Novel therapeutic methods for uncommon mutations in non-small cell lung most cancers


  • Siegel, R. L., Giaquinto, A. N. & Jemal, A. Most cancers statistics, 2024. CA Most cancers J. Clin. 74, 12–49. https://doi.org/10.3322/caac.21820 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Xia, C. et al. Most cancers statistics in China and United States, 2022: Profiles, traits, and determinants. Chin. Med. J. (Engl.) 135, 584–590. https://doi.org/10.1097/cm9.0000000000002108 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Non-small Cell Lung Most cancers Collaborative Group. Chemotherapy in non-small cell lung most cancers: A meta-analysis utilizing up to date knowledge on particular person sufferers from 52 randomised medical trials. BMJ 311, 899–909 (1995).

    Article 

    Google Scholar
     

  • Spiro, S. G. & Silvestri, G. A. 100 years of lung most cancers. Am. J. Respir. Crit. Care Med. 172, 523–529. https://doi.org/10.1164/rccm.200504-531OE (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Gridelli, C. Does chemotherapy have a job as palliative remedy for unfit or aged sufferers with non-small-cell lung most cancers?. Lung Most cancers 38(Suppl 2), S45-50. https://doi.org/10.1016/s0169-5002(02)00357-4 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Lynch, T. J. et al. Activating mutations within the epidermal progress issue receptor underlying responsiveness of non-small-cell lung most cancers to gefitinib. N. Engl. J. Med. 350, 2129–2139. https://doi.org/10.1056/NEJMoa040938 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paez, J. G. et al. EGFR mutations in lung most cancers: Correlation with medical response to gefitinib remedy. Science 304, 1497–1500. https://doi.org/10.1126/science.1099314 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957. https://doi.org/10.1056/NEJMoa0810699 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, W. C. et al. Gefitinib as front-line remedy in Chinese language sufferers with superior non-small-cell lung most cancers. Lung Most cancers 54, 193–199. https://doi.org/10.1016/j.lungcan.2006.07.013 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Ettinger, D. S. et al. NCCN Pointers® insights: Non-small cell lung most cancers, model 2.2023. J. Natl. Compr. Most cancers Netw. 21, 340–350. https://doi.org/10.6004/jnccn.2023.0020 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Soda, M. et al. Identification of the remodeling EML4-ALK fusion gene in non-small-cell lung most cancers. Nature 448, 561–566. https://doi.org/10.1038/nature05945 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Deeb, I. M., Yoo, Ok. H. & Lee, S. H. ROS receptor tyrosine kinase: A brand new potential goal for anticancer medicine. Med. Res. Rev. 31, 794–818. https://doi.org/10.1002/med.20206 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brose, M. S. et al. BRAF and RAS mutations in human lung most cancers and melanoma. Most cancers Res. 62, 6997–7000 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, P. M. et al. Differential expression of the c-erbB-2 gene in human small cell and non-small cell lung most cancers. Most cancers Res. 49, 4968–4971 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Solomon, B. J. et al. First-line crizotinib versus chemotherapy in ALK-positive lung most cancers. N. Engl. J. Med. 371, 2167–2177. https://doi.org/10.1056/NEJMoa1408440 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolf, J. et al. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung most cancers. N. Engl. J. Med. 383, 944–957. https://doi.org/10.1056/NEJMoa2002787 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirsch, F. R. et al. Lung most cancers: Present therapies and new focused remedies. Lancet 389, 299–311. https://doi.org/10.1016/s0140-6736(16)30958-8 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solomon, B. J. et al. RET solvent entrance mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies. J. Thorac. Oncol. 15, 541–549. https://doi.org/10.1016/j.jtho.2020.01.006 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vikis, H. et al. EGFR-T790M is a uncommon lung most cancers susceptibility allele with enhanced kinase exercise. Most cancers Res. 67, 4665–4670. https://doi.org/10.1158/0008-5472.Can-07-0217 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosell, R. et al. Screening for epidermal progress issue receptor mutations in lung most cancers. N. Engl. J. Med. 361, 958–967. https://doi.org/10.1056/NEJMoa0904554 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • D’Angelo, S. P. et al. Incidence of EGFR exon 19 deletions and L858R in tumor specimens from males and cigarette people who smoke with lung adenocarcinomas. J. Clin. Oncol. 29, 2066–2070. https://doi.org/10.1200/jco.2010.32.6181 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrison, P. T., Vyse, S. & Huang, P. H. Uncommon epidermal progress issue receptor (EGFR) mutations in non-small cell lung most cancers. Semin. Most cancers Biol. 61, 167–179. https://doi.org/10.1016/j.semcancer.2019.09.015 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Most cancers Genome Atlas Analysis Community. Complete molecular profiling of lung adenocarcinoma. Nature 511, 543–550. https://doi.org/10.1038/nature13385 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vyse, S. & Huang, P. H. Concentrating on EGFR exon 20 insertion mutations in non-small cell lung most cancers. Sign Transduct. Goal Ther. 4, 5. https://doi.org/10.1038/s41392-019-0038-9 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, W. et al. EGFR exon 20 insertion mutations and response to osimertinib in non-small-cell lung most cancers. BMC Most cancers 19, 595. https://doi.org/10.1186/s12885-019-5820-0 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Remon, J., Hendriks, L. E. L., Cardona, A. F. & Besse, B. EGFR exon 20 insertions in superior non-small cell lung most cancers: A brand new historical past begins. Most cancers Deal with. Rev. 90, 102105. https://doi.org/10.1016/j.ctrv.2020.102105 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, J. et al. EGFR exon 20 insertion mutations in superior non-small-cell lung most cancers: Present standing and views. Biomark. Res. 10, 21. https://doi.org/10.1186/s40364-022-00372-6 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meador, C. B., Sequist, L. V. & Piotrowska, Z. Concentrating on EGFR exon 20 insertions in non-small cell lung most cancers: Latest advances and medical updates. Most cancers Discov. 11, 2145–2157. https://doi.org/10.1158/2159-8290.Cd-21-0226 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Floc’h, N. et al. Antitumor exercise of osimertinib, an irreversible mutant-selective EGFR tyrosine kinase inhibitor, in NSCLC harboring EGFR exon 20 insertions. Mol. Most cancers Ther. 17, 885–896. https://doi.org/10.1158/1535-7163.Mct-17-0758 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirano, T. et al. In vitro modeling to find out mutation specificity of EGFR tyrosine kinase inhibitors towards clinically related EGFR mutants in non-small-cell lung most cancers. Oncotarget 6, 38789–38803. https://doi.org/10.18632/oncotarget.5887 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, T. M. et al. 1529P—Part II examine of osimertinib in NSCLC sufferers with EGFR exon 20 insertion mutation: A multicenter trial of the Korean Most cancers Examine Group (LU17–19). Ann. Oncol. 30, v628. https://doi.org/10.1093/annonc/mdz260.051 (2019).

    Article 

    Google Scholar
     

  • van Veggel, B. et al. Osimertinib remedy for sufferers with EGFR exon 20 mutation optimistic non-small cell lung most cancers. Lung Most cancers 141, 9–13. https://doi.org/10.1016/j.lungcan.2019.12.013 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yasuda, H. et al. A section I/II examine of osimertinib in EGFR exon 20 insertion mutation-positive non-small cell lung most cancers. Lung Most cancers 162, 140–146. https://doi.org/10.1016/j.lungcan.2021.10.006 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piotrowska, Z., Wang, Y., Sequist, L. V. & Ramalingam, S. S. ECOG-ACRIN 5162: A section II examine of osimertinib 160 mg in NSCLC with EGFR exon 20 insertions. J. Clin. Oncol. 38, 9513–9513 (2020).

    Article 

    Google Scholar
     

  • Zwierenga, F. et al. Excessive dose osimertinib in sufferers with superior stage EGFR exon 20 mutation-positive NSCLC: Outcomes from the section 2 multicenter POSITION20 trial. Lung Most cancers 170, 133–140. https://doi.org/10.1016/j.lungcan.2022.06.012 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robichaux, J. P. et al. Mechanisms and medical exercise of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung most cancers. Nat. Med. 24, 638–646. https://doi.org/10.1038/s41591-018-0007-9 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elamin, Y. Y. et al. Poziotinib for EGFR exon 20-mutant NSCLC: Medical efficacy, resistance mechanisms, and affect of insertion location on drug sensitivity. Most cancers Cell 40, 754-767.e756. https://doi.org/10.1016/j.ccell.2022.06.006 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sacher, A., Le, X., Cornelissen, R., Shum, E. & Garassino, M. C. 36MO Security, tolerability and preliminary efficacy of poziotinib with twice day by day technique in EGFR/HER2 Exon 20 mutant non-small cell lung most cancers. Ann. Oncol. 32, S15 (2021).

    Article 

    Google Scholar
     

  • Le, X. et al. Summary CT081: Poziotinib exercise and sturdiness of responses in beforehand handled EGFR exon 20 NSCLC sufferers—A Part 2 examine. Most cancers Res. 80, CT081. https://doi.org/10.1158/1538-7445.Am2020-ct081 (2020).

    Article 

    Google Scholar
     

  • Riely, G. J. et al. Exercise and security of mobocertinib (TAK-788) in beforehand handled non-small cell lung most cancers with EGFR exon 20 insertion mutations from a section I/II trial. Most cancers Discov. 11, 1688–1699. https://doi.org/10.1158/2159-8290.Cd-20-1598 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, C. et al. Remedy outcomes and security of mobocertinib in platinum-pretreated sufferers with EGFR exon 20 insertion-positive metastatic non-small cell lung most cancers: A section 1/2 open-label nonrandomized medical trial. JAMA Oncol. 7, e214761. https://doi.org/10.1001/jamaoncol.2021.4761 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markham, A. Mobocertinib: First approval. Medication 81, 2069–2074. https://doi.org/10.1007/s40265-021-01632-9 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosa, Ok. Takeda to voluntarily withdraw mobocertinib for EGFR exon 20 insertion+ NSCLC. https://www.onclive.com/view/takeda-to-voluntarily-withdraw-mobocertinib-for-egfr-exon-20-insertion-nsclc (2023).

  • Yu, H. A. et al. Part (Ph) 1/2a examine of CLN-081 in sufferers (pts) with NSCLC with EGFR exon 20 insertion mutations (Ins20). J. Clin. Oncol. 40, 9007–9007. https://doi.org/10.1200/JCO.2022.40.16_suppl.9007 (2022).

    Article 

    Google Scholar
     

  • Conroy, R. Investigators launch section 3 zipalertinib combo trial in EGFR+ NSCLC. Most cancers Netw. (2023).

  • Cho, B. C. et al. 1497PJNJ-61186372 (JNJ-372), an EGFR-cMET bispecific antibody, in superior non-small cell lung most cancers (NSCLC): An replace on section I outcomes. Ann. Oncol. https://doi.org/10.1093/annonc/mdy292.118 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moores, S. L. et al. A novel bispecific antibody concentrating on EGFR and cMet is efficient towards EGFR inhibitor-resistant lung tumors. Most cancers Res. 76, 3942–3953 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yun, J., Lee, S. H., Kim, S. Y., Jeong, S. Y. & Cho, B. C. Antitumor exercise of amivantamab (JNJ-61186372), an EGFR-cMet bispecific antibody, in numerous fashions of EGFR exon 20 insertion-driven NSCLC. Most cancers Discov. 10, CD-20-0116 (2020).

    Article 

    Google Scholar
     

  • Park, Ok. et al. Amivantamab in EGFR exon 20 insertion-mutated non–small-cell lung most cancers progressing on platinum chemotherapy: Preliminary outcomes from the CHRYSALIS section I examine. J. Clin. Oncol. 39, 3391–3402. https://doi.org/10.1200/jco.21.00662 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Syed, Y. Y. Amivantamab: First approval. Medication 81, 1349–1353. https://doi.org/10.1007/s40265-021-01561-7 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vyse, S. & Huang, P. H. Amivantamab for the remedy of EGFR exon 20 insertion mutant non-small cell lung most cancers. Skilled Rev. Anticancer Ther. 22, 3–16. https://doi.org/10.1080/14737140.2022.2016397 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, C. et al. Amivantamab plus chemotherapy in NSCLC with EGFR exon 20 insertions. N. Engl. J. Med. 389, 2039–2051. https://doi.org/10.1056/NEJMoa2306441 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Sunvozertinib, a selective EGFR inhibitor for beforehand handled non-small cell lung most cancers with EGFR exon 20 insertion mutations. Most cancers Discov. 12, 1676–1689. https://doi.org/10.1158/2159-8290.Cd-21-1615 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. et al. Sunvozertinib for the remedy of NSCLC with EGFR Exon20 insertion mutations: The primary pivotal examine outcomes. J. Clin. Oncol. 41, 9002–9002. https://doi.org/10.1200/JCO.2023.41.16_suppl.9002 (2023).

    Article 

    Google Scholar
     

  • Xu, Y. et al. Efficacy and security of sunvozertinib in remedy naïve NSCLC sufferers with EGFR exon20 insertion mutations. J. Clin. Oncol. 41, 9073–9073. https://doi.org/10.1200/JCO.2023.41.16_suppl.9073 (2023).

    Article 

    Google Scholar
     

  • Dhillon, S. Sunvozertinib: First approval. Medication 83, 1629–1634. https://doi.org/10.1007/s40265-023-01959-5 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Han, B. et al. OA03.04 A section 1b examine of furmonertinib, an oral, mind penetrant, selective EGFR inhibitor, in sufferers with superior NSCLC with EGFR exon 20 insertions. J. Thorac. Oncol. 18, S49. https://doi.org/10.1016/j.jtho.2023.09.033 (2023).

    Article 

    Google Scholar
     

  • Zhang, S. S. & Ou, S.-H.I. Highlight on furmonertinib (Alflutinib, AST2818). The Swiss Military Knife (del19, L858R, T790M, exon 20 insertions, “uncommon-G719X, S768I, L861Q”) among the many third-generation EGFR TKIs?. Lung Most cancers Targets Ther. 13, 67–73 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rebuzzi, S. E. et al. Novel rising molecular targets in non-small cell lung most cancers. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22052625 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russo, A. et al. New targets in lung most cancers (excluding EGFR, ALK, ROS1). Curr. Oncol. Rep. 22, 48. https://doi.org/10.1007/s11912-020-00909-8 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ou, S. H. et al. Exercise of crizotinib (PF02341066), a twin mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung most cancers affected person with de novo MET amplification. J. Thorac. Oncol. 6, 942–946. https://doi.org/10.1097/JTO.0b013e31821528d3 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Pfizer’s XALKORI®(Crizotinib) Receives FDA Breakthrough Remedy Designation in Two New Indications/Pfizer. Accessible on- line (2018).

  • Chiari, R. et al. ROS1-rearranged non-small-cell lung most cancers is related to a excessive fee of venous thromboembolism: Evaluation from a section II, potential, multicenter, two-arms trial (METROS). Clin. Lung Most cancers 21, 15–20. https://doi.org/10.1016/j.cllc.2019.06.012 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Drilon, A. et al. Antitumor exercise of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat. Med. 26, 47–51. https://doi.org/10.1038/s41591-019-0716-8 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moro-Sibilot, D. et al. Crizotinib in c-MET- or ROS1-positive NSCLC: Outcomes of the AcSé section II trial. Ann. Oncol. 30, 1985–1991. https://doi.org/10.1093/annonc/mdz407 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, Y., Xu, J., Solar, B., Wang, J. & Wang, Z. MET-targeted therapies and medical outcomes: A scientific literature assessment. Mol. Diagn. Ther. 26, 203–227. https://doi.org/10.1007/s40291-021-00568-w (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Recondo, G., Che, J., Jänne, P. A. & Awad, M. M. Concentrating on MET dysregulation in most cancers. Most cancers Discov. 10, 922–934. https://doi.org/10.1158/2159-8290.Cd-19-1446 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. L. et al. Part Ib/II examine of capmatinib (INC280) plus gefitinib after failure of epidermal progress issue receptor (EGFR) inhibitor remedy in sufferers with EGFR-mutated, MET factor-dysregulated non-small-cell lung most cancers. J. Clin. Oncol. 36, 3101–3109. https://doi.org/10.1200/jco.2018.77.7326 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuler, M. et al. Molecular correlates of response to capmatinib in superior non-small-cell lung most cancers: Medical and biomarker outcomes from a section I trial. Ann. Oncol. 31, 789–797. https://doi.org/10.1016/j.annonc.2020.03.293 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seto, T. et al. Capmatinib in Japanese sufferers with MET exon 14 skipping-mutated or MET-amplified superior NSCLC: GEOMETRY mono-1 examine. Most cancers Sci. 112, 1556–1566. https://doi.org/10.1111/cas.14826 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dagogo-Jack, I. et al. A section 2 examine of capmatinib in sufferers with MET-altered lung most cancers beforehand handled with a MET inhibitor. J. Thorac. Oncol. 16, 850–859. https://doi.org/10.1016/j.jtho.2021.01.1605 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engstrom, L. D. et al. Glesatinib displays antitumor exercise in lung most cancers fashions and sufferers harboring MET Exon 14 mutations and overcomes mutation-mediated resistance to kind I MET inhibitors in nonclinical fashions. Clin. Most cancers Res. 23, 6661–6672. https://doi.org/10.1158/1078-0432.Ccr-17-1192 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Markham, A. Tepotinib: First approval. Medication 80, 829–833. https://doi.org/10.1007/s40265-020-01317-9 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Le, X. et al. Tepotinib efficacy and security in sufferers with MET exon 14 skipping NSCLC: Outcomes in affected person subgroups from the VISION examine with relevance for medical apply. Clin. Most cancers Res. 28, 1117–1126. https://doi.org/10.1158/1078-0432.Ccr-21-2733 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. L. et al. Tepotinib plus gefitinib in sufferers with EGFR-mutant non-small-cell lung most cancers with MET overexpression or MET amplification and bought resistance to earlier EGFR inhibitor (INSIGHT examine): An open-label, section 1b/2, multicentre, randomised trial. Lancet Respir. Med. 8, 1132–1143. https://doi.org/10.1016/s2213-2600(20)30154-5 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smit, E. F. et al. INSIGHT 2: A section II examine of tepotinib plus osimertinib in MET-amplified NSCLC and first-line osimertinib resistance. Future Oncol. 18, 1039–1054. https://doi.org/10.2217/fon-2021-1406 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Markham, A. Savolitinib: First approval. Medication 81, 1665–1670. https://doi.org/10.1007/s40265-021-01584-0 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, S. et al. As soon as-daily savolitinib in Chinese language sufferers with pulmonary sarcomatoid carcinomas and different non-small-cell lung cancers harbouring MET exon 14 skipping alterations: A multicentre, single-arm, open-label, section 2 examine. Lancet Respir. Med. 9, 1154–1164. https://doi.org/10.1016/s2213-2600(21)00084-9 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartmaier, R. J. et al. Osimertinib + savolitinib to beat acquired MET-mediated resistance in epidermal progress issue receptor-mutated, MET-amplified non-small cell lung most cancers: TATTON. Most cancers Discov. 13, 98–113. https://doi.org/10.1158/2159-8290.Cd-22-0586 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brazel, D. & Nagasaka, M. Highlight on amivantamab (JNJ-61186372) for EGFR exon 20 insertions optimistic non-small cell lung most cancers. Lung Most cancers (Auckl) 12, 133–138. https://doi.org/10.2147/lctt.S337861 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krebs, M. et al. Amivantamab in sufferers with NSCLC with MET exon 14 skipping mutation: Up to date outcomes from the CHRYSALIS examine. J. Clin. Oncol. 40, 9008–9008. https://doi.org/10.1200/JCO.2022.40.16_suppl.9008 (2022).

    Article 

    Google Scholar
     

  • Lu, S. et al. Summary CT034: Part II examine of SCC244 in NSCLC sufferers harboring MET exon 14 skipping (METex14) mutations (GLORY examine). Most cancers Res. 82, CT034. https://doi.org/10.1158/1538-7445.Am2022-ct034 (2022).

    Article 

    Google Scholar
     

  • Reckamp, Ok. L. et al. Part II trial of cabozantinib plus erlotinib in sufferers with superior epidermal progress issue receptor (EGFR)-mutant non-small cell lung most cancers with progressive illness on epidermal progress issue receptor tyrosine kinase inhibitor remedy: A California Most cancers Consortium Part II trial (NCI 9303). Entrance. Oncol. 9, 132. https://doi.org/10.3389/fonc.2019.00132 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, S. B. et al. MET-targeting antibody (emibetuzumab) and kinase inhibitor (merestinib) as single agent or together in a most cancers mannequin bearing MET exon 14 skipping. Investig. New Medication 36, 536–544. https://doi.org/10.1007/s10637-017-0545-x (2018).

    Article 
    CAS 

    Google Scholar
     

  • Park, Ok. et al. Part I outcomes of S49076 plus gefitinib in sufferers with EGFR TKI-resistant non-small cell lung most cancers harbouring MET/AXL dysregulation. Lung Most cancers 155, 127–135. https://doi.org/10.1016/j.lungcan.2021.03.012 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujino, T., Suda, Ok. & Mitsudomi, T. Rising MET tyrosine kinase inhibitors for the remedy of non-small cell lung most cancers. Skilled Opin. Emerg. Medication 25, 229–249. https://doi.org/10.1080/14728214.2020.1791821 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldman, J. W. et al. Part 1/1b examine of telisotuzumab vedotin (Teliso-V) + osimertinib (Osi), after failure on prior Osi, in sufferers with superior, c-Met overexpressing, EGFR-mutated non-small cell lung most cancers (NSCLC). J. Clin. Oncol. 40, 9013–9013. https://doi.org/10.1200/JCO.2022.40.16_suppl.9013 (2022).

    Article 

    Google Scholar
     

  • Cardarella, S. et al. Medical, pathologic, and biologic options related to BRAF mutations in non-small cell lung most cancers. Clin. Most cancers Res. 19, 4532–4540. https://doi.org/10.1158/1078-0432.Ccr-13-0657 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodak, O., Peris-Díaz, M. D., Olbromski, M., Podhorska-Okołów, M. & Dzięgiel, P. Present panorama of non-small cell lung most cancers: Epidemiology, histological classification, focused therapies, and immunotherapy. Cancers https://doi.org/10.3390/cancers13184705 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dankner, M., Rose, A. A. N., Rajkumar, S., Siegel, P. M. & Watson, I. R. Classifying BRAF alterations in most cancers: New rational therapeutic methods for actionable mutations. Oncogene 37, 3183–3199. https://doi.org/10.1038/s41388-018-0171-x (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hyman, D. M. et al. Vemurafenib in a number of nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373, 726–736. https://doi.org/10.1056/NEJMoa1502309 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Planchard, D. et al. Dabrafenib in sufferers with BRAF(V600E)-positive superior non-small-cell lung most cancers: A single-arm, multicentre, open-label, section 2 trial. Lancet Oncol. 17, 642–650. https://doi.org/10.1016/s1470-2045(16)00077-2 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Planchard, D. et al. Part 2 examine of dabrafenib plus trametinib in sufferers with BRAF V600E-mutant metastatic NSCLC: Up to date 5-year survival charges and genomic evaluation. J. Thorac. Oncol. 17, 103–115. https://doi.org/10.1016/j.jtho.2021.08.011 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swalduz, A. et al. Efficacy of dabrafenib-trametinib mixture in BRAF V600E-mutated metastatic non–small cell lung most cancers: Outcomes of the IFCT-2004 BLaDE cohort. J. Clin. Oncol. 40, 9082–9082. https://doi.org/10.1200/JCO.2022.40.16_suppl.9082 (2022).

    Article 

    Google Scholar
     

  • Saha, D. et al. Concentrating on rearranged throughout transfection in most cancers: A perspective on small-molecule inhibitors and their medical improvement. J. Med. Chem. 64, 11747–11773. https://doi.org/10.1021/acs.jmedchem.0c02167 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoh, Ok. et al. Vandetanib in sufferers with beforehand handled RET-rearranged superior non-small-cell lung most cancers (LURET): An open-label, multicentre section 2 trial. Lancet Respir. Med. 5, 42–50. https://doi.org/10.1016/s2213-2600(16)30322-8 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gautschi, O. et al. Concentrating on RET in sufferers with RET-rearranged lung cancers: Outcomes from the worldwide, multicenter RET Registry. J. Clin. Oncol. 35, 1403–1410. https://doi.org/10.1200/jco.2016.70.9352 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gainor, J. F. et al. Pralsetinib for RET fusion-positive non-small-cell lung most cancers (ARROW): A multi-cohort, open-label, section 1/2 examine. Lancet Oncol. 22, 959–969. https://doi.org/10.1016/s1470-2045(21)00247-3 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griesinger, F. et al. Security and efficacy of pralsetinib in RET fusion-positive non-small-cell lung most cancers together with as first-line remedy: Replace from the ARROW trial. Ann. Oncol. https://doi.org/10.1016/j.annonc.2022.08.002 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Drilon, A. et al. Selpercatinib in sufferers with RET fusion-positive non-small-cell lung most cancers: Up to date security and efficacy from the registrational LIBRETTO-001 section I/II Trial. J. Clin. Oncol. https://doi.org/10.1200/jco.22.00393 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subbiah, V. et al. Intracranial efficacy of selpercatinib in RET fusion-positive non-small cell lung cancers on the LIBRETTO-001 Trial. Clin. Most cancers Res. 27, 4160–4167. https://doi.org/10.1158/1078-0432.Ccr-21-0800 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drilon, A. et al. 506P – TPX-0046 is a novel and potent RET/SRC inhibitor for RET-driven cancers. Ann. Oncol. 30, v190–v191. https://doi.org/10.1093/annonc/mdz244.068 (2019).

    Article 

    Google Scholar
     

  • Turning Level Therapeutics Proclaims Preliminary Medical Information From Part 1/2 SWORD-1 Examine of RET Inhibitor TPX-0046. https://firstwordpharma.com/story/5266393 (2021).

  • Schoffski, P. et al. BOS172738, a extremely potent and selective RET inhibitor, for the remedy of RET-altered tumors together with RET-fusion+ NSCLC and RET-mutant MTC: Part 1 examine outcomes. J. Clin. Oncol. 39, 3008–3008. https://doi.org/10.1200/JCO.2021.39.15_suppl.3008 (2021).

    Article 

    Google Scholar
     

  • Suzuki, M. et al. HER2 gene mutations in non-small cell lung carcinomas: Concurrence with Her2 gene amplification and Her2 protein expression and phosphorylation. Lung Most cancers 87, 14–22. https://doi.org/10.1016/j.lungcan.2014.10.014 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Hynes, N. E. & Stern, D. F. The biology of erbB-2/neu/HER-2 and its function in most cancers. Biochim. Biophys. Acta 1198, 165–184. https://doi.org/10.1016/0304-419x(94)90012-4 (1994).

    Article 
    PubMed 

    Google Scholar
     

  • Swain, S. M., Shastry, M. & Hamilton, E. Concentrating on HER2-positive breast most cancers: Advances and future instructions. Nat. Rev. Drug Discov. 22, 101–126. https://doi.org/10.1038/s41573-022-00579-0 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • La Salvia, A., Lopez-Gomez, V. & Garcia-Carbonero, R. HER2-targeted remedy: An rising technique in superior colorectal most cancers. Skilled Opin. Investig. Medication 28, 29–38. https://doi.org/10.1080/13543784.2019.1555583 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arcila, M. E. et al. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin. Most cancers Res. 18, 4910–4918. https://doi.org/10.1158/1078-0432.Ccr-12-0912 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sankar, Ok., Gadgeel, S. M. & Qin, A. Molecular therapeutic targets in non-small cell lung most cancers. Skilled Rev. Anticancer Ther. 20, 647–661. https://doi.org/10.1080/14737140.2020.1787156 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. The function of human epidermal progress issue receptor 2 as a prognostic consider lung most cancers: A meta-analysis of printed knowledge. J. Thorac. Oncol. 5, 1922–1932. https://doi.org/10.1097/jto.0b013e3181f26266 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Riudavets, M., Sullivan, I., Abdayem, P. & Planchard, D. Concentrating on HER2 in non-small-cell lung most cancers (NSCLC): A glimpse of hope? An up to date assessment on therapeutic methods in NSCLC harbouring HER2 alterations. ESMO Open 6, 100260. https://doi.org/10.1016/j.esmoop.2021.100260 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ricciardi, G. R. et al. NSCLC and HER2: Between lights and shadows. J. Thorac. Oncol. 9, 1750–1762. https://doi.org/10.1097/jto.0000000000000379 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Yoshizawa, A. et al. HER2 standing in lung adenocarcinoma: A comparability of immunohistochemistry, fluorescence in situ hybridization (FISH), dual-ISH, and gene mutations. Lung Most cancers 85, 373–378. https://doi.org/10.1016/j.lungcan.2014.06.007 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Bunn, P. A. Jr. et al. Expression of Her-2/neu in human lung most cancers cell traces by immunohistochemistry and fluorescence in situ hybridization and its relationship to in vitro cytotoxicity by trastuzumab and chemotherapeutic brokers. Clin. Most cancers Res. 7, 3239–3250 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Dziadziuszko, R. et al. Afatinib in NSCLC with HER2 mutations: Outcomes of the possible, open-label section II NICHE trial of European thoracic oncology platform (ETOP). J. Thorac. Oncol. 14, 1086–1094. https://doi.org/10.1016/j.jtho.2019.02.017 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hyman, D. M. et al. HER kinase inhibition in sufferers with HER2- and HER3-mutant cancers. Nature 554, 189–194. https://doi.org/10.1038/nature25475 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jebbink, M., de Langen, A. J., Boelens, M. C., Monkhorst, Ok. & Smit, E. F. The pressure of HER2—A druggable goal in NSCLC?. Most cancers Deal with. Rev. 86, 101996. https://doi.org/10.1016/j.ctrv.2020.101996 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kris, M. G. et al. Concentrating on HER2 aberrations as actionable drivers in lung cancers: Part II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in sufferers with HER2-mutant or amplified tumors. Ann. Oncol. 26, 1421–1427. https://doi.org/10.1093/annonc/mdv186 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elamin, Y. Y. et al. Poziotinib for sufferers with HER2 exon 20 mutant non-small-cell lung most cancers: Outcomes from a section II trial. J. Clin. Oncol. 40, 702–709. https://doi.org/10.1200/jco.21.01113 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le, X. et al. Poziotinib in non-small-cell lung most cancers harboring HER2 exon 20 insertion mutations after prior therapies: ZENITH20-2 trial. J. Clin. Oncol. 40, 710–718. https://doi.org/10.1200/jco.21.01323 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. HER2 exon 20 insertions in non-small-cell lung most cancers are delicate to the irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib. Ann. Oncol. 30, 447–455. https://doi.org/10.1093/annonc/mdy542 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Music, Z. et al. Pyrotinib in sufferers with HER2-amplified superior non-small cell lung most cancers: A potential, multicentre, single-arm trial. Clin. Most cancers Res. 28, 461–467. https://doi.org/10.1158/1078-0432.Ccr-21-2936 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Estrada-Bernal, A. et al. Tarloxotinib is a hypoxia-activated pan-HER kinase inhibitor lively towards a broad vary of HER-family oncogenes. Clin. Most cancers Res. 27, 1463–1475. https://doi.org/10.1158/1078-0432.Ccr-20-3555 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. V. et al. LBA61 first evaluation of RAIN-701: Examine of tarloxotinib in sufferers with non-small cell lung most cancers (NSCLC) EGFR Exon 20 insertion, HER2-activating mutations & different strong tumours with NRG1/ERBB gene fusions. Ann. Oncol. 31, S1189. https://doi.org/10.1016/j.annonc.2020.08.2294 (2020).

    Article 

    Google Scholar
     

  • Riely, G. J. et al. 1261MO up to date outcomes from a section I/II examine of mobocertinib (TAK-788) in NSCLC with EGFR exon 20 insertions (exon20ins). Ann. Oncol. 31, S815–S816. https://doi.org/10.1016/j.annonc.2020.08.1575 (2020).

    Article 

    Google Scholar
     

  • Hafeez, U., Parakh, S., Gan, H. Ok. & Scott, A. M. Antibody-drug conjugates for most cancers remedy. Molecules https://doi.org/10.3390/molecules25204764 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hainsworth, J. D. et al. Focused remedy for superior strong tumors on the idea of molecular profiles: Outcomes from mypathway, an open-label, section IIa a number of basket examine. J. Clin. Oncol. 36, 536–542. https://doi.org/10.1200/jco.2017.75.3780 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinoshita, I. et al. 1491PA section II examine of trastuzumab monotherapy in pretreated sufferers with non-small cell lung cancers (NSCLCs) harboring HER2 alterations: HOT1303-B trial. Ann. Oncol. https://doi.org/10.1093/annonc/mdy292.112 (2018).

    Article 

    Google Scholar
     

  • Gatzemeier, U. et al. Randomized section II trial of gemcitabine–cisplatin with or with out trastuzumab in HER2-positive non-small-cell lung most cancers. Ann. Oncol. 15, 19–27. https://doi.org/10.1093/annonc/mdh031 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazieres, J. et al. Mixture of trastuzumab, pertuzumab, and docetaxel in sufferers with superior non-small-cell lung most cancers harboring HER2 mutations: Outcomes from the IFCT-1703 R2D2 trial. J. Clin. Oncol. 40, 719–728. https://doi.org/10.1200/jco.21.01455 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Berge Henegouwen, J. M. et al. Trastuzumab and pertuzumab mixture remedy for superior pre-treated HER2 exon 20-mutated non-small cell lung most cancers. Eur. J. Most cancers 171, 114–123. https://doi.org/10.1016/j.ejca.2022.05.009 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. T. et al. Ado-trastuzumab emtansine for sufferers with HER2-mutant lung cancers: outcomes from a section II basket trial. J. Clin. Oncol. 36, 2532–2537. https://doi.org/10.1200/JCO.2018.77.9777 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwama, E. et al. Trastuzumab emtansine for sufferers with non-small cell lung most cancers optimistic for human epidermal progress issue receptor 2 exon-20 insertion mutations. Eur. J. Most cancers 162, 99–106. https://doi.org/10.1016/j.ejca.2021.11.021 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peters, S. et al. Trastuzumab emtansine (T-DM1) in sufferers with beforehand handled HER2-overexpressing metastatic non-small cell lung most cancers: Efficacy, security, and biomarkers. Clin. Most cancers Res. 25, 64–72. https://doi.org/10.1158/1078-0432.Ccr-18-1590 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. T. et al. Trastuzumab deruxtecan in HER2-mutant non-small-cell lung most cancers. N. Engl. J. Med. 386, 241–251. https://doi.org/10.1056/NEJMoa2112431 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsurutani, J. et al. Concentrating on HER2 with trastuzumab deruxtecan: A dose-expansion, section I examine in a number of superior strong tumors. Most cancers Discov. 10, 688–701. https://doi.org/10.1158/2159-8290.Cd-19-1014 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakagawa, Ok. et al. OA04.05 Trastuzumab Deruxtecan in HER2-overexpressing metastatic non-small cell lung most cancers: Interim outcomes of DESTINY-Lung01. J. Thorac. Oncol. 16, S109–S110. https://doi.org/10.1016/j.jtho.2021.01.285 (2021).

    Article 

    Google Scholar
     

  • Narayan, P. et al. FDA approval abstract: Fam-Trastuzumab Deruxtecan-Nxki for the remedy of unresectable or metastatic HER2-positive breast most cancers. Clin. Most cancers Res. 27, 4478–4485. https://doi.org/10.1158/1078-0432.Ccr-20-4557 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, B. T. et al. HER2-mediated internalization of cytotoxic brokers in ERBB2 amplified or mutant lung cancers. Most cancers Discov. 10, 674–687. https://doi.org/10.1158/2159-8290.Cd-20-0215 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elfving, H. et al. Analysis of NTRK immunohistochemistry as a screening technique for NTRK gene fusion detection in non-small cell lung most cancers. Lung Most cancers 151, 53–59. https://doi.org/10.1016/j.lungcan.2020.11.023 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okamura, Ok. et al. Expression of TrkB and BDNF is related to poor prognosis in non-small cell lung most cancers. Lung Most cancers 78, 100–106. https://doi.org/10.1016/j.lungcan.2012.07.011 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kummar, S. & Lassen, U. N. TRK inhibition: A brand new tumor-agnostic remedy technique. Goal Oncol. 13, 545–556. https://doi.org/10.1007/s11523-018-0590-1 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Farago, A. F. et al. Clinicopathologic Options of non-small-cell lung most cancers harboring an NTRK gene fusion. JCO Summary. Oncol. https://doi.org/10.1200/po.18.00037 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doebele, R. C. et al. Entrectinib in sufferers with superior or metastatic NTRK fusion-positive strong tumours: Built-in evaluation of three section 1–2 trials. Lancet Oncol. 21, 271–282. https://doi.org/10.1016/s1470-2045(19)30691-6 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, D. S. et al. Larotrectinib in sufferers with TRK fusion-positive strong tumours: A pooled evaluation of three section 1/2 medical trials. Lancet Oncol. 21, 531–540. https://doi.org/10.1016/s1470-2045(19)30856-3 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. et al. Evaluating entrectinib as a remedy choice for non-small cell lung most cancers. Skilled Opin. Pharmacother. 21, 1935–1942. https://doi.org/10.1080/14656566.2020.1798932 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sartore-Bianchi, A. et al. Entrectinib for the remedy of metastatic NSCLC: Security and efficacy. Skilled Rev. Anticancer Ther. 20, 333–341. https://doi.org/10.1080/14737140.2020.1747439 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drilon, A. et al. Efficacy and security of larotrectinib in sufferers with tropomyosin receptor kinase fusion-positive lung cancers. JCO Summary. Oncol. https://doi.org/10.1200/po.21.00418 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, H. & Patel, M. R. The problem and alternative of NTRK inhibitors in non-small cell lung most cancers. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23062916 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holzmann, Ok. et al. Different splicing of fibroblast progress issue receptor IgIII loops in most cancers. J. Nucleic Acids 2012, 950508. https://doi.org/10.1155/2012/950508 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiseo, M. et al. FGFR as potential goal within the remedy of squamous non small cell lung most cancers. Most cancers Deal with. Rev. 41, 527–539. https://doi.org/10.1016/j.ctrv.2015.04.011 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin, A. et al. Detection of identified and novel FGFR fusions in non-small cell lung most cancers by complete genomic profiling. J. Thorac. Oncol. 14, 54–62. https://doi.org/10.1016/j.jtho.2018.09.014 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, M., Li, T. & Chen, J. Progress on the examine of concentrating on FGFR in squamous non-small cell lung most cancers. Zhongguo Fei Ai Za Zhi 21, 116–120. https://doi.org/10.3779/j.issn.1009-3419.2018.02.05 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ng, T. L. et al. Preselection of lung most cancers instances utilizing FGFR1 mRNA and gene copy quantity for remedy with ponatinib. Clin. Lung Most cancers 20, e39–e51. https://doi.org/10.1016/j.cllc.2018.09.001 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pacini, L., Jenks, A. D., Lima, N. C. & Huang, P. H. Concentrating on the fibroblast progress issue receptor (FGFR) household in lung most cancers. Cells https://doi.org/10.3390/cells10051154 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gavine, P. R. et al. AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast progress issue receptor tyrosine kinase household. Most cancers Res. 72, 2045–2056. https://doi.org/10.1158/0008-5472.Can-11-3034 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aggarwal, C. et al. SWOG S1400D (NCT02965378), a section II examine of the fibroblast progress issue receptor inhibitor AZD4547 in beforehand handled sufferers with fibroblast progress issue pathway-activated stage IV squamous cell lung most cancers (lung-MAP substudy). J. Thorac. Oncol. 14, 1847–1852. https://doi.org/10.1016/j.jtho.2019.05.041 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harding, T. C. et al. Blockade of nonhormonal fibroblast progress components by FP-1039 inhibits progress of a number of kinds of most cancers. Sci. Transl. Med. 5, 178ra139. https://doi.org/10.1126/scitranslmed.3005414 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Morgensztern, D. et al. An open-label section IB examine to judge GSK3052230 together with paclitaxel and carboplatin, or docetaxel, in FGFR1-amplified non-small cell lung most cancers. Lung Most cancers 136, 74–79. https://doi.org/10.1016/j.lungcan.2019.08.011 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Grünewald, S. et al. Rogaratinib: A potent and selective pan-FGFR inhibitor with broad antitumor exercise in FGFR-overexpressing preclinical most cancers fashions. Int. J. Most cancers 145, 1346–1357. https://doi.org/10.1002/ijc.32224 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuler, M. et al. Rogaratinib in sufferers with superior cancers chosen by FGFR mRNA expression: A section 1 dose-escalation and dose-expansion examine. Lancet Oncol. 20, 1454–1466. https://doi.org/10.1016/S1470-2045(19)30412-7 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Addeo, A. et al. Fibroblast progress issue receptor (FGFR) inhibitor rogaratinib in sufferers with superior pretreated squamous-cell non-small cell lung most cancers over-expressing FGFR mRNA: The SAKK 19/18 section II examine. Lung Most cancers 172, 154–159. https://doi.org/10.1016/j.lungcan.2022.08.016 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, L. et al. Concentrating on ALK rearrangements in NSCLC: Present state-of-the-art. Entrance. Oncol. 12, 863461. https://doi.org/10.3389/fonc.2022.863461 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw, A. T. et al. Crizotinib versus chemotherapy in superior ALK-positive lung most cancers. N. Engl. J. Med. 373, 1582. https://doi.org/10.1056/NEJMx150036 (2015).

    Article 

    Google Scholar
     

  • Huber, R. M. et al. Brigatinib in crizotinib-refractory ALK+ NSCLC: 2-year follow-up on systemic and intracranial outcomes within the section 2 ALTA trial. J. Thorac. Oncol. 15, 404–415. https://doi.org/10.1016/j.jtho.2019.11.004 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D. W. et al. Exercise and security of ceritinib in sufferers with ALK-rearranged non-small-cell lung most cancers (ASCEND-1): Up to date outcomes from the multicentre, open-label, section 1 trial. Lancet Oncol. 17, 452–463. https://doi.org/10.1016/s1470-2045(15)00614-2 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ou, S. I. et al. Continuation of lorlatinib in ALK-positive NSCLC past progressive illness. J. Thorac. Oncol. 17, 568–577. https://doi.org/10.1016/j.jtho.2021.12.011 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peters, S. et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung most cancers. N. Engl. J. Med. 377, 829–838. https://doi.org/10.1056/NEJMoa1704795 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pelish, H. E. et al. Summary 1468: NUV-655 (NVL-655) is a selective, brain-penetrant ALK inhibitor with antitumor exercise towards the lorlatinib-resistant G1202R/L1196M compound mutation. Most cancers Res. 81, 1468–1468. https://doi.org/10.1158/1538-7445.Am2021-1468 (2021).

    Article 

    Google Scholar
     

  • Murray, B. W. et al. Summary 1469: TPX-0131, a potent inhibitor of untamed kind ALK and a broad spectrum of each single and compound ALK resistance mutations. Most cancers Res. 81, 1469–1469. https://doi.org/10.1158/1538-7445.Am2021-1469 (2021).

    Article 

    Google Scholar
     

  • Yang, J.-J. et al. SAF-189s in superior, ALK-positive, non–small cell lung most cancers: Outcomes from a first-in-human section 1/2, multicenter examine. J. Clin. Oncol. 40, 9076–9076. https://doi.org/10.1200/JCO.2022.40.16_suppl.9076 (2022).

    Article 

    Google Scholar
     

  • Ardini, E. et al. Entrectinib, a Pan–TRK, ROS1, and ALK inhibitor with exercise in a number of molecularly outlined most cancers indications. Mol. Most cancers Ther. 15, 628–639. https://doi.org/10.1158/1535-7163.Mct-15-0758 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, B. C. et al. Security and preliminary medical exercise of repotrectinib in sufferers with superior ROS1 fusion-positive non-small cell lung most cancers (TRIDENT-1 examine). J. Clin. Oncol. 37, 9011–9011. https://doi.org/10.1200/JCO.2019.37.15_suppl.9011 (2019).

    Article 

    Google Scholar
     

  • Mizuta, H. et al. Gilteritinib overcomes lorlatinib resistance in ALK-rearranged most cancers. Nat. Commun. 12, 1261. https://doi.org/10.1038/s41467-021-21396-w (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rikova, Ok. et al. International survey of phosphotyrosine signaling identifies oncogenic kinases in lung most cancers. Cell 131, 1190–1203. https://doi.org/10.1016/j.cell.2007.11.025 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gendarme, S., Bylicki, O., Chouaid, C. & Guisier, F. ROS-1 fusions in non-small-cell lung most cancers: Proof up to now. Curr. Oncol. 29, 641–658. https://doi.org/10.3390/curroncol29020057 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patil, T. et al. The incidence of mind metastases in stage IV ROS1-rearranged non–small cell lung most cancers and fee of central nervous system development on crizotinib. J. Thorac. Oncol. 13, 1717–1726. https://doi.org/10.1016/j.jtho.2018.07.001 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doebele, R. C. et al. TRIDENT-1: A worldwide, multicenter, open-label Part II examine investigating the exercise of repotrectinib in superior strong tumors harboring ROS1 or NTRK1–3 rearrangements. J. Clin. Oncol. 38, TPS9637. https://doi.org/10.1200/JCO.2020.38.15_suppl.TPS9637 (2020).

    Article 

    Google Scholar
     

  • Li, W. et al. The efficacy and security of taletrectinib in sufferers with TKI-naïve or crizotinib-pretreated ROS1-positive non–small cell lung most cancers (NSCLC). J. Clin. Oncol. 40, 8572–8572. https://doi.org/10.1200/JCO.2022.40.16_suppl.8572 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Nagasaka, M. et al. TRUST-II: A worldwide section II examine for taletrectinib in ROS1 fusion–optimistic lung most cancers and different strong tumors. J. Clin. Oncol. 40, TPS8601. https://doi.org/10.1200/JCO.2022.40.16_suppl.TPS8601 (2022).

    Article 

    Google Scholar
     

  • Ai, X. et al. Security however restricted efficacy of ensartinib in ROS1-Optimistic NSCLC: A single-arm, multicenter section 2 examine. J. Thorac. Oncol. 16, 1959–1963. https://doi.org/10.1016/j.jtho.2021.06.023 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jonna, S. et al. Detection of NRG1 gene fusions in strong tumors. Clin. Most cancers Res. 25, 4966–4972. https://doi.org/10.1158/1078-0432.Ccr-19-0160 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drilon, A. et al. Clinicopathologic options and response to remedy of NRG1 fusion-driven lung cancers: The eNRGy1 International Multicenter Registry. J. Clin. Oncol. 39, 2791–2802. https://doi.org/10.1200/jco.20.03307 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gan, H. Ok. et al. A section I, first-in-human examine of GSK2849330, an anti-HER3 monoclonal antibody, in HER3-expressing strong tumors. Oncologist 26, e1844–e1853. https://doi.org/10.1002/onco.13860 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schram, A. M. et al. Efficacy and security of zenocutuzumab, a HER2 x HER3 bispecific antibody, throughout superior NRG1 fusion (NRG1+) cancers. J. Clin. Oncol. 40, 105–105. https://doi.org/10.1200/JCO.2022.40.16_suppl.105 (2022).

    Article 

    Google Scholar
     

  • Carrizosa, D. R. et al. CRESTONE: Preliminary efficacy and security of seribantumab in strong tumors harboring NRG1 fusions. J. Clin. Oncol. 40, 3006–3006. https://doi.org/10.1200/JCO.2022.40.16_suppl.3006 (2022).

    Article 

    Google Scholar
     

  • Hot Topics

    Related Articles