A hybrid DDA/DIA-PASEF primarily based assay library for a deep proteotyping of triple-negative breast most cancers


  • Sporikova, Z., Koudelakova, V., Trojanec, R. & Hajduch, M. Genetic Markers in Triple-Detrimental Breast Most cancers. Clin Breast Most cancers 18, e841–e850 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Received, Okay.-A. & Spruck, C. Triple-negative breast most cancers remedy: Present and future views (Overview). Int J Oncol 57, 1245–1261 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, X., Cai, Y., Chang, X. & Guo, Y. A novel conditional survival nomogram for monitoring real-time prognosis of non-metastatic triple-negative breast most cancers. Entrance Endocrinol (Lausanne) 14, 1119105 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Gluz, O. et al. Triple-negative breast most cancers–present standing and future instructions. Ann Oncol 20, 1913–1927 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bianchini, G., Balko, J. M., Mayer, I. A., Sanders, M. E. & Gianni, L. Triple-negative breast most cancers: challenges and alternatives of a heterogeneous illness. Nat Rev Clin Oncol 13, 674–690 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maqbool, M., Bekele, F. & Fekadu, G. Therapy Methods Towards Triple-Detrimental Breast Most cancers: An Up to date Overview. Breast Most cancers (Dove Med Press) 14, 15–24 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Kreike, B. et al. Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Most cancers Res 9, R65 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelstrup, C. D. et al. Efficiency Analysis of the Q Exactive HF-X for Shotgun Proteomics. J Proteome Res 17, 727–738 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gillet, L. C. et al. Focused information extraction of the MS/MS spectra generated by data-independent acquisition: a brand new idea for constant and correct proteome evaluation. Mol Cell Proteomics 11, O111.016717 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome construction and performance. Nature 537, 347–355 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Faktor, J., Sucha, R., Paralova, V., Liu, Y. & Bouchal, P. Comparability of focused proteomics approaches for detecting and quantifying proteins derived from human most cancers tissues. Proteomics 17, (2017).

  • Barkovits, Okay. et al. Reproducibility, Specificity and Accuracy of Relative Quantification Utilizing Spectral Library-based Information-independent Acquisition. Mol Cell Proteomics 19, 181–197 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao, W. & Lam, H. Tandem mass spectral libraries of peptides and their roles in proteomics analysis. Mass Spectrom Rev 36, 634–648 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsou, C.-C. et al. DIA-Umpire: complete computational framework for data-independent acquisition proteomics. Nat Strategies 12, 258–264 (2015). 7 p following 264.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. In silico spectral libraries by deep studying facilitate data-independent acquisition proteomics. Nat Commun 11, 146 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muntel, J. et al. Advancing Urinary Protein Biomarker Discovery by Information-Unbiased Acquisition on a Quadrupole-Orbitrap Mass Spectrometer. J Proteome Res 14, 4752–4762 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lapcik, P. et al. A big-scale assay library for focused protein quantification in renal cell carcinoma tissues. Proteomics e2100228 https://doi.org/10.1002/pmic.202100228 (2021).

  • García-Adrián, S. et al. Molecular characterization of triple destructive breast most cancers formaldehyde-fixed paraffin-embedded samples by data-independent acquisition proteomics. Proteomics 22, e2100110 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Meng, X., Liu, D. & Guan, Y. Advances within the software of label-free quantitative proteomics strategies in malignancy analysis. Biomed Chromatogr 37, e5667 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meier, F. et al. On-line Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol Cell Proteomics 17, 2534–2545 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meier, F. et al. diaPASEF: parallel accumulation-serial fragmentation mixed with data-independent acquisition. Nat Strategies 17, 1229–1236 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, F., Ge, W., Ruan, G., Cai, X. & Guo, T. Information-Unbiased Acquisition Mass Spectrometry-Based mostly Proteomics and Software program Instruments: A Glimpse in 2020. Proteomics 20, e1900276 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bruderer, R. et al. Extending the bounds of quantitative proteome profiling with data-independent acquisition and software to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 14, 1400–1410 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, Okay. S. & Ralser, M. DIA-NN: neural networks and interference correction allow deep proteome protection in excessive throughput. Nat Strategies 17, 41–44 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skowronek, P. & Meier, F. Excessive-Throughput Mass Spectrometry-Based mostly Proteomics with dia-PASEF. Strategies Mol Biol 2456, 15–27 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demichev, V. et al. dia-PASEF information evaluation utilizing FragPipe and DIA-NN for deep proteomics of low pattern quantities. Nat Commun 13, 3944 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muntel, J. et al. Surpassing 10 000 recognized and quantified proteins in a single run by optimizing present LC-MS instrumentation and information evaluation technique. Mol Omics 15, 348–360 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bouchal, P. et al. Breast Most cancers Classification Based mostly on Proteotypes Obtained by SWATH Mass Spectrometry. Cell Rep 28, 832–843.e7 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouchal, P. et al. Biomarker discovery in low-grade breast most cancers utilizing isobaric steady isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) primarily based quantitative proteomic evaluation. J Proteome Res 8, 362–373 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stejskal, Okay., Potěšil, D. & Zdráhal, Z. Suppression of peptide pattern losses in autosampler vials. J Proteome Res 12, 3057–3062 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Říhová, Okay. et al. Caspase-9 Is a Constructive Regulator of Osteoblastic Cell Migration Recognized by diaPASEF Proteomics. J Proteome Res https://doi.org/10.1021/acs.jproteome.3c00641 (2024).

  • Lou, R. et al. Benchmarking generally used software program suites and evaluation workflows for DIA proteomics and phosphoproteomics. Nat Commun 14, 94 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monash Proteomics and Metabolomics Platform & Monash Bioinformatics Platform, Monash College. DIA-Analyst: An interactive web-platform to investigate and visualize proteomics information preprocessed with Spectronaut and DIA-NN. https://analyst-suites.org/apps/dia-analyst/.

  • Wang, S., Zheng, W., Hu, L., Gong, M. & Yang, H. MixProTool: A Highly effective and Complete Net Device for Analyzing and Visualizing Multigroup Proteomics Information. J Comput Biol 25, 1123–1127 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perez-Riverol, Y. et al. The PRIDE database assets in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50, D543–D552 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lapcik, P. et al. A hybrid DDA/DIA-PASEF-based assay library for a deep proteotype characterization of triple-negative breast most cancers. PRIDE Archive https://identifiers.org/satisfaction.venture:PXD047793 (2023).

  • Hot Topics

    Related Articles