Boulehmi, H., Mahersia, H. & Hamrouni, Okay. Bone most cancers analysis utilizing GGD evaluation. In 2018 fifteenth Worldwide Multi-conference on Methods, Alerts & Gadgets 246–251. https://doi.org/10.1109/SSD.2018.8570658 (IEEE, 2018).
Shukla, A. & Patel, A. Bone most cancers detection from X-ray and MRI photos by picture segmentation methods. Int. J. Latest Technol. Eng. 8, 273–278. https://doi.org/10.35940/ijrte.F7159.038620 (2020).
Sujatha, Okay. et al. Screening and determine the bone most cancers/tumor utilizing picture processing. In 2018 Worldwide Convention on Present Traits In direction of Converging Applied sciences 1–5. https://doi.org/10.1109/ICCTCT.2018.8550917 (IEEE, 2018).
Ibrahim, T., Mercatali, L. & Amadori, D. Bone and most cancers: The osteoncology. Clin. Circumstances Mineral Bone Metab. 10, 121 (2013).
Noguchi, S. et al. Deep learning-based algorithm improved radiologists’ efficiency in bone metastases detection on CT. Eur. Radiol. 32, 1–12. https://doi.org/10.1007/s00330-022-08741-3 (2022).
Eweje, F. R. et al. Deep studying for classification of bone lesions on routine MRI. EBioMedicine 68, 103402. https://doi.org/10.1016/j.ebiom.2021.103402 (2021).
Han, S., Li, Y., Li, Y. & Zhao, M. Diagnostic efficacy of PET/CT in bone tumors. Oncol. Lett. 17, 4271–4276. https://doi.org/10.3892/ol.2019.10101 (2019).
Xia, C. et al. SVM-based bone tumor detection through the use of the feel options of X-ray picture. In 2018 Worldwide Convention on Community Infrastructure and Digital Content material 130–134. https://doi.org/10.1109/ICNIDC.2018.8525806 (IEEE, 2018).
Zimbalist, T. et al. Detecting bone lesions in X-ray below numerous acquisition circumstances. https://doi.org/10.48550/arXiv.2212.07792 (2022).
Huo, Y. Okay., Wei, G., Zhang, Y. D., & Wu, L. N. An adaptive threshold for the Canny operator of edge detection. In 2010 Worldwide Convention on Picture Evaluation and Sign Processing 371–374. https://doi.org/10.1109/IASP.2010.5476095 (IEEE, 2010).
Hossain, E. & Rahaman, M. A. Comparative analysis of segmentation algorithms for tumor cells detection from bone MR scan imagery. In 2018 Worldwide Convention on Improvements in Science, Engineering and Know-how 361–366. https://doi.org/10.1109/ICISET.2018.8745612 (IEEE, 2018).
Kaur, E. C. & Garg, U. Bone most cancers detection methods utilizing machine studying. In 2022 Worldwide Convention on Computational Modelling, Simulation and Optimization 315–319. https://doi.org/10.1109/ICCMSO58359.2022.00068 (IEEE, 2022).
Pandey, A. & Shrivastava, S. Okay. A survey paper on calcaneus bone tumor detection utilizing completely different improved canny edge detector. In 2018 IEEE Worldwide Convention on System, Computation, Automation and Networking 1–5. https://doi.org/10.1109/ICSCAN.2018.8541194 (IEEE, 2018).
Ranjitha, M. M., Taranath, N. L., Arpitha, C. N. & Subbaraya, C. Okay. Bone most cancers detection utilizing Okay-means segmentation and Knn classification. In 2019 1st Worldwide Convention on Advances in Data Know-how 76–80. https://doi.org/10.1109/ICAIT47043.2019.8987328 (IEEE, 2019).
Mistry, Okay. D. & Talati, B. J. Built-in strategy for bone tumor detection from mri scan imagery. In 2016 Worldwide Convention on Sign and Data Processing 1–5. https://doi.org/10.1109/ICONSIP.2016.7857471 (IEEE, 2016).
Sharma, A. et al. Bone most cancers detection utilizing function extraction primarily based machine studying mannequin. Comput. Math. Strategies Med. https://doi.org/10.1155/2021/7433186 (2021).
Shen, R. et al. Osteosarcoma sufferers classification utilizing plain X-rays and metabolomic knowledge. In 2018 fortieth Annual Worldwide Convention of the IEEE Engineering in Medication and Biology Society 690–693. https://doi.org/10.1109/EMBC.2018.8512338 (IEEE, 2018).
Zhao, Z. et al. Deep neural community primarily based synthetic intelligence assisted analysis of bone scintigraphy for most cancers bone metastasis. Sci. Rep. 10, 17046. https://doi.org/10.1038/s41598-020-74135-4 (2020).
Dong, M., Huang, X. & Xu, B. Unsupervised speech recognition by spike-timing-dependent plasticity in a convolutional spiking neural community. PLoS ONE 13, e0204596. https://doi.org/10.1371/journal.pone.0204596 (2018).
Frank, D. A., Chrysochou, P., Mitkidis, P. & Ariely, D. Human decision-making biases within the ethical dilemmas of autonomous autos. Sci. Rep. 9, 13080. https://doi.org/10.1038/s41598-019-49411-7 (2019).
Xiong, C., Xu, X., Zhang, H. & Zeng, B. An evaluation of scientific values of MRI, CT and X-ray in differentiating benign and malignant bone metastases. Am. J. Transl. Res. 13, 7335 (2021).
Asuntha, A. et al. Characteristic extraction to detect bone most cancers utilizing picture processing. Res. J. Pharm. Biol. Chem. Sci. 8, 434 (2018).
Georgeanu, V. A., Mămuleanu, M., Ghiea, S. & Selișteanu, D. Malignant bone tumors analysis utilizing magnetic resonance imaging primarily based on deep studying algorithms. Medicina 58, 636. https://doi.org/10.3390/medicina58050636 (2022).
Mishra, A. & Suhas, M. V. Classification of benign and malignant bone lesions on CT photos utilizing random forest. In 2016 IEEE Worldwide Convention on Latest Traits in Electronics, Data & Communication Know-how 1807–1810. https://doi.org/10.1109/RTEICT.2016.7808146 (2016).
Kadhim, W. D. & Abdoon, R. S. Using k-means clustering to extract bone tumor in CT scan and MRI photos. J. Phys. Conf. Ser. 1591, 012010. https://doi.org/10.1088/1742-6596/1591/1/012010 (2020).
Energy, S. et al. Computed tomography and affected person danger: Details, perceptions and uncertainties. World J. Radiol. 8, 902. https://doi.org/10.4329/wjr.v8.i12.902 (2016).
Yarmish, G. et al. Imaging traits of main osteosarcoma: Nonconventional subtypes. Radiographics 30, 1653–1672. https://doi.org/10.1148/rg.306105524 (2010).
Ravish, V. N., Vinod Kumar, A. C. & Sen, G. Enchondroma—A case examine. Int. J. Sci. Res. 4, 2319–7064 (2015).
BinMohi, A. M., Alzahrani, A. A. & Reda, B. R. A case report of femur osteochondroma in 22 years outdated feminine affected person. Int. J. Adv. Res. 8, 1263–1267. https://doi.org/10.21474/IJAR01/11964 (2020).
Papathanassiou, Z. G. et al. Parosteal osteosarcoma mimicking osteochondroma: A radio-histologic strategy on two instances. Clin. Sarcoma Res. 1, 1–8. https://doi.org/10.1186/2045-3329-1-2 (2011).
Larousserie, F. et al. Parosteal osteoliposarcoma: A brand new bone tumor (from imaging to immunophenotype). Eur. J. Radiol. 82, 2149–2153. https://doi.org/10.1016/j.ejrad.2011.11.035 (2013).
Ferrer-Santacreu, E. M., Ortiz-Cruz, E. J., Díaz-Almirón, M. & Pozo Kreilinger, J. J. Enchondroma versus chondrosarcoma in lengthy bones of appendicular skeleton: Medical and radiological standards—A follow-up. J. Oncol. https://doi.org/10.1155/2016/8262079 (2016).
Tepelenis, Okay. et al. Osteochondromas: An up to date overview of epidemiology, pathogenesis, scientific presentation, radiological options and remedy choices. In Vivo 35, 681–691. https://doi.org/10.21873/invivo.12308 (2021).
Sinthia, P. & Sujatha, Okay. A novel strategy to detect bone most cancers utilizing k-means clustering algorithm and edge detection methodology. Asian Res. Publ. Netw. J. Eng. Appl. Sci. 11, 8002–8007 (2016).
Reis, H. C. Calcaneus benign tumor detection utilizing canny edge detector. Int. J. Oncol. Most cancers Ther. 2, 1 (2017).
Heravi, E. J., Aghdam, H. H. & Puig, D. Classification of meals utilizing spatial pyramid convolutional neural community. In CCIA 163–168 (2016).
Canny, J. A computational strategy to edge detection. IEEE Trans. Sample Anal. Mach. Intell. 6, 679–698. https://doi.org/10.1109/TPAMI.1986.4767851 (1986).
Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Course of. Syst. 25, 386. https://doi.org/10.1145/3065386 (2012).
Sunitha, M. R., Huda, R., Gopinath, C. B. & Sathyabhama, R. Bone most cancers detection utilizing AlexNet and VGG16. Int. Res. J. Eng. Technol. 9, 7 (2022).
Han, X., Zhong, Y., Cao, L. & Zhang, L. Pre-trained Alexnet structure with pyramid pooling and supervision for prime spatial decision distant sensing picture scene classification. Distant Sens. 9, 848. https://doi.org/10.3390/rs9080848 (2017).
Lin, C. J., Li, Y. C. & Lin, H. Y. Utilizing convolutional neural networks primarily based on a Taguchi methodology for face gender recognition. Electronics 9, 1227. https://doi.org/10.3390/electronics9081227 (2020).
Pan, C., Lian, L., Chen, J. & Huang, R. FemurTumorNet: Bone tumor classification within the proximal femur utilizing DenseNet mannequin primarily based on radiographs. J. Bone Oncol. 42, 100504. https://doi.org/10.1016/j.jbo.2023.100504 (2023).
Gawade, S., Bhansali, A., Patil, Okay. & Shaikh, D. Utility of the convolutional neural networks and supervised deep-learning strategies for osteosarcoma bone most cancers detection. Healthcare Anal. 3, 100153. https://doi.org/10.1016/j.well being.2023.100153 (2023).
Mehmood, A. et al. SBXception: A shallower and broader xception structure for environment friendly classification of pores and skin lesions. Cancers 15, 3604. https://doi.org/10.3390/cancers15143604 (2023).
Park, C. W. et al. Synthetic intelligence-based classification of bone tumors within the proximal femur on plain radiographs: System improvement and validation. PLoS ONE 17(2), e0264140. https://doi.org/10.1371/journal.pone.0264140 (2022).
Kingma, D. P. & Ba, J. Adam: A way for stochastic optimization. https://doi.org/10.48550/arXiv.1412.6980 (2014).
Anisuzzaman, D. M. et al. A deep studying examine on osteosarcoma detection from histological photos. Biomed. Sign Course of. Management 69, 102931. https://doi.org/10.48550/arXiv.2011.01177 (2021).
Jmour, N., Zayen, S., & Abdelkrim, A. Convolutional neural networks for picture classification. In Worldwide Convention on Superior Methods and Electrical Applied sciences 397. https://doi.org/10.1109/ASET.2018.8379889 (2018).
Rajoub, B. Supervised and unsupervised studying. In Biomedical Sign Processing and Synthetic Intelligence in Healthcare (ed. Rajoub, B.) 51–89 (Elsevier, 2020).

