians. 74(1), 12–49 (2024).

    PubMed 

    Google Scholar
     

  • Rorke, L. B. Pathologic analysis because the gold customary. Most cancers 79, 665–667 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S., Ouyang, X., Liu, T., Wang, Q. & Shen, D. Comply with my eye: Utilizing gaze to oversee computer-aided analysis. IEEE Trans. Med. Imaging. 41, 1688–1698 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Reis, E. P. et al. BRAX, Brazilian labeled chest x-ray dataset. Sci. Knowledge. 9, 487 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nationwide Lung Screening Trial Analysis Staff. Diminished lung-cancer mortality with low-dose computed tomographic screening. New England Journal of Medication 365, 395–409 (2011).

    Article 

    Google Scholar
     

  • Singh, S. P. et al. Reader variability in figuring out pulmonary nodules on chest radiographs from the nationwide lung screening trial. Journal of thoracic imaging 27(4), 249–254 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Infante, M. et al. A randomized examine of lung most cancers screening with spiral computed tomography: three-year outcomes from the DANTE trial. American journal of respiratory and significant care medication 180(5), 445–453 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Mei, J., Cheng, M., Xu, G., Wan, L. & Zhang, H. SANet: A slice-aware community for pulmonary nodule detection. IEEE Trans. Sample Anal. Machine Intell. 44, 4374–4387, https://doi.org/10.1109/TPAMI.2021.3065086 (2021).

    Article 

    Google Scholar
     

  • Liao, F., Liang, M., Li, Z., Hu, X. & Track, S. Consider the malignancy of pulmonary nodules utilizing the 3-D deep leaky noisy-or community. IEEE Trans. Neural Netw. Study. Syst. 30, 3484–3495, https://doi.org/10.1109/TNNLS.2019.2892409 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Shin, H. C., Orton, M. R., Collins, D. J., Doran, S. J. & Leach, M. O. Stacked autoencoders for unsupervised function studying and a number of organ detection in a pilot examine utilizing 4D affected person information. IEEE Trans. Sample Anal. Mach. Intell. 35, 1930–1943 (2012).

    Article 

    Google Scholar
     

  • Seidlitz, S. et al. Strong deep learning-based semantic organ segmentation in hyperspectral photos. Medical Picture Evaluation 80, 102488 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jacobsab, C. et al. Automated detection of subsolid pulmonary nodules in thoracic computed tomography photos. Medical Picture Evaluation 18, 374–384 (2014).

    Article 

    Google Scholar
     

  • Duggan, N. et al. A way for lung nodule candidate detection in CT utilizing international minimization strategies. Worldwide workshop on power minimization strategies in pc imaginative and prescient and sample recognition. 478-491 (2015).

  • Messay, T., Hardie, R. C. & Rogers, S. Okay. A brand new computationally environment friendly CAD system for pulmonary nodule detection in CT imagery. Medical Picture Evaluation 14, 390–406 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Jacobs, C. et al. Automated detection of subsolid pulmonary nodules in thoracic computed tomography photos. Medical Picture Evaluation 18, 374–384 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Girshick, R et al. Wealthy function hierarchies for correct object detection and semantic segmentation. Proceedings of the IEEE convention on pc imaginative and prescient and sample recognition. 580-587 (2014).

  • Luo, X. et al. SCPM-Internet: An anchor-free 3D lung nodule detection community utilizing sphere illustration and middle factors matching. Medical Picture Evaluation 75, 102287 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ali, Z., Irtaza, A. & Maqsood, M. An environment friendly U-Internet framework for lung nodule detection utilizing densely related dilated convolutions. The Journal of Supercomputing 78, 1602–1623 (2022).

    Article 

    Google Scholar
     

  • Sahu, S., Londhe, N. & Verma, S. Pulmonary nodule detection in CT photos utilizing optimum multilevel thresholds and rule-based filtering. IETE Journal of Analysis 68, 265–282 (2022).

    Article 

    Google Scholar
     

  • Setio, A. et al. Pulmonary nodule detection in CT photos: false optimistic discount utilizing multi-view convolutional networks. IEEE Trans. Med. Imaging. 35, 1160–1169 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ding, J., Li, A., Hu, Z. & Wang, L. Correct pulmonary nodule detection in computed tomography photos utilizing deep convolutional neural networks. Worldwide Convention on Medical Picture Computing and Laptop-Assisted Intervention. 559-567 (2017).

  • Li, Y., Fan, Y. DeepSEED: 3D squeeze-and-excitation encoder-decoder convolutional neural networks for pulmonary nodule detection. 2020 IEEE seventeenth Worldwide Symposium on Biomedical Imaging (ISBI). 1866-1869 (2020).

  • Kim, B., Yoon, J., Choi, J. & Suk, H. Multi-scale gradual integration CNN for false optimistic discount in pulmonary nodule detection. Neural Networks 115, 1–10 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Shen, W. et al. Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Sample Recognition 61, 663–673 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Xie, Y. et al. Data-based collaborative deep studying for benign-malignant lung nodule classification on chest CT. IEEE Trans. Med. Imaging. 38, 991–1004 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Xie, Y., Zhang, J., Xia, Y., Fulham, M. & Zhang, Y. Fusing texture, form and deep model-learned info at determination stage for automated classification of lung nodules on chest CT. Data Fusion 42, 102–110 (2018).

    Article 

    Google Scholar
     

  • Xie, Y., Zhang, J. & Xia, Y. Semi-supervised adversarial mannequin for benign-malignant lung nodule classification on chest CT. Medical Picture Evaluation 57, 237–248 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Li, R., Xiao, C., Huang, Y., Hassan, H. & Huang, B. Deep studying functions in computed tomography photos for pulmonary nodule detection and analysis: A overview. Diagnostics 12, 298, https://doi.org/10.3390/diagnostics12020298 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armato, S. III et al. The lung picture database consortium (LIDC) and picture database useful resource initiative (IDRI): a accomplished reference database of lung nodules on CT scans. Medical physics 38, 915–931, https://doi.org/10.1118/1.3528204 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, Y. et al. LIDP: A Lung Picture Dataset with Pathological Data for Lung Most cancers Screening. Worldwide Convention on Medical Picture Computing and Laptop-Assisted Intervention. 770–779, https://doi.org/10.1007/978-3-031-16437-8_74 (2022).

  • Setio, A. et al. Validation, comparability, and mixture of algorithms for automated detection of pulmonary nodules in computed tomography photos: the LUNA16 problem. Medical Picture Evaluation 42, 1–13, https://doi.org/10.1016/j.media.2017.06.015 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sousa, J. et al. Lung Segmentation in CT Photos: A Residual U-Internet Method on a Cross-Cohort Dataset. Utilized Sciences 12, 1959, https://doi.org/10.3390/app12041959 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cengil, E. & Cinar, A. A deep studying primarily based strategy to lung most cancers identification. 2018 Worldwide Convention on Synthetic Intelligence and Knowledge Processing (IDAP). 1–5, https://doi.org/10.1109/IDAP.2018.862072 (2018).

  • Jian, M. et al. A Cross Spatio-Temporal Pathology-based Lung Nodule Dataset. Preprint at https://arxiv.org/abs/2406.18018 (2024).

  • Jian, M. et al. A Lung Nodule Dataset with Histopathology-based Most cancers Kind Annotation. Zenodo https://doi.org/10.5281/zenodo.8422229 (2024).

  • Jian, M. et al. A Lung Nodule Dataset with Histopathology-based Most cancers Kind Annotation. Zenodo https://doi.org/10.5281/zenodo.11024613 (2024).

  • He, Okay., Zhang, X., Ren, S. & Solar, J. Deep residual studying for picture recognition. Proceedings of the IEEE/CVF Convention on Laptop Imaginative and prescient and Sample Recognition. 770-778 (2016).

  • Tan, M. & Le, Q. Efficientnet: Rethinking mannequin scaling for convolutional neural networks. Int. Conf. Mach. Study. 6105–6114 (2019).

  • He, A., Li, T., Li, N., Wang, Okay. & Fu, H. CABNet: class consideration block for imbalanced Diabetic Retinopathy grading. IEEE Trans. Med. Imaging. 40, 143–153 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Xie, S., Girshick, R., Dollár, P., Tu, Z. & He, Okay. Aggregated residual transformations for deep neural networks. Proceedings of the IEEE/CVF Convention on Laptop Imaginative and prescient and Sample Recognition. 1492-1500 (2017).

  • Gao, S. H. et al. Res2net: A brand new multi-scale spine structure. IEEE Trans. Sample Anal. Mach. Intell. 43, 652–662 (2019).

    Article 

    Google Scholar
     

  • Hu, J., Shen, L. & Solar, G. Squeeze-and-excitation networks. Proceedings of the IEEE/CVF Convention on Laptop Imaginative and prescient and Sample Recognition. 7132–7141 (2018).

  • Dosovitskiy, A. et al. A picture is price 16×16 phrases: Transformers for picture recognition at scale. Worldwide Convention on Studying Representations. (2021).

  • Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. Inception-v4, inception-resnet and the influence of residual connections on studying. Proceedings of the AAAI Convention on Synthetic Intelligence. 31 (2017).

  • Liu, Z. et al. A convnet for the 2020s. Proceedings of the IEEE/CVF Convention on Laptop Imaginative and prescient and Sample Recognition. 11976–11986 (2022).

  • Liu, Z. et al. Swin transformer: Hierarchical imaginative and prescient transformer utilizing shifted home windows. Proceedings of the IEEE/CVF Worldwide Convention on Laptop Imaginative and prescient. 10012–10022 (2021).

  • Ren, S., He, Okay., Girshick, R. & Solar, J. Sooner r-cnn: In direction of real-time object detection with area proposal networks. Adv. Neural Inf. Course of. Syst. 28, (2015).

  • Redmon, J. & Farhadi, A. Yolov3: An incremental enchancment. Preprint at https://arxiv.org/abs/1804.02767 (2018).

  • Howard, A. G. et al. Mobilenets: Environment friendly convolutional neural networks for cellular imaginative and prescient functions. Preprint at https://arxiv.org/abs/1704.04861 (2017).

  • Liu, W. et al. Ssd: Single shot multibox detector. Laptop Imaginative and prescient–ECCV 2016: 14th European Convention. 21–37 (2016).

  • Lin, T. Y., Goyal, P., Girshick, R., He, Okay. & Dollár, P. Focal loss for dense object detection. Proceedings of the IEEE Worldwide Convention on Laptop Imaginative and prescient. 2980-2988 (2017).

  • Hot Topics

    Related Articles