Perl AE, Larson RA, Podoltsev NA, Strickland S, Wang ES, Atallah E, et al. Observe-up of sufferers with R/R FLT3-mutation-positive AML handled with gilteritinib within the section 3 ADMIRAL trial. Blood. 2022;139:3366–75.
Stone RM, Mandrekar SJ, Sanford BL, Laumann Okay, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377:454–64.
Institute NC. SEER*Explorer: an interactive web site for SEER most cancers statistics. 1975-2020 [cited 2023 July 3rd]; Surveillance Analysis Program. https://seer.most cancers.gov/statistics-network/explorer/.
Sasaki Okay, Ravandi F, Kadia TM, DiNardo CD, Brief NJ, Borthakur G, et al. De novo acute myeloid leukemia: a population-based research of final result in the US primarily based on the Surveillance, Epidemiology, and Finish Outcomes (SEER) database, 1980 to 2017. Most cancers. 2021;127:2049–61.
Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen Okay, et al. Recurring mutations discovered by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361:1058–66.
ElNahass YH, Badawy RH, ElRefaey FA, Nooh HA, Ibrahiem D, Nader HA, et al. IDH mutations in AML sufferers; a better affiliation with intermediate threat cytogenetics. Asian Pac J Most cancers Prev. 2020;21:721–5.
Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Krönke J, Bullinger L, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer antagonistic prognosis in cytogenetically regular acute myeloid leukemia with NPM1 mutation with out FLT3 inner tandem duplication. J Clin Oncol. 2010;28:3636–43.
Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. Genomic and epigenomic landscapes of grownup de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.
Messina M, Piciocchi A, Ottone T, Paolini S, Papayannidis C, Lessi F, et al. Prevalence and prognostic function of IDH mutations in acute myeloid leukemia: outcomes of the GIMEMA AML1516 protocol. Cancers. 2022;14:3012.
Molenaar RJ, Thota S, Nagata Y, Patel B, Clemente M, Przychodzen B, et al. Scientific and organic implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia. 2015;29:2134–42.
Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.
Jusakul A, Cutcutache I, Yong CH, Lim JQ, Huang MN, Padmanabhan N, et al. Complete-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Most cancers Discov. 2017;7:1116–35.
Amary MF, Bacsi Okay, Maggiani F, Damato S, Halai D, Berisha F, et al. IDH1 and IDH2 mutations are frequent occasions in central chondrosarcoma and central and periosteal chondromas however not in different mesenchymal tumours. J Pathol. 2011;224:334–43.
Hao Z, Cairns RA, Inoue S, Li WY, Sheng Y, Lemonnier F, et al. Idh1 mutations contribute to the event of T-cell malignancies in genetically engineered mice. Proc Natl Acad Sci USA. 2016;113:1387–92.
Inexperienced A, Beer P. Somatic mutations of IDH1 and IDH2 within the leukemic transformation of myeloproliferative neoplasms. N Engl J Med. 2010;362:369–70.
Abdel-Wahab O, Manshouri T, Patel J, Harris Okay, Yao J, Hedvat C, et al. Genetic evaluation of reworking occasions that convert persistent myeloproliferative neoplasms to leukemias. Most cancers Res. 2010;70:447–52.
Rampal R, Ahn J, Abdel-Wahab O, Nahas M, Wang Okay, Lipson D, et al. Genomic and useful evaluation of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci USA. 2014;111:E5401–5410.
Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, et al. Mutations and prognosis in major myelofibrosis. Leukemia. 2013;27:1861–9.
Keys DA, McAlister-Henn L. Subunit construction, expression, and performance of NAD(H)-specific isocitrate dehydrogenase in Saccharomyces cerevisiae. J Bacteriol. 1990;172:4280–7.
Xu X, Zhao J, Xu Z, Peng B, Huang Q, Arnold E, et al. Constructions of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of exercise. J Biol Chem. 2004;279:33946–57.
Shechter I, Dai P, Huo L, Guan G. IDH1 gene transcription is sterol regulated and activated by SREBP-1a and SREBP-2 in human hepatoma HepG2 cells: proof that IDH1 might regulate lipogenesis in hepatic cells. J Lipid Res. 2003;44:2169–80.
Jo SH, Lee SH, Chun HS, Lee SM, Koh HJ, Lee SE, et al. Mobile protection towards UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase. Biochem Biophys Res Commun. 2002;292:542–9.
Sazanov LA, Jackson JB. Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases function in a substrate cycle which contributes to high-quality regulation of the tricarboxylic acid cycle exercise in mitochondria. FEBS Lett. 1994;344:109–16.
Ward PS, Lu C, Cross JR, Abdel-Wahab O, Levine RL, Schwartz GK, et al. The potential for isocitrate dehydrogenase mutations to supply 2-hydroxyglutarate relies on allele specificity and subcellular compartmentalization. J Biol Chem. 2013;288:3804–15.
Patel JP, Gönen M, Figueroa ME, Fernandez H, Solar Z, Racevskis J, et al. Prognostic relevance of built-in genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366:1079–89.
Inexperienced CL, Evans CM, Zhao L, Hills RK, Burnett AK, Linch DC, et al. The prognostic significance of IDH2 mutations in AML relies on the placement of the mutation. Blood. 2011;118:409–12.
Boissel N, Nibourel O, Renneville A, Huchette P, Dombret H, Preudhomme C. Differential prognosis influence of IDH2 mutations in cytogenetically regular acute myeloid leukemia. Blood. 2011;117:3696–7.
Zarnegar-Lumley S, Alonzo TA, Gerbing RB, Othus M, Solar Z, Ries RE, et al. Traits and prognostic influence of IDH mutations in AML: a COG, SWOG, and ECOG evaluation. Blood Adv. 2023;7:5941–53.
Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a standard karyotype. N Engl J Med. 2005;352:254–66.
Issa GC, Bidikian A, Venugopal S, Konopleva M, DiNardo CD, Kadia TM, et al. Scientific outcomes related to NPM1 mutations in sufferers with relapsed or refractory AML. Blood Adv. 2023;7:933–42.
Becker H, Marcucci G, Maharry Okay, Radmacher MD, Mrózek Okay, Margeson D, et al. Favorable prognostic influence of NPM1 mutations in older sufferers with cytogenetically regular de novo acute myeloid leukemia and related gene- and microRNA-expression signatures: a Most cancers and Leukemia Group B research. J Clin Oncol. 2010;28:596–604.
Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Most cancers-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44.
Gregersen N, Ingerslev J, Rasmussen Okay. Low molecular weight natural acids within the urine of the new child. Acta Paediatr Scand. 1977;66:85–89.
Akbay EA, Moslehi J, Christensen CL, Saha S, Tchaicha JH, Ramkissoon SH, et al. D-2-hydroxyglutarate produced by mutant IDH2 causes cardiomyopathy and neurodegeneration in mice. Genes Dev. 2014;28:479–90.
Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG, et al. Most cancers-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and a couple of mutations. J Exp Med. 2010;207:339–44.
Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-hydroxyglutarate is a aggressive inhibitor of α-ketoglutarate-dependent dioxygenases. Most cancers Cell. 2011;19:17–30.
Scourzic L, Mouly E, Bernard OA. TET proteins and the management of cytosine demethylation in most cancers. Genome Med. 2015;7:9.
Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations lead to a hypermethylation phenotype, disrupt TET2 perform, and impair hematopoietic differentiation. Most cancers Cell. 2010;18:553–67.
Wang P, Wu J, Ma S, Zhang L, Yao J, Hoadley KA, et al. Oncometabolite D-2-hydroxyglutarate inhibits ALKBH DNA restore enzymes and sensitizes IDH mutant cells to alkylating brokers. Cell Rep. 2015;13:2353–61.
Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH mutation impairs histone demethylation and leads to a block to cell differentiation. Nature. 2012;483:474–8.
Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C, et al. (R)-2-hydroxyglutarate is enough to advertise leukemogenesis and its results are reversible. Science. 2013;339:1621–5.
Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia have an effect on epigenetic regulators and persist in remission. Proc Natl Acad Sci USA. 2014;111:2548–53.
Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic exercise and induce HIF-1alpha. Science. 2009;324:261–5.
Hu X, Li L, Eid JE, Liu C, Yu J, Yue J, et al. IDH1 mutation induces HIF-1α and confers angiogenic properties in chondrosarcoma JJ012 cells. Dis Markers. 2022;2022:7729968.
Grassian AR, Parker SJ, Davidson SM, Divakaruni AS, Inexperienced CR, Zhang X, et al. IDH1 mutations alter citric acid cycle metabolism and enhance dependence on oxidative mitochondrial metabolism. Most cancers Res. 2014;74:3317–31.
Bunse L, Pusch S, Bunse T, Sahm F, Sanghvi Okay, Friedrich M, et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med. 2018;24:1192–203.
Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S, Hansen E, et al. Focused inhibition of mutant IDH2 in leukemia cells induces mobile differentiation. Science. 2013;340:622–6.
Losman J-A, Looper RE, Kaelin WG Jr. Transformation by mutant IDH and (R)-2HG is reversible. Blood. 2012;120:2413–2413.
Fan B, Mellinghoff IK, Wen PY, Lowery MA, Goyal L, Faucet WD, et al. Scientific pharmacokinetics and pharmacodynamics of ivosidenib, an oral, focused inhibitor of mutant IDH1, in sufferers with superior stable tumors. Make investments N Medicine. 2020;38:433–44.
Frankel SR, Eardley A, Lauwers G, Weiss M, Warrell RP Jr. The “retinoic acid syndrome” in acute promyelocytic leukemia. Ann Intern Med. 1992;117:292–6.
Montesinos P, Bergua JM, Vellenga E, Rayón C, Parody R, de la Serna J, et al. Differentiation syndrome in sufferers with acute promyelocytic leukemia handled with all-trans retinoic acid and anthracycline chemotherapy: traits, final result, and prognostic elements. Blood. 2009;113:775–83.
Che-Pin L, Huang MJ, Chang IY, Lin WY, Sheu YT. Retinoic acid syndrome induced by arsenic trioxide in treating recurrent all-trans retinoic acid resistant acute promyelocytic leukemia. Leuk Lymphoma. 2000;38:195–8.
Dubois C, Schlageter MH, de Gentile A, Guidez F, Balitrand N, Toubert ME, et al. Hematopoietic development issue expression and ATRA sensitivity in acute promyelocytic blast cells. Blood. 1994;83:3264–70.
Rego EM, De Santis GC. Differentiation syndrome in promyelocytic leukemia: scientific presentation, pathogenesis and therapy. Mediterr J Hematol Infect Dis. 2011;3:e2011048.
Sanz MA, Montesinos P. How we stop and deal with differentiation syndrome in sufferers with acute promyelocytic leukemia. Blood. 2014;123:2777–82.
Rossé T, Olivier R, Monney L, Rager M, Conus S, Fellay I, et al. Bcl-2 prolongs cell survival after Bax-induced launch of cytochrome c. Nature. 1998;391:496–9.
Karakas T, Maurer U, Weidmann E, Miething CC, Hoelzer D, Bergmann L. Excessive expression of bcl-2 mRNA as a determinant of poor prognosis in acute myeloid leukemia. Ann Oncol. 1998;9:159–65.
Tiribelli M, Michelutti A, Cavallin M, Di Giusto S, Simeone E, Fanin R, et al. BCL-2 expression in AML sufferers over 65 years: influence on outcomes throughout completely different therapeutic methods. J Clin Med. 2021;10:5096.
Zhou JD, Zhang TJ, Xu ZJ, Gu Y, Ma JC, Li XX, et al. BCL2 overexpression: scientific implication and organic insights in acute myeloid leukemia. Diagn Pathol. 2019;14:68.
Chan SM, Thomas D, Corces-Zimmerman MR, Xavy S, Rastogi S, Hong WJ, et al. Isocitrate dehydrogenase 1 and a couple of mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med. 2015;21:178–84.
DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in beforehand untreated acute myeloid leukemia. N Engl J Med. 2020;383:617–29.
Pollyea DA, DiNardo CD, Arellano ML, Pigneux A, Fiedler W, Konopleva M, et al. Affect of venetoclax and azacitidine in treatment-naïve sufferers with acute myeloid leukemia and IDH1/2 mutations. Clin Most cancers Res. 2022;28:2753–61.
Wei AH, Montesinos P, Ivanov V, DiNardo CD, Novak J, Laribi Okay, et al. Venetoclax plus LDAC for newly identified AML ineligible for intensive chemotherapy: a section 3 randomized placebo-controlled trial. Blood. 2020;135:2137–45.
Popovici-Muller J, Lemieux RM, Artin E, Saunders JO, Salituro FG, Travins J, et al. Discovery of AG-120 (Ivosidenib): a first-in-class mutant IDH1 inhibitor for the therapy of IDH1 mutant cancers. ACS Med Chem Lett. 2018;9:300–5.
DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Sturdy remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378:2386–98.
Roboz GJ, DiNardo CD, Stein EM, de Botton S, Mims AS, Prince GT, et al. Ivosidenib induces deep sturdy remissions in sufferers with newly identified IDH1-mutant acute myeloid leukemia. Blood. 2020;135:463–71.
DiNardo CD, Stein AS, Stein EM, Fathi AT, Frankfurt O, Schuh AC, et al. Mutant isocitrate dehydrogenase 1 inhibitor ivosidenib together with azacitidine for newly identified acute myeloid leukemia. J Clin Oncol. 2021;39:57–65.
Montesinos P, Recher C, Vives S, Zarzycka E, Wang J, Bertani G, et al. Ivosidenib and azacitidine in IDH1-mutated acute myeloid leukemia. N Engl J Med. 2022;386:1519–31.
Goodman AM, Mohyuddin GR, Prasad V. Ivosidenib and azacitidine in IDH1-mutated AML. N Engl J Med. 2022;386:2536.
Smith BD, Lachowiez CA, Ambinder AJ, Binder G, Angiolillo A, Vestin A, et al. A comparability of acute myeloid leukemia (AML) regimens: hypomethylating brokers mixed with ivosidenib or venetoclax in newly identified sufferers with IDH1 mutations: a real-world proof research. Blood. 2023;142:971–971.
Lachowiez CA, Loghavi S, Zeng Z, Tanaka T, Kim YJ, Uryu H, et al. A section Ib/II research of ivosidenib with venetoclax ± azacitidine in IDH1-mutated myeloid malignancies. Blood Most cancers Discov. 2023;4:276–93.
Atluri H, Mullin J, Takahashi Okay, Loghavi S, Maiti A, Sasaki Okay, et al. Section Ib/2 research of oral decitabine/cedazuridine (ASTX727) and venetoclax together with the focused mutant IDH1 inhibitor ivosidenib or the focused mutant IDH2 inhibitor enasidenib: 2023 replace. Blood. 2023;142:968–968.
Stein EM, DiNardo CD, Fathi AT, Mims AS, Pratz KW, Savona MR, et al. Ivosidenib or enasidenib mixed with intensive chemotherapy in sufferers with newly identified AML: a section 1 research. Blood. 2021;137:1792–803.
Caravella JA, Lin J, Diebold RB, Campbell AM, Ericsson A, Gustafson G, et al. Construction-based design and identification of FT-2102 (Olutasidenib), a potent mutant-selective IDH1 inhibitor. J Med Chem. 2020;63:1612–23.
Venugopal S, Watts J. Olutasidenib: from bench to bedside. Blood Adv. 2023;7:4358–65.
Watts JM, Baer MR, Yang J, Prebet T, Lee S, Schiller GJ, et al. Olutasidenib alone or with azacitidine in IDH1-mutated acute myeloid leukaemia and myelodysplastic syndrome: section 1 outcomes of a section 1/2 trial. Lancet Haematol. 2023;10:e46–e58.
de Botton S, Fenaux P, Yee Okay, Récher C, Wei AH, Montesinos P, et al. Olutasidenib (FT-2102) induces sturdy full remissions in sufferers with relapsed or refractory IDH1-mutated AML. Blood Adv. 2023;7:3117–27.
Cortes J, Jurcic J, Baer MR, Blum W, Ferrell PB Jr., Jonas BA, et al. Olutasidenib for the therapy of mIDH1 acute myeloid leukemia in sufferers relapsed or refractory to hematopoietic stem cell transplant, prior mIDH1 inhibitor, or venetoclax. Blood. 2023;142:2888.
Yen Okay, Travins J, Wang F, David MD, Artin E, Straley Okay, et al. AG-221, a first-in-class remedy focusing on acute myeloid leukemia harboring oncogenic IDH2 mutations. Most cancers Discov. 2017;7:478–93.
Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130:722–31.
Amatangelo MD, Quek L, Shih A, Stein EM, Roshal M, David MD, et al. Enasidenib induces acute myeloid leukemia cell differentiation to advertise scientific response. Blood. 2017;130:732–41.
de Botton S, Montesinos P, Schuh AC, Papayannidis C, Vyas P, Wei AH, et al. Enasidenib vs standard care in older sufferers with late-stage mutant-IDH2 relapsed/refractory AML: a randomized section 3 trial. Blood. 2023;141:156–67.
Richard-Carpentier G, Gupta G, Cameron C, Cathelin S, Bankar A, Davidson MB, et al. Last outcomes of the section Ib/II research evaluating enasidenib together with venetoclax in sufferers with IDH2-mutated relapsed/refractory myeloid malignancies. Blood. 2023;142:159–159.
Pollyea DA, Tallman MS, de Botton S, Kantarjian HM, Collins R, Stein AS, et al. Enasidenib, an inhibitor of mutant IDH2 proteins, induces sturdy remissions in older sufferers with newly identified acute myeloid leukemia. Leukemia. 2019;33:2575–84.
DiNardo CD, Schuh AC, Stein EM, Montesinos P, Wei AH, de Botton S, et al. Enasidenib plus azacitidine versus azacitidine alone in sufferers with newly identified, mutant-IDH2 acute myeloid leukaemia (AG221-AML-005): a single-arm, section 1b and randomised, section 2 trial. Lancet Oncol. 2021;22:1597–608.
Venugopal S, Takahashi Okay, Daver N, Maiti A, Borthakur G, Loghavi S, et al. Efficacy and security of enasidenib and azacitidine mixture in sufferers with IDH2 mutated acute myeloid leukemia and never eligible for intensive chemotherapy. Blood Most cancers J. 2022;12:10.

