Tenen, D. G. Disruption of differentiation in human most cancers: AML exhibits the way in which. Nat. Rev. Most cancers 3, 89–101 (2003).
Klco, J. M. et al. Practical heterogeneity of genetically outlined subclones in acute myeloid leukemia. Most cancers Cell 25, 379–392 (2014).
Miles, L. A. et al. Single-cell mutation evaluation of clonal evolution in myeloid malignancies. Nature 587, 477–482 (2020).
Bolouri, H. et al. The molecular panorama of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat. Med. 24, 103–112 (2018).
Most cancers Genome Atlas Analysis Community; Ley T. J.et al. Genomic and epigenomic landscapes of grownup de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).
Jaju, R. J. et al. A novel gene, NSD1, is fused to NUP98 within the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood 98, 1264–1267 (2001).
Gruber, T. A. et al. An Inv(16)(p13.3q24.3)-encoded CBFA2T3–GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Most cancers Cell 22, 683–697 (2012).
Umeda, M. et al. Built-in genomic evaluation identifies UBTF tandem duplications as a recurrent lesion in pediatric acute myeloid leukemia. Blood Most cancers Discov. 3, 194–207 (2022).
Khoury, J. D. et al. The fifth version of the World Well being Group Classification of Haematolymphoid Tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 36, 1703–1719 (2022).
Arber, D. A. et al. Worldwide Consensus Classification of myeloid neoplasms and acute leukemias: integrating morphologic, medical, and genomic knowledge. Blood 140, 1200–1228 (2022).
Mrozek, Ok. et al. Consequence prediction by the 2022 European LeukemiaNet genetic-risk classification for adults with acute myeloid leukemia: an Alliance research. Leukemia 37, 788–798 (2023).
Rubnitz, J. E. et al. Clofarabine can change anthracyclines and etoposide in remission induction remedy for childhood acute myeloid leukemia: the AML08 Multicenter, Randomized Section III Trial. J. Clin. Oncol. 37, 2072–2081 (2019).
Pollard, J. A. et al. Sorafenib together with customary chemotherapy for kids with excessive allelic ratio FLT3/ITD+ acute myeloid leukemia: a report from the kids’s oncology group protocol AAML1031. J. Clin. Oncol. 40, 2023–2035 (2022).
Reinhardt, D., Antoniou, E. & Waack, Ok. Pediatric acute myeloid leukemia – previous, current, and future. J. Clin. Med. 11, 504 (2022).
Tomizawa, D. et al. A part III medical trial evaluating efficacy and security of minimal residual disease-based threat stratification for kids with acute myeloid leukemia, incorporating a randomized research of gemtuzumab ozogamicin together with post-induction chemotherapy for non-low-risk sufferers (JPLSG-AML-20). Jpn. J. Clin. Oncol. 52, 1225–1231 (2022).
McNeer, N. A. et al. Genetic mechanisms of major chemotherapy resistance in pediatric acute myeloid leukemia. Leukemia 33, 1934–1943 (2019).
Iacobucci, I. et al. Genomic subtyping and therapeutic focusing on of acute erythroleukemia. Nat. Genet. 51, 694–704 (2019).
Fornerod, M. et al. Integrative genomic evaluation of pediatric myeloid-related acute leukemias identifies novel subtypes and prognostic indicators. Blood Most cancers Discov. 2, 586–599 (2021).
Newman, S. et al. Genomes for teenagers: the scope of pathogenic mutations in pediatric most cancers revealed by complete DNA and RNA sequencing. Most cancers Discov. 11, 3008–3027 (2021).
Rusch, M. et al. Scientific most cancers genomic profiling by three-platform sequencing of entire genome, entire exome and transcriptome. Nat. Commun. 9, 3962 (2018).
Schwartz, J. R. et al. The genomic panorama of pediatric myelodysplastic syndromes. Nat. Commun. 8, 1557 (2017).
Andersson, A. Ok. et al. The panorama of somatic mutations in toddler MLL-rearranged acute lymphoblastic leukemias. Nat. Genet. 47, 330–337 (2015).
Faber, Z. J. et al. The genomic panorama of core-binding issue acute myeloid leukemias. Nat. Genet. 48, 1551–1556 (2016).
Buelow, D. R. et al. Uncovering the genomic panorama in newly identified and relapsed pediatric cytogenetically regular FLT3-ITD AML. Clin. Transl. Sci. 12, 641–647 (2019).
de Rooij, J. D. et al. Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterised by distinct genomic subsets with various outcomes. Nat. Genet. 49, 451–456 (2017).
Kilos, S. et al. A genomic random interval mannequin for statistical evaluation of genomic lesion knowledge. Bioinformatics 29, 2088–2095 (2013).
Ryland, G. L. et al. Description of a novel subtype of acute myeloid leukemia outlined by recurrent CBFB insertions. Blood 141, 800–805 (2023).
von Neuhoff, C. et al. Prognostic impression of particular chromosomal aberrations in a big group of pediatric sufferers with acute myeloid leukemia handled uniformly based on trial AML-BFM 98. J. Clin. Oncol. 28, 2682–2689 (2010).
Harrison, C. J. et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Analysis Council Remedy trials AML 10 and 12. J. Clin. Oncol. 28, 2674–2681 (2010).
Huber, S. et al. AML classification within the yr 2023: keep away from a Babylonian confusion of languages. Leukemia 37, 1413–1420 (2023).
Ross, M. E. et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 104, 3679–3687 (2004).
Groschel, S. et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157, 369–381 (2014).
Schwartz, J. R. et al. The acquisition of molecular drivers in pediatric therapy-related myeloid neoplasms. Nat. Commun. 12, 985 (2021).
Montefiori, L. E. et al. Enhancer hijacking drives oncogenic BCL11B expression in lineage-ambiguous stem cell leukemia. Most cancers Discov. 11, 2846–2867 (2021).
Tosi, S. et al. Paediatric acute myeloid leukaemia with the t(7;12)(q36;p13) rearrangement: a evaluate of the organic and medical administration features. Biomark. Res. 3, 21 (2015).
Zeng, A. G. X. et al. A mobile hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia. Nat. Med. 28, 1212–1223 (2022).
Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-dimensional single-cell evaluation of differentiation knowledge. Bioinformatics 31, 2989–2998 (2015).
Martelli, M. P. et al. Novel NPM1 exon 5 mutations and gene fusions resulting in aberrant cytoplasmic nucleophosmin in AML. Blood 138, 2696–2701 (2021).
Panagopoulos, I. et al. Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosomes Most cancers 11, 256–262 (1994).
Thomsen, C., Grundevik, P., Elias, P., Stahlberg, A. & Aman, P. A conserved N-terminal motif is required for complicated formation between FUS, EWSR1, TAF15 and their oncogenic fusion proteins. FASEB J. 27, 4965–4974 (2013).
von Bergh, A. R. et al. Excessive incidence of t(7;12)(q36;p13) in toddler AML however not in toddler ALL, with a dismal final result and ectopic expression of HLXB9. Genes Chromosomes Most cancers 45, 731–739 (2006).
Gamou, T. et al. The companion gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) household. Blood 91, 4028–4037 (1998).
Li, Z. et al. Developmental stage-selective impact of somatically mutated leukemogenic transcription issue GATA1. Nat. Genet. 37, 613–619 (2005).
Lopez, C. Ok. et al. Ontogenic modifications in hematopoietic hierarchy decide pediatric specificity and illness phenotype in fusion oncogene-driven myeloid leukemia. Most cancers Discov. 9, 1736–1753 (2019).
Yun, H. et al. Mutational synergy throughout leukemia induction remodels chromatin accessibility, histone modifications and three-dimensional DNA topology to change gene expression. Nat. Genet. 53, 1443–1455 (2021).
Lasry, A. et al. An inflammatory state remodels the immune microenvironment and improves threat stratification in acute myeloid leukemia. Nat. Most cancers 4, 27–42 (2023).
Langfelder, P. & Horvath, S. WGCNA: an R bundle for weighted correlation community evaluation. BMC Bioinformatics 9, 559 (2008).
Ng, S. W. et al. A 17-gene stemness rating for speedy dedication of threat in acute leukaemia. Nature 540, 433–437 (2016).
Elsayed, A. H. et al. A six-gene leukemic stem cell rating identifies excessive threat pediatric acute myeloid leukemia. Leukemia 34, 735–745 (2020).
Bottomly, D. et al. Integrative evaluation of drug response and medical final result in acute myeloid leukemia. Most cancers Cell 40, 850–864 e9 (2022).
Meshinchi, S. et al. Scientific implications of FLT3 mutations in pediatric AML. Blood 108, 3654–3661 (2006).
Ho, P. A. et al. Prevalence and prognostic implications of WT1 mutations in pediatric acute myeloid leukemia (AML): a report from the Kids’s Oncology Group. Blood 116, 702–710 (2010).
Prior, I. A., Lewis, P. D. & Mattos, C. A complete survey of Ras mutations in most cancers. Most cancers Res. 72, 2457–2467 (2012).
Takahashi, S. Downstream molecular pathways of FLT3 within the pathogenesis of acute myeloid leukemia: biology and therapeutic implications. J. Hematol. Oncol. 4, 13 (2011).
Spencer, D. H. et al. Epigenomic evaluation of the HOX gene loci reveals mechanisms which will management canonical expression patterns in AML and regular hematopoietic cells. Leukemia 29, 1279–1289 (2015).
Mahmoud, A. M. Most cancers testis antigens as immunogenic and oncogenic targets in breast most cancers. Immunotherapy 10, 769–778 (2018).
Perlman, E. J. et al. MLLT1 YEATS area mutations in clinically distinctive Beneficial Histology Wilms tumours. Nat. Commun. 6, 10013 (2015).
Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).
Gutierrez, A. & Kentsis, A. Acute myeloid/T-lymphoblastic leukaemia (AMTL): a definite class of acute leukaemias with frequent pathogenesis in want of improved remedy. Br. J. Haematol. 180, 919–924 (2018).
Brown, A. L. et al. RUNX1-mutated households present phenotype heterogeneity and a somatic mutation profile distinctive to germline predisposed AML. Blood Adv. 4, 1131–1144 (2020).
Feurstein, S. & Godley, L. A. Germline ETV6 mutations and predisposition to hematological malignancies. Int. J. Hematol. 106, 189–195 (2017).
Tarlock, Ok. et al. Vital enhancements in survival for sufferers with t(6;9)(p23;q34)/DEK-NUP214 in modern trials with intensification of remedy: a report from the Kids’s Oncology Group. Blood 138, 519 (2021).
Groschel, S. et al. Deregulated expression of EVI1 defines a poor prognostic subset of MLL-rearranged acute myeloid leukemias: a research of the German–Austrian Acute Myeloid Leukemia Research Group and the Dutch–Belgian–Swiss HOVON/SAKK Cooperative Group. J. Clin. Oncol. 31, 95–103 (2013).
Invoice, M. et al. Mutational panorama and medical final result of sufferers with de novo acute myeloid leukemia and rearrangements involving 11q23/KMT2A. Proc. Natl Acad. Sci. USA 117, 26340–26346 (2020).
Breiman, L., Friedman, J. H. & Olshen, R. A. Classification and Regression Bushes (Chapman and Corridor, 1984).
Krivtsov, A. V. et al. A menin–MLL inhibitor induces particular chromatin modifications and eradicates illness in fashions of MLL-rearranged leukemia. Most cancers Cell 36, 660–673 e11 (2019).
Uckelmann, H. J. et al. Therapeutic focusing on of preleukemia cells in a mouse mannequin of NPM1 mutant acute myeloid leukemia. Science 367, 586–590 (2020).
Heikamp, E. B. et al. The menin–MLL1 interplay is a molecular dependency in NUP98-rearranged AML. Blood 139, 894–906 (2022).
Issa, G. C. et al. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. Nature 615, 920–924 (2023).
Swaminathan, M., Bourgeois, W., Armstrong, S. A. & Wang, E. S. Menin inhibitors in acute myeloid leukemia – what does the longer term maintain? Most cancers J. 28, 62–66 (2022).
Barajas, J. M. et al. Acute myeloid leukemias with UBTF tandem duplications are delicate to Menin inhibitors. Blood https://doi.org/10.1182/blood.2023021359 (2023).
Zhang, J. et al. The genetic foundation of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).
Alexander, T. B. et al. The genetic foundation and cell of origin of combined phenotype acute leukaemia. Nature 562, 373–379 (2018).
Wu, G. et al. The genomic panorama of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat. Genet. 46, 444–450 (2014).
Tian, L. et al. CICERO: a flexible technique for detecting complicated and various driver fusions utilizing most cancers RNA sequencing knowledge. Genome Biol. 21, 126 (2020).
Jakubek, Y. A. et al. Giant-scale evaluation of acquired chromosomal alterations in non-tumor samples from sufferers with most cancers. Nat. Biotechnol. 38, 90–96 (2020).
Edmonson, M. N. et al. Bambino: a variant detector and alignment viewer for next-generation sequencing knowledge within the SAM/BAM format. Bioinformatics 27, 865–866 (2011).
Hagiwara, Ok. et al. RNAIndel: discovering somatic coding indels from tumor RNA-seq knowledge. Bioinformatics 36, 1382–1390 (2020).
Hagiwara, Ok., Edmonson, M. N., Wheeler, D. A. & Zhang, J. indelPost: harmonizing ambiguities in easy and sophisticated indel alignments. Bioinformatics 38, 549–551 (2022).
McLaren, W. et al. The Ensembl Variant Impact Predictor. Genome Biol. 17, 122 (2016).
Karczewski, Ok. J. et al. The mutational constraint spectrum quantified from variation in 141,456 people. Nature 581, 434–443 (2020).
Edmonson, M. N. et al. Pediatric Most cancers Variant Pathogenicity Info Trade (PeCanPIE): a cloud-based platform for curating and classifying germline variants. Genome Res. 29, 1555–1565 (2019).
Li, H. & Durbin, R. Quick and correct brief learn alignment with Burrows–Wheeler remodel. Bioinformatics 25, 1754–1760 (2009).
Li, H. & Durbin, R. Quick and correct long-read alignment with Burrows–Wheeler remodel. Bioinformatics 26, 589–595 (2010).
Wang, J. et al. CREST maps somatic structural variation in most cancers genomes with base-pair decision. Nat. Strategies 8, 652–654 (2011).
Chen, X. et al. CONSERTING: integrating copy-number evaluation with structural-variation detection. Nat. Strategies 12, 527–530 (2015).
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Koboldt, D. C. et al. VarScan 2: somatic mutation and replica quantity alteration discovery in most cancers by exome sequencing. Genome Res. 22, 568–576 (2012).
Olshen, A. B., Venkatraman, E. S., Lucito, R. & Wigler, M. Round binary segmentation for the evaluation of array-based DNA copy quantity knowledge. Biostatistics 5, 557–572 (2004).
Storey, J. D. A direct method to false discovery charges. J. R. Stat. Soc. Sequence B Stat. Methodol. 64, 479–498 (2002).
Kilos, S. & Cheng, C. Strong estimation of the false discovery charge. Bioinformatics 22, 1979–1987 (2006).
Beroukhim, R. et al. Assessing the importance of chromosomal aberrations in most cancers: methodology and utility to glioma. Proc. Natl Acad. Sci. USA 104, 20007–20012 (2007).
Mermel, C. H. et al. GISTIC2.0 facilitates delicate and assured localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).
Richards, S. et al. Requirements and pointers for the interpretation of sequence variants: a joint consensus advice of the American School of Medical Genetics and Genomics and the Affiliation for Molecular Pathology. Genet. Med. 17, 405–424 (2015).
Abou Tayoun, A. N. et al. Suggestions for decoding the lack of operate PVS1 ACMG/AMP variant criterion. Hum. Mutat. 39, 1517–1524 (2018).
Lee, Ok. et al. Specs of the ACMG/AMP variant curation pointers for the evaluation of germline CDH1 sequence variants. Hum. Mutat. 39, 1553–1568 (2018).
Luo, X. et al. ClinGen Myeloid Malignancy Variant Curation Knowledgeable Panel suggestions for germline RUNX1 variants. Blood Adv. 3, 2962–2979 (2019).
Gelb, B. D. et al. ClinGen’s RASopathy professional panel consensus strategies for variant interpretation. Genet. Med. 20, 1334–1345 (2018).
Bansal, V. & Libiger, O. Quick particular person ancestry inference from DNA sequence knowledge leveraging allele frequencies for a number of populations. BMC Bioinformatics 16, 4 (2015).
1000 Genomes Venture Consortium et al. A worldwide reference for human genetic variation. Nature 526, 68–74 (2015).
Lee, S. H. R. et al. Affiliation of genetic ancestry with the molecular subtypes and prognosis of childhood acute lymphoblastic leukemia. JAMA Oncol. 8, 354–363 (2022).
Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing knowledge. Bioinformatics 31, 166–169 (2015).
Regulation, C. W., Chen, Y., Shi, W. & Smyth, G. Ok. voom: Precision weights unlock linear mannequin evaluation instruments for RNA-seq learn counts. Genome Biol. 15, R29 (2014).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray research. Nucleic Acids Res. 43, e47 (2015).
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva bundle for eradicating batch results and different undesirable variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression knowledge. Nat. Biotechnol. 33, 495–502 (2015).
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic knowledge throughout completely different circumstances, applied sciences, and species. Nat. Biotechnol. 36, 411–420 (2018).
Stuart, T. et al. Complete integration of single-cell knowledge. Cell 177, 1888–1902 e21 (2019).
Hao, Y. et al. Built-in evaluation of multimodal single-cell knowledge. Cell 184, 3573–3587 e29 (2021).
McInnes L, H. J. & Melville J. UMAP: uniform manifold approximation and projection for dimension discount. Preprint at arXiv https://doi.org/10.48550/arXiv.1802.03426 (2018).
Becht, E. et al. Dimensionality discount for visualizing single-cell knowledge utilizing UMAP. Nat. Biotechnol. 37, 38–44 (2019).
Haghverdi, L., Buttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Strategies 13, 845–848 (2016).
Angerer, P. et al. future: diffusion maps for large-scale single-cell knowledge in R. Bioinformatics 32, 1241–1243 (2016).
Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based method for decoding genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative evaluation of huge gene lists utilizing DAVID bioinformatics assets. Nat. Protoc. 4, 44–57 (2009).
Steen, C. B., Liu, C. L., Alizadeh, A. A. & Newman, A. M. Profiling Cell Sort Abundance and Expression in Bulk Tissues with CIBERSORTx. Strategies Mol. Biol. 2117, 135–157 (2020).
Elsayed, A. H. et al. A 5-Gene Ara-C, Daunorubicin and Etoposide (ADE) drug response rating as a prognostic instrument to foretell AML therapy final result. Blood 134, 1429 (2019).
Harrell, F. E. Jr, Califf, R. M., Pryor, D. B., Lee, Ok. L. & Rosati, R. A. Evaluating the yield of medical checks. JAMA 247, 2543–2546 (1982).
Tartaglia, M., Gelb, B. D. & Zenker, M. Noonan syndrome and clinically associated issues. Finest Pract. Res. Clin. Endocrinol. Metab. 25, 161–179 (2011).