Mobile adaptation to most cancers remedy alongside a resistance continuum


  • Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in most cancers. Nature 575, 299–309 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: previous, current, and the long run. Cell 168, 613–628 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in most cancers cell subpopulations. Cell 141, 69–80 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hugo, W. et al. Non-genomic and immune evolution of melanoma buying MAPKi resistance. Cell 162, 1271–1285 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marine, J.-C., Dawson, S.-J. & Dawson, M. A. Non-genetic mechanisms of therapeutic resistance in most cancers. Nat. Rev. Most cancers 20, 743–756 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaffer, S. M. et al. Uncommon cell variability and drug-induced reprogramming as a mode of most cancers drug resistance. Nature 546, 431–435 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oren, Y. et al. Biking most cancers persister cells come up from lineages with distinct packages. Nature 596, 576–582 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brock, A., Chang, H. & Huang, S. Non-genetic heterogeneity–a mutation-independent driving power for the somatic evolution of tumours. Nat. Rev. Genet. 10, 336–342 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pisco, A. O. et al. Non-Darwinian dynamics in therapy-induced most cancers drug resistance. Nat. Commun. 4, 2467 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Tsoi, J. et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Most cancers Cell 33, 890–904.e5 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vander Velde, R. et al. Resistance to focused therapies as a multifactorial, gradual adaptation to inhibitor particular selective pressures. Nat. Commun. 11, 2393 (2020).

    Article 

    Google Scholar
     

  • Domcke, S., Sinha, R., Levine, D. A., Sander, C. & Schultz, N. Evaluating cell strains as tumour fashions by comparability of genomic profiles. Nat. Commun. 4, 2126 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Lord, C. J. & Ashworth, A. PARP inhibitors: artificial lethality within the clinic. Science 355, 1152–1158 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goyal, Y. et al. Numerous clonal fates emerge upon drug remedy of homogeneous most cancers cells. Nature 620, 651–659 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, S., Vagner, S. & Robert, C. Persistent most cancers cells: the lethal survivors. Cell 183, 860–874 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, L. et al. SOX17 and PAX8 represent an actionable lineage-survival transcriptional complicated in ovarian most cancers. Oncogene 41, 1767–1779 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, C., Wang, X.-D. & Yu, Y. PARP1 inhibitors set off innate immunity through PARP1 trapping-induced DNA harm response. eLife 9, e60637 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreß, J. Ok. C. et al. The built-in stress response effector ATF4 is an compulsory metabolic activator of NRF2. Cell Rep. 42, 112724 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic hyperlink and medical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, W. et al. Slug and Sox9 cooperatively decide the mammary stem cell state. Cell 148, 1015–1028 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arlt, M. F., Wilson, T. E. & Glover, T. W. Replication stress and mechanisms of CNV formation. Curr. Opin. Genet. Dev. 22, 204–210 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quintanal-Villalonga, Á. et al. Lineage plasticity in most cancers: a shared pathway of therapeutic resistance. Nat. Rev. Clin. Oncol. 17, 360–371 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitt, C. A. et al. A senescence program managed by p53 and p16INK4a contributes to the result of most cancers remedy. Cell 109, 335–346 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Birsoy, Ok. et al. A vital position of the mitochondrial electron transport chain in cell proliferation is to allow aspartate synthesis. Cell 162, 540–551 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sayin, V. I. et al. Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in most cancers. eLife 6, e28083 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Y.-A. et al. Inhibition of the MYC-regulated glutaminase metabolic axis is an efficient artificial deadly strategy for treating chemoresistant ovarian cancers. Most cancers Res. 80, 4514–4526 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Debaugnies, M. et al. RHOJ controls EMT-associated resistance to chemotherapy. Nature 616, 168–175 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Search engine marketing, J. et al. AP-1 subunits converge promiscuously at enhancers to potentiate transcription. Genome Res. 31, 538–550 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez-Zamudio, R. I. et al. AP-1 imprints a reversible transcriptional programme of senescent cells. Nat. Cell Biol. 22, 842–855 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsen, S. B. et al. Institution, upkeep, and recall of inflammatory reminiscence. Cell Stem Cell 28, 1758–1774.e8 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freddolino, P. L., Yang, J., Momen-Roknabadi, A. & Tavazoie, S. Stochastic tuning of gene expression permits mobile adaptation within the absence of pre-existing regulatory circuitry. eLife 7, e31867 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallaher, J. A., Enriquez-Navas, P. M., Luddy, Ok. A., Gatenby, R. A. & Anderson, A. R. A. Spatial heterogeneity and evolutionary dynamics modulate time to recurrence in steady and adaptive most cancers therapies. Most cancers Res. 78, 2127–2139 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rehman, S. Ok. et al. Colorectal most cancers cells enter a diapause-like DTP state to outlive chemotherapy. Cell 184, 226–242.e21 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marsolier, J. et al. H3K27me3 circumstances chemotolerance in triple-negative breast most cancers. Nat. Genet. 54, 459–468 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hata, A. N. et al. Tumor cells can observe distinct evolutionary paths to turn out to be immune to epidermal progress issue receptor inhibition. Nat. Med. 22, 262–269 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, S. Reconciling non-genetic plasticity with somatic evolution in most cancers. Traits Most cancers Res. 7, 309–322 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Ok. et al. Longitudinal single-cell RNA-seq evaluation reveals stress-promoted chemoresistance in metastatic ovarian most cancers. Sci. Adv. 8, eabm1831 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rukhlenko, O. S. et al. Management of cell state transitions. Nature 609, 975–985 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boumahdi, S. & de Sauvage, F. J. The good escape: tumour cell plasticity in resistance to focused remedy. Nat. Rev. Drug Discov. 19, 39–56 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, W. et al. A brand new bliss independence mannequin to investigate drug mixture information. J. Biomol. Display. 19, 817–821 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Hangauer, M. J. et al. Drug-tolerant persister most cancers cells are weak to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cybulska, P. et al. A genomically characterised assortment of high-grade serous ovarian most cancers xenografts for preclinical testing. Am. J. Pathol. 188, 1120–1131 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, Y. et al. BMN 673, a novel and extremely potent PARP1/2 inhibitor for the remedy of human cancers with DNA restore deficiency. Clin. Most cancers Res. 19, 5003–5015 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics utilized to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baron, M. et al. The stress-like most cancers cell state is a constant element of tumorigenesis. Cell Syst. 11, 536–546.e7 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoeckius, M. et al. Cell hashing with barcoded antibodies permits multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic information throughout totally different circumstances, applied sciences, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corces, M. R. et al. An improved ATAC-seq protocol reduces background and permits interrogation of frozen tissues. Nat. Strategies 14, 959–962 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, W., Kwak, I.-Y., Pota, P., Koyano-Nakagawa, N. & Garry, D. J. DrImpute: imputing dropout occasions in single cell RNA sequencing information. BMC Bioinformatics 19, 220 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch results in single-cell RNA-sequencing information are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neftel, C. et al. An integrative mannequin of mobile states, plasticity, and genetics for glioblastoma. Cell 178, 835–849.e21 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gel, B. et al. regioneR: an R/Bioconductor package deal for the affiliation evaluation of genomic areas based mostly on permutation exams. Bioinformatics 32, 289–291 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, L. & E Futschik, M. Mfuzz: a software program package deal for tender clustering of microarray information. Bioinformation 2, 5–7 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Quick gapped-read alignment with Bowtie 2. Nat. Strategies 9, 357–359 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Mannequin-based evaluation of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: Identification of problematic areas of the genome. Sci. Rep. 9, 9354 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinz, S. et al. Easy combos of lineage-determining transcription elements prime cis-regulatory parts required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramírez, F. et al. deepTools2: a subsequent technology net server for deep-sequencing information evaluation. Nucleic Acids Res. 44, W160–W165 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levin, M. et al. The mid-developmental transition and the evolution of animal physique plans. Nature 531, 637–641 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence information. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Quick and correct quick learn alignment with Burrows–Wheeler remodel. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: quick processing of NGS alignment codecs. Bioinformatics 31, 2032–2034 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenna, A. et al. The Genome Evaluation Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing information. Genome Res. 20, 1297–1303 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boeva, V. et al. Management-FREEC: a software for assessing copy quantity and allelic content material utilizing next-generation sequencing information. Bioinformatics 28, 423–425 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Ok., Li, M. & Hakonarson, H. ANNOVAR: practical annotation of genetic variants from high-throughput sequencing information. Nucleic Acids Res. 38, e164 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. et al. MAGeCK permits sturdy identification of important genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pacold, M. E. et al. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit destiny. Nat. Chem. Biol. 12, 452–458 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simón-Manso, Y. et al. Metabolite profiling of a NIST Normal Reference Materials for human plasma (SRM 1950): GC–MS, LC–MS, NMR, and medical laboratory analyses, libraries, and web-based sources. Anal. Chem. 85, 11725–11731 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, W. W., Freinkman, E., Wang, T., Birsoy, Ok. & Sabatini, D. M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337.e11 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, C. A. et al. METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hot Topics

    Related Articles