Mind tumors – classifications, signs, prognosis and coverings. https://www.aans.org/en/Sufferers/Neurosurgical-Circumstances-and-Remedies/Mind-Tumors.
Fan, Y. et al. Burden and tendencies of mind and central nervous system most cancers from 1990 to 2019 on the world, regional, and nation ranges. Arch. Public Well being 80, 209 (2022).
Ostrom, Q. T. et al. CBTRUs statistical report: major mind and different central nervous system tumors recognized in the USA in 2015-2019. Neuro. Oncol. 24, V1–V95 (2022).
About Glioblastoma. https://braintumor.org/occasions/glioblastoma-awareness-day/about-glioblastoma/. Nationwide Mind Tumor Society.
Fekete, B. et al. What predicts survival in glioblastoma? A population-based research of adjustments in medical administration and end result. Entrance. Surg. 10, 1249366 (2023).
Al Sharie, S., Abu Laban, D. & Al-Hussaini, M. Decoding diffuse midline gliomas: a complete overview of pathogenesis, prognosis and remedy. Cancers (Basel). 15, 4869 (2023).
Acuña-Villaorduña, A., Baranda, J. C., Boehmer, J., Fashoyin-Aje, L. & Gore, S. D. Equitable entry to medical trials: how will we obtain it? Am. Soc. Clin. Oncol. Educ. B. https://doi.org/10.1200/edbk_389838 (2023).
Lamba, N. et al. Socioeconomic disparities related to MGMT promoter methylation testing for sufferers with glioblastoma. JAMA Oncol. 6, 1972–1974 (2020).
Porter, A. B., Wen, P. Y. & Polley, M.-Y. C. Molecular profiling in neuro-oncology: the place we’re, the place we’re heading, and the way we guarantee everybody can come alongside. Am. Soc. Clin. Oncol. Educ. B. https://doi.org/10.1200/edbk_389322 (2023).
Xiao, F. et al. Cerebrospinal fluid biomarkers for mind tumor detection: medical roles and present progress. Am. J. Transl. Res. 12, 1379–1396 (2020).
Villanueva-Meyer, J. E., Mabray, M. C. & Cha, S. Present medical mind tumor imaging. Neurosurgery 81, 397–415 (2017).
Weinberg, B. et al. Nimg-23. Mind tumor reporting and knowledge system (bt-rads) and quantitative instruments to information its implementation. Neuro. Oncol. 21, vi166 (2019).
Atanasov, A. G. et al. First, do no hurt (gone flawed): total-scale evaluation of medical errors scientific literature. Entrance. Public Heal. 8, 558913 (2020).
Aldape, Okay. et al. Challenges to curing major mind tumours. Nat. Rev. Clin. Oncol. 16, 509 (2019).
Bi, W. L. et al. Synthetic intelligence in most cancers imaging: medical challenges and purposes. CA. Most cancers J. Clin. 69, 127–157 (2019).
Dong, X. et al. 911 Anti-VEGF remedy improves EGFR-vIII-CAR-T cell supply and efficacy in syngeneic glioblastoma fashions in mice. J. Immunother. Most cancers 11, e005583 (2022).
Becker, A. P., Sells, B. E., Jaharul Haque, S. & Chakravarti, A. Tumor heterogeneity in glioblastomas: from gentle microscopy to molecular pathology. Cancers (Basel). 13, 1–25 (2021).
Stone, J. B. & DeAngelis, L. M. Most cancers-treatment-induced neurotoxicity-focus on newer remedies. Nat. Rev. Clin. Oncol. 13, 92–105 (2016).
Monsour, R., Dutta, M., Mohamed, A. Z., Borkowski, A. & Viswanadhan, N.A. Neuroimaging within the period of synthetic intelligence: present purposes. Fed. Pract. 39, S14–S20 (2022).
Philip, A. Okay., Samuel, B. A., Bhatia, S., Khalifa, S. A. M. & El-Seedi, H. R. Synthetic intelligence and precision medication: a brand new frontier for the remedy of mind tumors. Life. 13, 24 (2023).
Dundar, T. T. et al. Machine learning-based surgical planning for neurosurgery: synthetic clever approaches to the skull. Entrance. Surg. 9, 863633 (2022).
Mock, M., Edavettal, S., Langmead, C. & Russell, A. AI might help to hurry up drug discovery — however provided that we give it the appropriate knowledge. Nature 621, 467–470 (2023).
Qureshi, R. et al. AI in drug discovery and its medical relevance. Heliyon 9, e17575 (2023).
Pati, S. et al. Federated studying permits large knowledge for uncommon most cancers boundary detection. Nat. Commun. 13, 7346 (2022).
Schork, N. J. Synthetic intelligence and personalised medication. Most cancers Deal with. Res. 178, 265 (2019).
Uddin, M., Wang, Y. & Woodbury-Smith, M. Synthetic intelligence for precision medication in neurodevelopmental issues. npj Digit. Med. 2, 1–10 (2019).
Hashimoto, D. A., Rosman, G., Rus, D. & Meireles, O. R. Synthetic intelligence in surgical procedure: guarantees and perils. Ann. Surg. 268, 70–76 (2018).
Chen, R. J. et al. Algorithmic equity in synthetic intelligence for medication and healthcare. Nat. Biomed. Eng. 7, 719–742 (2023).
Thomasian, N. M., Eickhoff, C. & Adashi, E. Y. Advancing well being fairness with synthetic intelligence. J. Public Well being Coverage 42, 602–611 (2021).
Zheng, Y., Carrillo-Perez, F., Pizurica, M., Heiland, D. H. & Gevaert, O. Spatial mobile structure predicts prognosis in glioblastoma. Nat. Commun. 14, 4122 (2023).
Wu, J. et al. Radiological tumour classification throughout imaging modality and histology. Nat. Mach. Intell. 3, 787–798 (2021).
García-Figueiras, R. et al. Proton magnetic resonance spectroscopy in oncology: the fingerprints of most cancers? Diagn. Interv. Radiol. 22, 75–89 (2016).
Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a sample of illness development, and resemble levels in neurogenesis. Most cancers Cell 9, 157–173 (2006).
Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: a abstract. Neuro. Oncol. 23, 1231–1251 (2021).
Alix-Panabières, C. & Pantel, Okay. Liquid biopsy: from discovery to medical utility. Most cancers Discov. 11, 858–873 (2021).
Yang, H. et al. Cerebrospinal fluid-derived circulating tumor DNA is extra complete than plasma in NSCLC sufferers with leptomeningeal metastases no matter extracranial evolution. Heliyon 8, e12374 (2022).
Lehner, Okay. R., Jiang, Okay., Rincon-Torroella, J., Perera, R. & Bettegowda, C. Cerebrospinal fluid biomarkers in pediatric mind tumors: a scientific overview. Neoplasia 35, 100852 (2023).
Liu, H. et al. M3AE: multimodal illustration studying for mind tumor segmentation with lacking modalities. Proc. AAAI Conf. Artif. Intell. 37, 1657–1665 (2023).
Clark, Okay. et al. The most cancers imaging archive (TCIA): sustaining and working a public info repository. J. Digit. Imaging 26, 1045–1057 (2013).
Menze, B. H. et al. The multimodal mind tumor picture segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015).
Therapeutically relevant analysis to generate efficient remedies (TARGET) – NCI. https://www.most cancers.gov/ccg/analysis/genome-sequencing/goal.
Welcome to the most cancers imaging archive – the most cancers imaging archive (TCIA). https://www.cancerimagingarchive.internet/.
Xia, M., Wang, J. & He, Y. BrainNet viewer: a community visualization instrument for human mind connectomics. PLoS One 8, e68910 (2013).
Solar, L., Zhang, S., Chen, H. & Luo, L. Mind tumor segmentation and survival prediction utilizing multimodal MRI scans with deep studying. Entrance. Neurosci. 13, 810 (2019).
Feng, X., Tustison, N. J., Patel, S. H. & Meyer, C. H. Mind tumor segmentation utilizing an ensemble of 3D U-nets and total survival prediction utilizing radiomic options. Entrance. Comput. Neurosci. 14, 25 (2020).
ZainEldin, H. et al. Mind tumor detection and classification utilizing deep studying and sine-cosine health gray wolf optimization. Bioengineering 10, 1–19 (2023).
Latif, G., Iskandar, D. N. F. A., Alghazo, J. & Butt, M. M. Mind MR picture classification for glioma tumor detection utilizing deep convolutional neural community options. Curr. Med. imaging 17, 56–63 (2021).
Saeedi, S., Rezayi, S., Keshavarz, H. & R. Niakan Kalhori, S. MRI-based mind tumor detection utilizing convolutional deep studying strategies and chosen machine studying strategies. BMC Med. Inform. Decis. Mak. 23, 16 (2023).
Bhandari, A., Koppen, J. & Agzarian, M. Convolutional neural networks for mind tumour segmentation. Insights Imaging 11, 77 (2020).
Chen, S., Ding, C. & Liu, M. Twin-force convolutional neural networks for correct mind tumor segmentation. Sample Recognit. 88, 90–100 (2019).
Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J. & Maier-Hein, Okay. H. nnU-Internet: a self-configuring methodology for deep learning-based biomedical picture segmentation. Nat. Strategies 18, 203–211 (2021).
Steyaert, S. et al. Multimodal deep studying to foretell prognosis in grownup and pediatric mind tumors. Commun. Med. 3, 44 (2023).
Kamnitsas, Okay. et al. Environment friendly multi-scale 3D CNN with totally linked CRF for correct mind lesion segmentation. Med. Picture Anal. 36, 61–78 (2017).
Milletari, F., Navab, N. & Ahmadi, S. A. V-Internet: totally convolutional neural networks for volumetric medical picture segmentation. In: 2016 Fourth Worldwide Convention on 3D Imaginative and prescient (3DV), Stanford, CA, USA, 565–571 (2016).
https://www.most cancers.org/most cancers/varieties/brain-spinal-cord-tumors-adults/detection-diagnosis-staging/how-diagnosed.html Checks for Mind and Spinal Wire Tumors in Adults.
Nasrallah, M. P. et al. Molecular neuropathology in apply: medical profiling and integrative evaluation of molecular alterations in glioblastoma. Acad. Pathol. 6, 2374289519848353 (2019).
Afridi, M., Jain, A., Aboian, M. & Payabvash, S. Mind tumor imaging: purposes of synthetic intelligence. Semin. Ultrasound Ct. MR 43, 153–169 (2022).
Ellingson, B. M., Wen, P. Y., Van Den Bent, M. J. & Cloughesy, T. F. Execs and cons of present mind tumor imaging. Neuro. Oncol. 16, vii2 (2014).
Ghandour, F. et al. Presenting psychiatric and neurological signs and indicators of mind tumors earlier than prognosis: a scientific overview. Mind Sci. 11, 1–20 (2021).
Grant, R. et al. Interventions to cut back the time to prognosis of mind tumours. Cochrane Database Syst. Rev. 9, CD013564 (2020).
Iijima, Okay. et al. Microrecording and image-guided stereotactic biopsy of deep-seated mind tumors. J. Neurosurg. 123, 978–988 (2015).
Luo, Q., Li, Y., Luo, L. & Diao, W. Comparisons of the accuracy of radiation diagnostic modalities in mind tumor: a nonrandomized, nonexperimental, cross-sectional trial. Med. 97, e11256 (2018).
Histed, S. N. et al. Overview of useful/ anatomic imaging in oncology. Nucl. Med. Commun. 33, 349 (2012).
Riche, M. et al. Problems after frame-based stereotactic mind biopsy: a scientific overview. Neurosurg. Rev. 44, 301–307 (2021).
Keane, L., Cheray, M., Blomgren, Okay. & Joseph, B. Multifaceted microglia – key gamers in major mind tumour heterogeneity. Nat. Rev. Neurol. 17, 243–259 (2021).
Martucci, M. et al. Magnetic resonance imaging of major grownup mind tumors: state-of-the-art and future views. Biomedicines 11, 364 (2023).
Zhang, B., Shi, H. & Wang, H. Machine studying and AI in most cancers prognosis, prediction, and remedy choice: a crucial strategy. J. Multidiscip. Healthc. 16, 1779–1791 (2023).
Bauer, A. H., Erly, W., Moser, F. G., Maya, M. & Nael, Okay. Differentiation of solitary mind metastasis from glioblastoma multiforme: a predictive multiparametric strategy utilizing mixed MR diffusion and perfusion. Neuroradiology 57, 697–703 (2015).
Voicu, I. P. et al. Differentiating solitary mind metastases from high-grade gliomas with MR: evaluating qualitative versus quantitative diagnostic methods. Radiol. Med. 127, 891–898 (2022).
Kunimatsu, A. et al. Texture evaluation in mind tumor MR imaging. Magn. Reson. Med. Sci. 21, 95–109 (2022).
Soni, X. N., Priya, S. & Bathla, X. G. Texture evaluation in cerebral gliomas: a overview of the literature. AJNR Am. J. Neuroradiol. 40, 928 (2019).
Bharath, Okay., Kurtek, S., Rao, A. & Baladandayuthapani, V. Radiologic image-based statistical form evaluation of mind tumours. J. R. Stat. Soc. Ser. C. Appl. Stat. 67, 1357–1378 (2018).
Rajan, P. G. & Sundar, C. Mind tumor detection and segmentation by depth adjustment. J. Med. Syst. 43, 282 (2019).
Kader et al. Mind tumor detection and classification on MR pictures by a deep wavelet auto-encoder mannequin. Diagnostics 11, 1589 (2021).
Nie, D. et al. Multi-channel 3D deep characteristic studying for survival time prediction of mind tumor sufferers utilizing multi-modal neuroimages. Sci. Rep. 9, 1–14 (2019).
Srinivas, C. et al. Deep switch studying approaches in efficiency evaluation of mind tumor classification utilizing MRI pictures. J. Healthc. Eng. 2022, 3264367 (2022).
Ali, H. et al. The function of generative adversarial networks in mind MRI: a scoping overview. Insights Imaging 13, 98 (2022).
Guo, W. et al. Multiparametric MRI-based radiomics mannequin for predicting H3 K27M mutant standing in diffuse midline glioma: a comparative research throughout totally different sequences and machine studying strategies. Entrance. Oncol. 12, 796583 (2022).
Kihira, S. et al. Multiparametric MRI texture evaluation in prediction of glioma biomarker standing: added worth of MR diffusion. Neuro-Oncol. Adv. 3, vdab051 (2021).
Schepke, E. et al. DNA methylation profiling improves routine prognosis of paediatric central nervous system tumours: a potential population-based research. Neuropathol. Appl. Neurobiol. 48, e12838 (2022).
Hollon, T. et al. Synthetic-intelligence-based molecular classification of diffuse gliomas utilizing speedy, label-free optical imaging. Nat. Med. 29, 828–832 (2023).
Kim, M. et al. Diffusion- and perfusion-weighted MRI radiomics mannequin could predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse decrease grade glioma. Eur. Radiol. 30, 2142–2151 (2020).
Solar, Z. et al. Prediction of IDH mutation standing of glioma primarily based on terahertz spectral knowledge. Spectrochim. Acta A Mol. Biomol. Spectrosc. 295, 122629 (2023).
Hajri, R., Nicod-Lalonde, M., Hottinger, A. F., Prior, J. O. & Dunet, V. Prediction of glioma grade and IDH standing utilizing 18F-FET PET/CT dynamic and multiparametric texture evaluation. Diagnostics 13, 2604 (2023).
Yan, J. et al. Predicting 1p/19q co-deletion standing from magnetic resonance imaging utilizing deep studying in adult-type diffuse lower-grade gliomas: a discovery and validation research. Lab. Investig. 102, 154–159 (2022).
Murdaugh, R. L. & Anastas, J. N. Making use of single cell multi-omic analyses to know remedy resistance in pediatric excessive grade glioma. Entrance. Pharmacol. 14, 1002296 (2023).
Kool, M. et al. Built-in genomics identifies 5 medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological options. PLoS One 3, e3088 (2008).
Bender, Okay. et al. Excessive-grade astrocytoma with piloid options (HGAP): the Charité expertise with a brand new central nervous system tumor entity. J. Neurooncol. 153, 109–120 (2021).
Vermeulen, C. et al. Extremely-fast deep-learned CNS tumour classification throughout surgical procedure. Neuro. Oncol. 622, 842–849 (2023).
Rees, J. H. Analysis and remedy in neuro-oncology: an oncological perspective. Br. J. Radiol. 84, S82–S89 (2011).
Mariotto, A. B. et al. Most cancers survival: an summary of measures, makes use of, and interpretation. J. Natl Most cancers Inst. Monogr. 2014, 145–186 (2014).
Kickingereder, P. et al. Radiomic profiling of glioblastoma: figuring out an imaging predictor of affected person survival with improved efficiency over established medical and radiologic danger fashions. Radiology 280, 880–889 (2016).
Prasanna, P., Patel, J., Partovi, S., Madabhushi, A. & Tiwari, P. Radiomic options from the peritumoral mind parenchyma on treatment-naïve multi-parametric MR imaging predict lengthy versus short-term survival in glioblastoma multiforme: preliminary findings. Eur. Radiol. 27, 4198–4199 (2017).
Kickingereder, P. et al. Radiomic subtyping improves illness stratification past key molecular, medical, and commonplace imaging traits in sufferers with glioblastoma. Neuro. Oncol. 20, 848–857 (2018).
Kim, J. Y. et al. Radiomics in peritumoral non-enhancing areas: fractional anisotropy and cerebral blood quantity enhance prediction of native development and total survival in sufferers with glioblastoma. Neuroradiology 61, 1261–1272 (2019).
Li, G. et al. An MRI radiomics strategy to foretell survival and tumour-infiltrating macrophages in gliomas. Mind 145, 1151–1161 (2022).
Iyer, S. et al. Novel MRI deformation-heterogeneity radiomic options are related to molecular subgroups and total survival in pediatric medulloblastoma: preliminary findings from a multi-institutional research. Entrance. Oncol. 12, 915143 (2022).
Lengthy, H. et al. MRI radiomic options of peritumoral edema could predict the recurrence websites of glioblastoma multiforme. Entrance. Oncol. 12, 1042498 (2023).
Zhou, T. et al. Prediction of mind tumor recurrence location primarily based on multi-modal fusion and nonlinear correlation studying. Comput. Med. Imaging Graph. 106, 102218 (2023).
Śledzińska, P., Bebyn, M. G., Furtak, J., Kowalewski, J. & Lewandowska, M. A. Prognostic and predictive biomarkers in gliomas. Int. J. Mol. Sci. 22, 10373 (2021).
Wang, C., Zhu, X., Hong, J. C. & Zheng, D. Synthetic intelligence in radiotherapy remedy planning: current and future. Technol. Most cancers Res. Deal with. 18, https://doi.org/10.1177/1533033819873922 (2019).
Creasy, J. M. et al. Quantitative imaging options of pretreatment CT predict volumetric response to chemotherapy in sufferers with colorectal liver metastases. Eur. Radiol. 29, 458–467 (2019).
Kawahara, D., Tang, X., Lee, C. Okay., Nagata, Y. & Watanabe, Y. Predicting the native response of metastatic mind tumor to gamma knife radiosurgery by radiomics with a machine studying methodology. Entrance. Oncol. 10, 569461 (2021).
Wang, Y. et al. The radiomic-clinical mannequin utilizing the SHAP methodology for assessing the remedy response of whole-brain radiotherapy: a multicentric research. Eur. Radiol. 32, 8737–8747 (2022).
Yang, Y. et al. Spatial heterogeneity of edema area uncovers survival-relevant habitat of Glioblastoma. Eur. J. Radiol. 154, 110423 (2022).
Do, D. T., Yang, M. R., Lam, L. H. T., Le, N. Q. Okay. & Wu, Y. W. Bettering MGMT methylation standing prediction of glioblastoma by way of optimizing radiomics options utilizing genetic algorithm-based machine studying strategy. Sci. Rep. 12, 13412 (2022).
Boehm, Okay. M. & Khosravi, P. Harnessing multimodal knowledge integration to advance precision oncology. 22, 114–126 (2022).
Cè, M. et al. Synthetic intelligence in mind tumor imaging: a step towards personalised medication. Curr. Oncol. 30, 2673–2701 (2023).
Midya, A., Chakraborty, J., Gönen, M., Do, R. Okay. G. & Simpson, A. L. Affect of CT acquisition and reconstruction parameters on radiomic characteristic reproducibility. J. Med. Imaging 5, 011020 (2018).
Zwanenburg, A. Radiomics in nuclear medication: robustness, reproducibility, standardization, and how one can keep away from knowledge evaluation traps and replication disaster. Eur. J. Nucl. Med. Mol. Imaging 46, 2638–2655 (2019).
Lambin, P. et al. Radiomics: the bridge between medical imaging and personalised medication. Nat. Rev. Clin. Oncol. 14, 749–762 (2017).
Park, J. E. et al. A scientific overview reporting high quality of radiomics analysis in neuro-oncology: towards medical utility and high quality enchancment utilizing high-dimensional imaging options. BMC Most cancers 20, 29 (2020).
Ambe, S. et al. Racial disparities in malignant major mind tumor survival in Texas from 1995 to 2013. Cureus 12, e11710 (2020)
Butterfield, J. T. et al. Racial disparities in suggestions for surgical resection of major mind tumours: a registry-based cohort evaluation. Lancet 400, 2063–2073 (2022).
Carrano, A., Juarez, J. J., Incontri, D., Ibarra, A. & Cazares, H. G. Intercourse-specific variations in glioblastoma. Cells 10, 1783 (2021).
Shreve, J. T., Khanani, S. A. & Haddad, T. C. Synthetic intelligence in oncology: present capabilities, future alternatives, and moral issues. Am. Soc. Clin. Oncol. Educ. B. 42, 1–10 (2022)
Naik, N. et al. Authorized and moral consideration in synthetic intelligence in healthcare: who takes duty? Entrance. Surg. 9, 862322 (2022).
Amann, J., Blasimme, A., Vayena, E., Frey, D. & Madai, V. I. Explainability for synthetic intelligence in healthcare: a multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 20, 310 (2020).
Holzinger, A., Langs, G., Denk, H., Zatloukal, Okay. & Müller, H. Causability and explainability of synthetic intelligence in medication. Wiley Interdiscip. Rev. Knowledge Min. Knowl. Discov. 9, e1312 (2019).
DeYoe, E. A., Bandettini, P., Neitz, J., Miller, D. & Winans, P. Practical magnetic resonance imaging (FMRI) of the human mind. J. Neurosci. Strategies 54, 171–187 (1994).
Assaf, Y. & Pasternak, O. Diffusion tensor imaging (DTI)-based white matter mapping in mind analysis: a overview. J. Mol. Neurosci. 34, 51–61 (2008).
Singh, N. M. et al. Knowledge constant deep inflexible MRI movement correction. https://arxiv.org/abs/2301.10365 (2023).
Chen, Z. et al. Deep studying for picture enhancement and correction in magnetic resonance imaging—state-of-the-art and challenges. J. Digit. Imaging 36, 204 (2023).
Han, Okay. et al. A survey on imaginative and prescient transformer. IEEE Trans. Sample Anal. Mach. Intell. 45, 87–110 (2022).
Asiri, A. A. et al. Exploring the facility of deep studying: fine-tuned imaginative and prescient transformer for correct and environment friendly mind tumor detection in MRI scans. Diagnostics 13, 2094 (2023).
Huang, L. et al. A transformer-based generative adversarial community for mind tumor segmentation. Entrance. Neurosci. 16, 1054948 (2022).
Saueressig, C., Berkley, A., Kang, E., Munbodh, R. & Singh, R. Exploring graph-based neural networks for automated mind tumor segmentation. Lect. Notes Comput. Sci. 12611, 18–37 (2021).
Ravinder, M. et al. Enhanced mind tumor classification utilizing graph convolutional neural community structure. Sci. Rep. 13, 1–22 (2023).
Zeineldin, R. A. et al. Explainability of deep neural networks for MRI evaluation of mind tumors. Int. J. Comput. Help. Radiol. Surg. 17, 1673–1683 (2022).
Esmaeili, M., Vettukattil, R., Banitalebi, H., Krogh, N. R. & Geitung, J. T. Explainable synthetic intelligence for human-machine interplay in mind tumor localization. J. Pers. Med. 11, 1213 (2021).
Ogier du Terrail, J. et al. Federated studying for predicting histological response to neoadjuvant chemotherapy in triple-negative breast most cancers. Nat. Med. 29, 135–146 (2023).
Nasrallah, M. P. et al. Machine studying for cryosection pathology predicts the 2021 WHO classification of glioma. Med 4, 526-540.e4 (2023).
Romano, M. F., Shih, L. C., Paschalidis, I. C., Au, R. & Kolachalama, V. B. Massive language fashions in neurology analysis and future apply. Neurology 101, 1058–1067 (2023).

