Nadeu F, Diaz-Navarro A, Delgado J, Puente XS, Campo E. Genomic and epigenomic alterations in continual lymphocytic leukemia. Annu Rev Pathol: Mech Dis. 2020;15:149–77.
Delgado J, Nadeu F, Colomer D, Campo E. Power lymphocytic leukemia: from molecular pathogenesis to novel therapeutic methods. Haematologica 2020;105:2205–17.
Kulis M, Heath S, Bibikova M, Queirós AC, Navarro A, Clot G, et al. Epigenomic evaluation detects widespread gene-body DNA hypomethylation in continual lymphocytic leukemia. Nat Genet. 2012;44:1236–42.
Puente XS, Beà S, Valdés-Mas R, Villamor N, Gutiérrez-Abril J, Martín-Subero JI, et al. Non-coding recurrent mutations in continual lymphocytic leukaemia. Nature 2015;526:519–24.
Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al. Mutations driving CLL and their evolution in development and relapse. Nature 2015;526:525–30.
Knisbacher BA, Lin Z, Hahn CK, Nadeu F, Duran-Ferrer M, Stevenson KE, et al. Molecular map of continual lymphocytic leukemia and its influence on consequence. Nat Genet. 2022;54:1664–74.
Condoluci A, Rossi D. Biology and remedy of Richter transformation. Entrance Oncol. 2022;12:829983.
Rossi D, Spina V, Gaidano G. Biology and remedy of Richter syndrome. Blood 2018;131:2761–72.
Smyth E, Eyre TA, Cheah CY. Rising therapies for the administration of Richter transformation. J Clin Oncol. 2023;41:395–409.
Klintman J, Appleby N, Stamatopoulos B, Ridout Ok, Eyre TA, Robbe P, et al. Genomic and transcriptomic correlates of Richter transformation in continual lymphocytic leukemia. Blood 2021;137:2800–16.
Nadeu F, Royo R, Massoni-Badosa R, Playa-Albinyana H, Garcia-Torre B, Duran-Ferrer M, et al. Detection of early seeding of Richter transformation in continual lymphocytic leukemia. Nat Med. 2022;28:1662–71.
Parry EM, Leshchiner I, Guièze R, Johnson C, Tausch E, Parikh SA, et al. Evolutionary historical past of transformation from continual lymphocytic leukemia to Richter syndrome. Nat Med. 2023;29:158–69.
Playa-Albinyana H, Arenas F, Colomer D. Benefits and drawbacks of mouse fashions of continual lymphocytic leukemia in drug discovery. Professional Opin Drug Discov. 2021;16:1085–90.
Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human continual lymphocytic leukemia modeled in mouse by focused TCL1 expression. Proc Natl Acad Sci USA. 2002;99:6955–60.
Yan X, Albesiano E, Zanesi N, Yancopoulos S, Sawyer A, Romano E, et al. B cell receptors in TCL1 transgenic mice resemble these of aggressive, treatment-resistant human continual lymphocytic leukemia. Proc Natl Acad Sci. 2006;103:11713–8.
Zaborsky N, Gassner FJ, Höpner JP, Schubert M, Hebenstreit D, Stark R, et al. Exome sequencing of the TCL1 mouse mannequin for CLL reveals genetic heterogeneity and dynamics throughout illness improvement. Leukemia 2019;33:957–68.
Wang L, Brooks AN, Fan J, Wan Y, Gambe R, Li S, et al. Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic results in continual lymphocytic leukemia. Most cancers Cell. 2016;30:750–63.
Yoshida GJ. Purposes of patient-derived tumor xenograft fashions and tumor organoids. J Hematol Oncol. 2020;13:4.
Zanella ER, Grassi E, Trusolino L. In direction of precision oncology with patient-derived xenografts. Nat Rev Clin Oncol. 2022;19:719–32.
Vaisitti T, Braggio E, Allan JN, Arruga F, Serra S, Zamò A, et al. Novel Richter Syndrome Xenograft Fashions to review genetic structure, biology, and remedy responses. Most cancers Res. 2018;78:3413–20.
Fiskus W, Mill CP, Perera D, Birdwell C, Deng Q, Yang H, et al. BET proteolysis focused chimera-based remedy of novel fashions of Richter Transformation-diffuse giant B-cell lymphoma. Leukemia 2021;35:2621–34.
ten Hacken E, Yin S, Redd RA, Hernández Sánchez M, Clement Ok, Brunsting Hoffmann G, et al. Loss-of-function lesions influence B-cell improvement and health however are inadequate to drive CLL in mouse fashions. Blood Adv. 2023;7:4514-7.
Yadav B, Wennerberg Ok, Aittokallio T, Tang J. Looking for drug synergy in advanced dose–response landscapes utilizing an interplay efficiency mannequin. Comput Struct Biotechnol J 2015;13:504–13.
Ianevski A, Giri AK, Aittokallio T. SynergyFinder 2.0: visible analytics of multi-drug mixture synergies. Nucleic Acids Res. 2020;48:W488–93.
López-Oreja I, Gohr A, Playa-Albinyana H, Giró A, Arenas F, Higashi M, et al. SF3B1 mutation–mediated sensitization to H3B-8800 splicing inhibitor in continual lymphocytic leukemia. Life Sci Alliance. 2023;6:e202301955.
Nadeu F, Royo R, Clot G, Duran-Ferrer M, Navarro A, Martín S, et al. IGLV3-21R110 identifies an aggressive organic subtype of continual lymphocytic leukemia with intermediate epigenetics. Blood 2021;137:2935–46.
Maity PC, Bilal M, Koning MT, Younger M, van Bergen CAM, Renna V, et al. IGLV3-21 * 01 is an inherited danger issue for CLL via the acquisition of a single-point mutation enabling autonomous BCR signaling. Proc Natl Acad Sci. 2020;117:4320–7.
Molina JR, Solar Y, Protopopova M, Gera S, Bandi M, Bristow C, et al. An inhibitor of oxidative phosphorylation exploits most cancers vulnerability. Nat Med. 2018;24:1036–46.
Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, et al. Chemotherapy-resistant human acute myeloid leukemia cells usually are not enriched for leukemic stem cells however require oxidative metabolism. Most cancers Discov. 2017;7:716–35.
Bosc C, Saland E, Bousard A, Gadaud N, Sabatier M, Cognet G, et al. Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine mixture remedy in acute myeloid leukemia. Nat Most cancers. 2021;2:1204–23.
Chen Z, Cretenet G, Carnazzo V, Simon-Molas H, Kater AP, van der Windt GJW, et al. Electron transport chain and mTOR inhibition synergistically lower CD40 signaling and counteract venetoclax resistance in continual lymphocytic leukemia. Haematologica. (in press).
Patten PEM, Ferrer G, Chen SS, Kolitz JE, Rai KR, Allen SL, et al. An in depth evaluation of parameters supporting the engraftment and development of continual lymphocytic leukemia cells in immune-deficient mice. Entrance Immunol. 2021;12:627020.
ten Hacken E, Wu CJ. Understanding CLL biology via mouse fashions of human genetics. Blood 2021;138:2621–31.
Vaisitti T, Arruga F, Vitale N, Lee T-T, Ko M, Chadburn A, et al. ROR1 focusing on with the antibody-drug conjugate VLS-101 is efficient in Richter syndrome affected person–derived xenograft mouse fashions. Blood 2021;137:3365–77.
Vaisitti T, Gaudino F, Ouk S, Moscvin M, Vitale N, Serra S, et al. Concentrating on metabolism and survival in continual lymphocytic leukemia and Richter syndrome cells by a novel NF-κB inhibitor. Haematologica 2017;102:1878–89.
Iannello A, Vitale N, Coma S, Arruga F, Chadburn A, Di Napoli A, et al. Synergistic efficacy of the twin PI3K-δ/γ inhibitor duvelisib with the Bcl-2 inhibitor venetoclax in Richter syndrome PDX fashions. Blood 2021;137:3378–89.
Chen S-S. Technique for producing a patient-derived Xenograft Mannequin of CLL. Strategies Mol Biol. 2019;1881:165-71.
Liu H, Miao Y, Ferrajoli A, Tang G, McDonnell T, Medeiros LJ, et al. Leukemic part of Richter transformation: A mimic of acute myeloid leukemia that responded to Ibrutinib monotherapy. Am J Hematol. 2020. https://doi.org/10.1002/ajh.25782.
Solar C, Chen YC, Martinez Zurita A, Baptista MJ, Pittaluga S, Liu D, et al. The immune microenvironment shapes transcriptional and genetic heterogeneity in continual lymphocytic leukemia. Blood Adv. 2023;7:145–58.
Wang Y, Sinha S, Wellik LE, Secreto CR, Rech KL, Name TG, et al. Distinct immune signatures in continual lymphocytic leukemia and Richter syndrome. Blood Most cancers J. 2021;11:86.
ten Hacken E, Sewastianik T, Yin S, Brunsting Hoffmann G, Gruber M, Clement Ok, et al. In vivo modeling of CLL transformation to Richter’s syndrome reveals convergent evolutionary paths and therapeutic vulnerabilities. Blood Most cancers Discov. 2023;4:150-69.
Lu J, Cannizzaro E, Meier-Abt F, Scheinost S, Bruch PM, Giles HAR, et al. Multi-omics reveals clinically related proliferative drive related to mTOR-MYC-OXPHOS exercise in continual lymphocytic leukemia. Nat Most cancers. 2021;2:853–64.
Parry EM, ten Hacken E, Wu CJ. Richter syndrome: Novel insights into the biology of transformation. Blood. 2023;142:11-22.
Edwards-Hicks J, Su H, Mangolini M, Yoneten KK, Wills J, Rodriguez-Blanco G, et al. MYC sensitises cells to apoptosis by driving energetic demand. Nat Commun. 2022;13:4674.
Zhao Z, Mei Y, Wang Z, He W. The impact of oxidative phosphorylation on most cancers drug resistance. Cancers. 2022;15:62.
Myklebust JH, Brody J, Kohrt HE, Kolstad A, Czerwinski DK, Wälchli S, et al. Distinct patterns of B-cell receptor signaling in non-Hodgkin lymphomas recognized by single-cell profiling. Blood 2017;129:759–70.
Chan Ok-L, Blombery P, Jones Ok, Lade S, Carney D, Tran H, et al. Plasmablastic Richter transformation as a resistance mechanism for continual lymphocytic leukaemia handled with BCR signalling inhibitors. Br J Haematol. 2017;177:324–8.
Chakraborty S, Martines C, Porro F, Fortunati I, Bonato A, Dimishkovska M, et al. B-cell receptor signaling and genetic lesions in TP53 and CDKN2A/CDKN2B cooperate in Richter transformation. Blood 2021;138:1053–66.
Martines C, Chakraborty S, Vujovikj M, Gobessi S, Vaisitti T, Deaglio S, et al. Macrophage- and BCR-derived however not TLR-derived indicators assist the expansion of CLL and Richter syndrome murine fashions in vivo. Blood 2022;140:2335–47.
Minici C, Gounari M, Übelhart R, Scarfò L, Dühren-von Minden M, Schneider D, et al. Distinct homotypic B-cell receptor interactions form the end result of continual lymphocytic leukaemia. Nat Commun. 2017;8:15746.
Varano G, Raffel S, Sormani M, Zanardi F, Lonardi S, Zasada C, et al. The B-cell receptor controls health of MYC-driven lymphoma cells through GSK3β inhibition. Nature 2017;546:302–6.
Zhang L, Yao Y, Zhang S, Liu Y, Guo H, Ahmed M, et al. Metabolic reprogramming towards oxidative phosphorylation identifies a therapeutic goal for mantle cell lymphoma. Sci Transl Med. 2019;11:eaau1167.
Zhang S, Jiang VC, Han G, Hao D, Lian J, Liu Y, et al. Longitudinal single-cell profiling reveals molecular heterogeneity and tumor-immune evolution in refractory mantle cell lymphoma. Nat Commun. 2021;12:2877.
Donati G, Ravà M, Filipuzzi M, Nicoli P, Cassina L, Verrecchia A, et al. Concentrating on mitochondrial respiration and the BCL2 household in excessive‐grade MYC‐related B‐cell lymphoma. Mol Oncol. 2022;16:1132–52.
Frattaruolo L, Brindisi M, Curcio R, Marra F, Dolce V, Cappello AR. Concentrating on the mitochondrial metabolic community: A promising technique in most cancers remedy. Int J Mol Sci. 2020;21:6014.
Baran N, Lodi A, Dhungana Y, Herbrich S, Collins M, Sweeney S, et al. Inhibition of mitochondrial advanced I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia. Nat Commun. 2022;13:2801.
Yap TA, Daver N, Mahendra M, Zhang J, Kamiya-Matsuoka C, Meric-Bernstam F, et al. Complicated I inhibitor of oxidative phosphorylation in superior stable tumors and acute myeloid leukemia: part I trials. Nat Med. 2023;29:115–26.
Vangapandu HV, Alston B, Morse J, Ayres ML, Wierda WG, Keating MJ, et al. Organic and metabolic results of IACS-010759, an OxPhos inhibitor, on continual lymphocytic leukemia cells. Oncotarget 2018;9:24980–91.
Liu F, Kalpage HA, Wang D, Edwards H, Hüttemann M, Ma J. et al.Cotargeting of Mitochondrial Complicated I and Bcl-2 exhibits antileukemic exercise in opposition to acute myeloid leukemia cells reliant on oxidative phosphorylation.Cancers. 2020;12:2400
van Bruggen JAC, van der Windt GJW, Hoogendoorn M, Dubois J, Kater AP, Peters FS. Depletion of CLL cells by venetoclax remedy reverses oxidative stress and impaired glycolysis in CD4 T cells. Blood Adv. 2022;6:4185–95.

