Preoperative prediction of MGMT promoter methylation in glioblastoma primarily based on multiregional and multi-sequence MRI radiomics evaluation


  • Miller, Ok. D. et al. Mind and different central nervous system tumor statistics, 2021. CA Most cancers J. Clin. 71, 381–406 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ostrom, Q. T. et al. CBTRUS statistical report: Major mind and different central nervous system tumors identified in the usa in 2015–2019. Neuro Oncol. 24, v1–v95 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reardon, D. A. & Wen, P. Y. Glioma in 2014: Unravelling tumour heterogeneity-implications for remedy. Nat. Rev. Clin. Oncol. 12, 69–70 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mansouri, A. et al. MGMT promoter methylation standing testing to information remedy for glioblastoma: Refining the method primarily based on rising proof and present challenges. Neuro Oncol. 21, 167–178 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hegi, M. E. et al. MGMT gene silencing and profit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riemenschneider, M. J., Hegi, M. E. & Reifenberger, G. MGMT promoter methylation in malignant gliomas. Goal Oncol. 5, 161–165 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Wick, W. et al. MGMT testing–the challenges for biomarker-based glioma remedy. Nat. Rev. Neurol. 10, 372–385 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iliadis, G. et al. Volumetric and MGMT parameters in glioblastoma sufferers: Survival evaluation. BMC Most cancers 12, 3 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellingson, B. M. et al. Probabilistic radiographic atlas of glioblastoma phenotypes. AJNR Am. J. Neuroradiol. 34, 533–540 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smits, M. & van den Bent, M. J. Imaging correlates of grownup glioma genotypes. Radiology 284, 316–331 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Han, Y. et al. Structural and superior imaging in predicting MGMT promoter methylation of major glioblastoma: A area of curiosity primarily based evaluation. BMC Most cancers 18, 215 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drabycz, S. et al. An evaluation of picture texture, tumor location, and MGMT promoter methylation in glioblastoma utilizing magnetic resonance imaging. Neuroimage 49, 1398–1405 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, E. Ok. et al. Comparability of genetic profiles and prognosis of high-grade gliomas utilizing quantitative and qualitative MRI options: A give attention to G3 gliomas. Korean J. Radiol. 22, 233–242 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hong, E. Ok. et al. Radiogenomics correlation between MR imaging options and main genetic profiles in glioblastoma. Eur. Radiol. 28, 4350–4361 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Gillies, R. J., Kinahan, P. E. & Hricak, H. Radiomics: Photos are greater than footage, they’re knowledge. Radiology 278, 563–577 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lambin, P. et al. Radiomics: The bridge between medical imaging and personalised medication. Nat. Rev. Clin. Oncol. 14, 749–762 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Zhong, S. et al. Predicting glioblastoma molecular subtypes and prognosis with a multimodal mannequin integrating convolutional neural community, radiomics, and semantics. J. Neurosurg. https://doi.org/10.3171/2022.10.JNS22801 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • van der Voort, S. R. et al. Mixed molecular subtyping, grading, and segmentation of glioma utilizing multi-task deep studying. Neuro Oncol. 25, 279–289 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Li, G. et al. An MRI radiomics method to foretell survival and tumour-infiltrating macrophages in gliomas. Mind 145, 1151–1161 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. Mixture of pre-treatment dynamic [(18)F]FET PET radiomics and traditional medical parameters for the survival stratification in sufferers with IDH-wildtype glioblastoma. Eur. J. Nucl. Med. Mol. Imaging 50, 535–545 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kickingereder, P. et al. Giant-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic remedy response. Clin. Most cancers Res. 22, 5765–5771 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, Q. et al. Radiomics technique for glioma grading utilizing texture options from multiparametric MRI. J. Magn. Reson. Imaging 48, 1518–1528 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Artzi, M., Bressler, I. & Ben Bashat, D. Differentiation between glioblastoma, mind metastasis and subtypes utilizing radiomics evaluation. J. Magn. Reson. Imaging 50, 519–528 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Qian, Z. et al. Machine learning-based evaluation of magnetic resonance radiomics for the classification of gliosarcoma and glioblastoma. Entrance. Oncol. 11, 699789 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pati, S. et al. Federated studying allows huge knowledge for uncommon most cancers boundary detection. Nat. Commun. 13, 7346 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sloan, A. E. et al. Radiomics-based identification of peritumoral infiltration in de novo glioblastoma imaging presents targets amenable for potential focused prolonged resection: A neurosurgical survey. J. Clin. Oncol. 37, e13573–e13573 (2019).

    Article 

    Google Scholar
     

  • Zhang, J. et al. Diffusion-weighted imaging and arterial spin labeling radiomics options could enhance differentiation between radiation-induced mind damage and glioma recurrence. Eur. Radiol. 33, 3332–3342 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Elshafeey, N. et al. Multicenter research demonstrates radiomic options derived from magnetic resonance perfusion photographs determine pseudoprogression in glioblastoma. Nat. Commun. 10, 3170 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicholson, J. G. & Wonderful, H. A. Diffuse glioma heterogeneity and its therapeutic implications. Most cancers Discov. 11, 575–590 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. C. et al. Multiregional radiomics profiling from multiparametric MRI: Figuring out an imaging predictor of IDH1 mutation standing in glioblastoma. Most cancers Med. 7, 5999–6009 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eoli, M. et al. Methylation of O6-methylguanine DNA methyltransferase and lack of heterozygosity on 19q and/or 17p are overlapping options of secondary glioblastomas with extended survival. Clin. Most cancers Res. 13, 2606–2613 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanas, V. G. et al. Studying MRI-based classification fashions for MGMT methylation standing prediction in glioblastoma. Comput. Strategies Applications Biomed. 140, 249–257 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, L. S., Hawkins-Daarud, A., Wang, L., Li, J. & Swanson, Ok. R. Imaging of intratumoral heterogeneity in high-grade glioma. Most cancers Lett. 477, 97–106 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kandalgaonkar, P. et al. Predicting IDH subtype of grade 4 astrocytoma and glioblastoma from tumor radiomic patterns extracted from multiparametric magnetic resonance photographs utilizing a machine studying method. Entrance. Oncol. 12, 879376 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. C. et al. Multiregional radiomics options from multiparametric MRI for prediction of MGMT methylation standing in glioblastoma multiforme: A multicentre research. Eur. Radiol. 28, 3640–3650 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Wei, J. et al. A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication. Eur. Radiol. 29, 877–888 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yogananda, C. G. B. et al. MRI-based deep-learning methodology for figuring out glioma MGMT promoter methylation standing. AJNR Am. J. Neuroradiol. 42, 845–852 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baid, U. et al. The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Mind Tumor Segmentation and Radiogenomic Classification. https://arxiv.org/abs/2107.02314 (2021).

  • Kim, B. H. et al. Validation of MRI-based fashions to foretell MGMT promoter methylation in gliomas: BraTS 2021 radiogenomics problem. Cancers (Basel) 14, 4827 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capuozzo, S., Gravina, M., Gatta, G., Marrone, S. & Sansone, C. A multimodal knowledge-based deep studying method for MGMT promoter methylation identification. J. Imaging 8, 321 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faghani, S., Khosravi, B., Moassefi, M., Conte, G. M. & Erickson, B. J. A comparability of three totally different deep learning-based fashions to foretell the MGMT promoter methylation standing in glioblastoma utilizing mind MRI. J. Digit. Imaging 36, 837–846 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saxena, S. et al. Fused deep studying paradigm for the prediction of o6-methylguanine-DNA methyltransferase genotype in glioblastoma sufferers: A neuro-oncological investigation. Comput. Biol. Med. 153, 106492 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, J. et al. Multiparametric MR radiomics in mind glioma: Fashions comparation to foretell biomarker standing. BMC Med. Imaging 22, 137 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, W. Y. et al. Radiological mannequin primarily based on the usual magnetic resonance sequences for detecting methylguanine methyltransferase methylation in glioma utilizing texture evaluation. Most cancers Sci. 112, 2835–2844 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Automated prediction of MGMT standing in glioblastoma by way of deep learning-based MR picture evaluation. Biomed. Res. Int. 2020, 9258649 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, Y. et al. Entire-tumor radiomics evaluation of DKI and DTI could enhance the prediction of genotypes for astrocytomas: A preliminary research. Eur. J. Radiol. 124, 108785 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Moon, W. J., Choi, J. W., Roh, H. G., Lim, S. D. & Koh, Y. C. Imaging parameters of excessive grade gliomas in relation to the MGMT promoter methylation standing: The CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology 54, 555–563 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: A abstract. Neuro Oncol. 23, 1231–1251 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hot Topics

    Related Articles