Automated brain-tumor analysis utilizing cascaded deep convolutional neural networks with symmetric U-Internet and uneven residual-blocks


  • Siegel, R. L., Miller, Okay. D. & Jemal, A. Most cancers statistics, 2019. CA Most cancers J. Clin. 69, 7–34. https://doi.org/10.3322/caac.21551 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Abd-Ellah, M. Okay., Khalaf, A. A. M., Awad, A. I. & Hamed, H. F. A. TPUAR-Internet: Two parallel u-net with uneven residual-based deep convolutional neural community for mind tumor segmentation. In Picture Evaluation and Recognition (eds Karray, F. et al.) 106–116 (Springer, 2019).

    Chapter 

    Google Scholar
     

  • Abd-Ellah, M. Okay., Awad, A. I., Khalaf, A. A. M. & Hamed, H. F. A. Classification of mind tumor MRIs utilizing a kernel assist vector machine. In Constructing Sustainable Well being Ecosystems: sixth Worldwide Convention on Properly-Being within the Info Society, WIS 2016, CCIS, vol. 636, 151–160. https://doi.org/10.1007/978-3-319-44672-1_13 (2016).

  • Havaei, M. et al. Mind tumor segmentation with deep neural networks. Med. Picture Anal. 35, 18–31. https://doi.org/10.1016/j.media.2016.05.004 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Abd-Ellah, M. Okay., Awad, A. I., Khalaf, A. A. M. & Hamed, H. F. A. Two-phase multi-model automated mind tumour analysis system from magnetic resonance pictures utilizing convolutional neural networks. EURASIP J. Picture Video Course of. 97, 1–10 (2018).


    Google Scholar
     

  • Madabhushi, A. & Lee, G. Picture evaluation and machine studying in digital pathology: Challenges and alternatives. Med. Picture Anal. 33, 170–175. https://doi.org/10.1016/j.media.2016.06.037 (2016). (twentieth anniversary of the Medical Picture Evaluation journal (MedIA)).

  • Sultan, H. H., Salem, N. M. & Al-Atabany, W. Multi-classification of mind tumor pictures utilizing deep neural community. IEEE Entry 7, 69215–69225. https://doi.org/10.1109/ACCESS.2019.2919122 (2019).

    Article 

    Google Scholar
     

  • Ullah, M. S. et al. Mind tumor classification from MRI scans: A framework of hybrid deep studying mannequin with Bayesian optimization and quantum theory-based marine predator algorithm. Entrance. Oncol.https://doi.org/10.3389/fonc.2024.1335740 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rauf, F. et al. Automated deep bottleneck residual 82-layered structure with Bayesian optimization for the classification of mind and customary maternal fetal ultrasound planes. Entrance. Med.https://doi.org/10.3389/fmed.2023.1330218 (2023).

    Article 

    Google Scholar
     

  • Khan, M. A. et al. Deep-Internet: Effective-tuned deep neural community multi-features fusion for mind tumor recognition. Comput. Mater. Contin. 76, 3029–3047. https://doi.org/10.32604/cmc.2023.038838 (2023).

    Article 

    Google Scholar
     

  • Soltaninejad, M. et al. Automated mind tumour detection and segmentation utilizing superpixel-based extraordinarily randomized timber in aptitude MRI. Int. J. Comput. Help. Radiol. Surg. 12, 183–203. https://doi.org/10.1007/s11548-016-1483-3 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Nazir, Okay. et al. 3D kronecker convolutional function pyramid for mind tumor semantic segmentation in MR imaging. Comput. Mater. Contin. 76, 2861–2877. https://doi.org/10.32604/cmc.2023.039181 (2023).

    Article 

    Google Scholar
     

  • Khan, W. R. et al. A hybrid attention-based residual Unet for semantic segmentation of mind tumor. Comput. Mater. Contin. 76, 647–664. https://doi.org/10.32604/cmc.2023.039188 (2023).

    Article 

    Google Scholar
     

  • Hinton, G. E., Osindero, S. & Teh, Y.-W. A quick studying algorithm for deep perception nets. Neural Comput. 18, 1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527 (2006).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Suk, H.-I., Lee, S.-W. & Shen, D. Deep ensemble studying of sparse regression fashions for mind illness analysis. Med. Picture Anal. 37, 101–113. https://doi.org/10.1016/j.media.2017.01.008 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Dahshan, E.-S.A., Hosny, T. & Salem, A.-B.M. Hybrid clever strategies for MRI mind pictures classification. Digit. Sign Course of. 20, 433–441 (2010).

    Article 

    Google Scholar
     

  • Abd-Ellah, M. Okay., Awad, A. I., Khalaf, A. A. M. & Hamed, H. F. A. Design and implementation of a computer-aided analysis system for mind tumor classification. In 2016 twenty eighth Worldwide Convention on Microelectronics (ICM), 73–76. https://doi.org/10.1109/ICM.2016.7847911 (2016).

  • Zhang, Y., Dong, Z., Wua, L. & Wanga, S. A hybrid technique for MRI mind picture classification. Knowledgeable Syst. Appl. 38, 10049–10053 (2011).

    Article 

    Google Scholar
     

  • Lakshmi Devasena, C. & Hemalatha, M. Environment friendly pc aided analysis of irregular elements detection in magnetic resonance pictures utilizing hybrid abnormality detection algorithm. Cent. Eur. J. Comput. Sci. 3, 117–128. https://doi.org/10.2478/s13537-013-0107-z (2013).

    Article 

    Google Scholar
     

  • Patil, S. & Udupi, V. R. A pc aided diagnostic system for classification of braintumors utilizing texture options and probabilistic neural community. Int. J. Comput. Sci. Eng. Inf. Technol. Res. IJCSEITR 3, 61–66 (2013).


    Google Scholar
     

  • Arakeri, M. P. & Reddy, G. R. M. Laptop-aided analysis system for tissue characterization of mind tumor on magnetic resonance pictures. SIViP 9, 409–425. https://doi.org/10.1007/s11760-013-0456-z (2015).

    Article 

    Google Scholar
     

  • Goswami, S. & Bhaiya, L. Okay. P. Mind tumor detection utilizing unsupervised studying primarily based neural community. In 2013 Worldwide Convention on Communication Techniques and Community Applied sciences 573–577. IEEE (2013).

  • Deepa, S. N. & Devi, B. Synthetic neural networks design for classification of mind tumour. In 2012 Worldwide Convention on Laptop Communication and Informatics (ICCCI-2012) 1–6 (IEEE, 10–12 Jan. 2012).

  • Saritha, M., Joseph, Okay. P. & Mathew, A. T. Classification of MRI mind pictures utilizing mixed wavelet entropy primarily based spider net plots and probabilistic neural community. Sample Recognit. Lett. 34, 2151–2156 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Yang, G. et al. Automated classification of mind pictures utilizing wavelet-energy and biogeography-based optimization. Multimedia Instruments Appl. 26, 1–17 (2015).


    Google Scholar
     

  • Kalbkhani, H., Shayesteh, M. G. & Zali-Vargahan, B. Strong algorithm for mind magnetic resonance picture (MRI) classification primarily based on GARCH variances collection. Biomed. Sign Course of. Management 8, 909–919 (2013).

    Article 

    Google Scholar
     

  • Mallikarjun Mudda, N. Okay. & Manjunath, R. Mind tumor classification utilizing enhanced statistical texture options. IETE J. Res. 68, 3695–3706. https://doi.org/10.1080/03772063.2020.1775501 (2022).

    Article 

    Google Scholar
     

  • Asiri, A. A. et al. Machine learning-based fashions for magnetic resonance imaging (MRI)-based mind tumor classification. Intell. Autom. Delicate Comput. 36, 299–312. https://doi.org/10.32604/iasc.2023.032426 (2023).

    Article 

    Google Scholar
     

  • Mohsen, H., El-Dahshan, E.-S.A., El-Horbaty, E.-S.M. & Salem, A.-B.M. Classification utilizing deep studying neural networks for mind tumors. Future Comput. Inf. J. 3, 68–71 (2018).

    Article 

    Google Scholar
     

  • Tazin, T. et al. A sturdy and novel method for mind tumor classification utilizing convolutional neural community. Comput. Intell. Neurosci.https://doi.org/10.1155/2021/2392395 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alsaif, H. et al. A novel information augmentation-based mind tumor detection utilizing convolutional neural community. Appl. Sci.https://doi.org/10.3390/app12083773 (2022).

    Article 

    Google Scholar
     

  • Menze, B. H. et al. The multimodal mind tumor picture segmentation benchmark (brats). IEEE Trans. Med. Imaging 34, 1993–2024. https://doi.org/10.1109/TMI.2014.2377694 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Gooya, A. et al. GLISTR: Glioma picture segmentation and registration. IEEE Trans. Med. Imaging 31, 1941–1954. https://doi.org/10.1109/TMI.2012.2210558 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menze, B. H. et al. A generative mannequin for mind tumor segmentation in multi-modal pictures. In Medical Picture Computing and Laptop-Assisted Intervention – MICCAI 2010 (eds Jiang, T. et al.) 151–159 (Springer, 2010).


    Google Scholar
     

  • Prastawa, M., Bullitt, E., Ho, S. & Gerig, G. A mind tumor segmentation framework primarily based on outlier detection. Med. Picture Anal. 8, 275–283. https://doi.org/10.1016/j.media.2004.06.007 (2004) (Medical Picture Computing and Laptop-Assisted Intervention – MICCAI 2003).

    Article 
    PubMed 

    Google Scholar
     

  • Prastawa, M., Bullitt, E., Ho, S. & Gerig, G. Strong estimation for mind tumor segmentation. In Medical Picture Computing and Laptop-Assisted Intervention—MICCAI 2003 (eds Ellis, R. E. & Peters, T. M.) 530–537 (Springer, 2003).


    Google Scholar
     

  • Khotanlou, H., Colliot, O., Atif, J. & Bloch, I. 3D mind tumor segmentation in MRI utilizing fuzzy classification, symmetry evaluation and spatially constrained deformable fashions. Fuzzy Units Syst. 160, 1457–1473. https://doi.org/10.1016/j.fss.2008.11.016 (2009). Particular Difficulty: Fuzzy Units in Interdisciplinary Notion and Intelligence.

  • Popuri, Okay., Cobzas, D., Murtha, A. & Jägersand, M. 3D variational mind tumor segmentation utilizing Dirichlet priors on a clustered function set. Int. J. Comput. Help. Radiol. Surg. 7, 493–506. https://doi.org/10.1007/s11548-011-0649-2 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Parisot, S., Duffau, H., Chemouny, S. & Paragios, N. Joint tumor segmentation and dense deformable registration of mind MR pictures. In Medical Picture Computing and Laptop-Assisted Intervention – MICCAI 2012, 651–658 (Springer (eds Ayache, N. et al.) (2012).

  • Subbanna, N., Precup, D. & Arbel, T. Iterative multilevel mrf leveraging context and voxel info for mind tumour segmentation in MRI. In 2014 IEEE Convention on Laptop Imaginative and prescient and Sample Recognition, 400–405. https://doi.org/10.1109/CVPR.2014.58 (2014).

  • Subbanna, N. Okay., Precup, D., Collins, D. L. & Arbel, T. Hierarchical probabilistic gabor and mrf segmentation of mind tumours in mri volumes. In Medical Picture Computing and Laptop-Assisted Intervention – MICCAI 2013, 751–758 (Springer (eds Mori, Okay. et al.) (2013).

  • Goetz, W. C. B. J. S. B. M. H.-P. M.-H. Okay., M. Extraordinarily randomized timber primarily based mind tumor segmentation. In Proceedings MICCAI BraTS (Mind Tumor Segmentation Problem), 6–11 (2014).

  • Kleesiek, B. A. U. G. Okay. U. B. M. H. F., J. ilastik for multi-modal mind tumor segmentation. In In: Proceedings MICCAI BraTS (Mind Tumor Segmentation Problem), 12–17 (2014).

  • Havaei, M., Jodoin, P. & Larochelle, H. Environment friendly interactive mind tumor segmentation as within-brain knn classification. In 2014 twenty second Worldwide Convention on Sample Recognition, 556–561, https://doi.org/10.1109/ICPR.2014.106 (2014).

  • Hamamci, A., Kucuk, N., Karaman, Okay., Engin, Okay. & Unal, G. Tumor-cut: Segmentation of mind tumors on distinction enhanced MR pictures for radiosurgery purposes. IEEE Trans. Med. Imaging 31, 790–804. https://doi.org/10.1109/TMI.2011.2181857 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Li, H. & Fan, Y. Label propagation with sturdy initialization for mind tumor segmentation. In 2012 ninth IEEE Worldwide Symposium on Biomedical Imaging (ISBI), 1715–1718, https://doi.org/10.1109/ISBI.2012.6235910 (2012).

  • Ruan, S., Lebonvallet, S., Merabet, A. & Constans, J. Tumor segmentation from a multispectral mri pictures by utilizing assist vector machine classification. In 2007 4th IEEE Worldwide Symposium on Biomedical Imaging: From Nano to Macro, 1236–1239, https://doi.org/10.1109/ISBI.2007.357082 (2007).

  • Girshick, R., Donahue, J., Darrell, T. & Malik, J. Wealthy function hierarchies for correct object detection and semantic segmentation. In 2014 IEEE Convention on Laptop Imaginative and prescient and Sample Recognition, 580–587, https://doi.org/10.1109/CVPR.2014.81 (2014).

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90. https://doi.org/10.1145/3065386 (2017).

    Article 

    Google Scholar
     

  • Lengthy, J., Shelhamer, E. & Darrell, T. Totally convolutional networks for semantic segmentation. In 2015 IEEE Convention on Laptop Imaginative and prescient and Sample Recognition (CVPR), 3431–3440, https://doi.org/10.1109/CVPR.2015.7298965 (2015).

  • Zheng, S. et al. Conditional random fields as recurrent neural networks. In 2015 IEEE Worldwide Convention on Laptop Imaginative and prescient (ICCV), 1529–1537, https://doi.org/10.1109/ICCV.2015.179 (2015).

  • Liu, Z., Li, X., Luo, P., Loy, C. & Tang, X. Semantic picture segmentation through deep parsing community. In 2015 IEEE Worldwide Convention on Laptop Imaginative and prescient (ICCV), 1377–1385, https://doi.org/10.1109/ICCV.2015.162 (2015).

  • Zikic, D., Ioannou, Y., Criminisi, A. & Brown, M. Segmentation of mind tumor tissues with convolutional neural networks. In MICCAI workshop on Multimodal Mind Tumor Segmentation Problem (BRATS) (Springer, 2014).

  • Havaei, M. et al. Mind tumor segmentation with deep neural networks. In In: Proceedings MICCAI BraTS (Mind Tumor Segmentation Problem), 1–5 (2014).

  • City, G., Bendszus, M., Hamprecht, F. A. & Kleesiek, J. Multi-modal mind tumor segmentation utilizing deep convolutional neuralnetworks. In In: Proceedings MICCAI BraTS (Mind Tumor Segmentation Problem), 31–35 (2014).

  • Vaidhya, Okay., Thirunavukkarasu, S., Alex, V. & Krishnamurthi, G. Multi-modal mind tumor segmentation utilizing stacked denoising autoencoders. In Crimi, A., Menze, B., Maier, O., Reyes, M. & Handels, H. (eds.) Brainlesion: Glioma, A number of Sclerosis, Stroke and Traumatic Mind Accidents, 181–194, https://doi.org/10.1007/978-3-319-30858-6_16 (Springer Worldwide Publishing, Cham, 2016).

  • Agn, M., Puonti, O., Rosenschöld, P. M. a., Legislation, I. & Van Leemput, Okay. Mind tumor segmentation utilizing a generative mannequin with an rbm prior on tumor form. In Crimi, A., Menze, B., Maier, O., Reyes, M. & Handels, H. (eds.) Brainlesion: Glioma, A number of Sclerosis, Stroke and Traumatic Mind Accidents, 168–180, https://doi.org/10.1007/978-3-319-30858-6_15 (Springer Worldwide Publishing, Cham, 2016).

  • Dvořák, P. & Menze, B. Native construction prediction with convolutional neural networks for multimodal mind tumor segmentation. In Menze, B. et al. (eds.) Medical Laptop Imaginative and prescient: Algorithms for Large Information, 59–71, https://doi.org/10.1007/978-3-319-42016-5_6 (Springer Worldwide Publishing, Cham, 2016).

  • Havaei, M., Dutil, F., Pal, C., Larochelle, H. & Jodoin, P.-M. A convolutional neural community method to mind tumor segmentation. In Crimi, A., Menze, B., Maier, O., Reyes, M. & Handels, H. (eds.) Brainlesion: Glioma, A number of Sclerosis, Stroke and Traumatic Mind Accidents, 195–208, https://doi.org/10.1007/978-3-319-30858-6_17 (Springer Worldwide Publishing, Cham, 2016).

  • Pereira, S., Pinto, A., Alves, V. & Silva, C. A. Deep convolutional neural networks for the segmentation of gliomas in multi-sequence mri. In Crimi, A., Menze, B., Maier, O., Reyes, M. & Handels, H. (eds.) Brainlesion: Glioma, A number of Sclerosis, Stroke and Traumatic Mind Accidents, 131–143, https://doi.org/10.1007/978-3-319-30858-6_12 (Springer Worldwide Publishing, Cham, 2016).

  • Pereira, S., Pinto, A., Alves, V. & Silva, C. A. Mind tumor segmentation utilizing convolutional neural networks in MRI pictures. IEEE Trans. Med. Imaging 35, 1240–1251. https://doi.org/10.1109/TMI.2016.2538465 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Pereira, S., Oliveira, A., Alves, V. & Silva, C. A. On hierarchical mind tumor segmentation in MRI utilizing totally convolutional neural networks: A preliminary examine. In 2017 IEEE fifth Portuguese Assembly on Bioengineering (ENBENG), 1–4, https://doi.org/10.1109/ENBENG.2017.7889452 (2017).

  • Zhao, X. et al. A deep studying mannequin integrating FCNNs and CRFs for mind tumor segmentation. Med. Picture Anal. 43, 98–111. https://doi.org/10.1016/j.media.2017.10.002 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kamnitsas, Okay. et al. Environment friendly multi-scale 3D CNN with totally related CRF for correct mind lesion segmentation. Med. Picture Anal. 36, 61–78. https://doi.org/10.1016/j.media.2016.10.004 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yi, D., Zhou, M., Chen, Z. & Gevaert, O. three-D convolutional neural networks for glioblastoma segmentation. CoRR (2016). arXiv:1611.04534.

  • Wang, Y. et al. Modality-pairing studying for mind tumor segmentation. In Crimi, A. & Bakas, S. (eds.) Brainlesion: Glioma, A number of Sclerosis, Stroke and Traumatic Mind Accidents, 230–240 (Springer Worldwide Publishing, Cham, 2021).

  • Zhang, D. et al. Cross-modality deep function studying for mind tumor segmentation. Sample Recogn. 110, 107562. https://doi.org/10.1016/j.patcog.2020.107562 (2021).

    Article 

    Google Scholar
     

  • Remya, R., Parimala, G. Okay. & Sundaravadivelu, S. Enhanced dwt filtering approach for mind tumor detection. IETE J. Res. 68, 1532–1541. https://doi.org/10.1080/03772063.2019.1656555 (2022).

    Article 

    Google Scholar
     

  • Myronenko, A. 3d mri mind tumor segmentation utilizing autoencoder regularization. In Crimi, A. et al. (eds.) Brainlesion: Glioma, A number of Sclerosis, Stroke and Traumatic Mind Accidents, 311–320 (Springer Worldwide Publishing, Cham, 2019).

  • Fritscher, Okay. et al. Deep neural networks for quick segmentation of 3d medical pictures. In Ourselin, S., Joskowicz, L., Sabuncu, M. R., Unal, G. & Wells, W. (eds.) Medical Picture Computing and Laptop-Assisted Intervention – MICCAI 2016, 158–165, https://doi.org/10.1007/978-3-319-46723-8_19 (Springer Worldwide Publishing, Cham, 2016).

  • Zhao, X. et al. Mind tumor segmentation utilizing a completely convolutional neural community with conditional random fields. In Brainlesion: Glioma, A number of Sclerosis, Stroke and Traumatic Mind Accidents: Second Worldwide Workshop, BrainLes 2016, with the Challenges on BRATS, ISLES and mTOP 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised Chosen Papers, 75–87, https://doi.org/10.1007/978-3-319-55524-9_8 (2016).

  • Dong, H., Yang, G., Liu, F., Mo, Y. & Guo, Y. Automated mind tumor detection and segmentation utilizing U-Internet primarily based totally convolutional networks. In Valdés Hernández, M. & González-Castro, V. (eds.) Medical Picture Understanding and Evaluation, 506–517 (Springer Worldwide Publishing, Cham, 2017).

  • Abd-Ellah, M. Okay., Awad, A. I., Khalaf, A. A. & Hamed, H. F. A overview on mind tumor analysis from MRI pictures: Sensible implications, key achievements, and classes discovered. Magn. Reson. Imaging 61, 300–318. https://doi.org/10.1016/j.mri.2019.05.028 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Pan, Y. et al. Mind tumor grading primarily based on neural networks and convolutional neural networks. In 2015 thirty seventh Annual Worldwide Convention of the IEEE Engineering in Medication and Biology Society (EMBC), 699–702, https://doi.org/10.1109/EMBC.2015.7318458 (2015).

  • Ye, F., Pu, J., Wang, J., Li, Y. & Zha, H. Glioma grading primarily based on 3d multimodal convolutional neural community and privileged studying. In 2017 IEEE Worldwide Convention on Bioinformatics and Biomedicine (BIBM), 759–763, https://doi.org/10.1109/BIBM.2017.8217751 (2017).

  • Ge, C., Qu, Q., Gu, I. Y. & Retailer Jakola, A. 3d multi-scale convolutional networks for glioma grading utilizing mr pictures. In 2018 twenty fifth IEEE Worldwide Convention on Picture Processing (ICIP), 141–145, https://doi.org/10.1109/ICIP.2018.8451682 (2018).

  • Sultan, H. H., Salem, N. M. & Al-Atabany, W. Multi-classification of mind tumor pictures utilizing deep neural community. IEEE Entry 7, 69215–69225. https://doi.org/10.1109/ACCESS.2019.2919122 (2019).

    Article 

    Google Scholar
     

  • Anaraki, A. Okay., Ayati, M. & Kazemi, F. Magnetic resonance imaging-based mind tumor grades classification and grading through convolutional neural networks and genetic algorithms. Biocybern. Biomed. Eng. 39, 63–74. https://doi.org/10.1016/j.bbe.2018.10.004 (2019).

    Article 

    Google Scholar
     

  • Abd-Ellah, M. Okay., Awad, A. I., Hamed, H. F. A. & Khalaf, A. A. M. Parallel deep cnn construction for glioma detection and classification through mind mri pictures. In 2019 thirty first Worldwide Convention on Microelectronics (ICM), 304–307, https://doi.org/10.1109/ICM48031.2019.9021872 (2019).

  • He, Okay., Zhang, X., Ren, S. & Solar, J. Delving deep into rectifiers: Surpassing human-level efficiency on imagenet classification. Laptop Imaginative and prescient and Sample Recognition (2015). arXiv:1502.01852.

  • He, Okay., Zhang, X., Ren, S. & Solar, J. Identification mappings in deep residual networks. In Leibe, B., Matas, J., Sebe, N. & Welling, M. (eds.) Laptop Imaginative and prescient – ECCV 2016, 630–645 (Springer Worldwide Publishing, Cham, 2016).

  • Miller, J. W., Goodman, R. & Smyth, P. On loss features which decrease to conditional anticipated values and posterior chances. IEEE Trans. Inf. Principle 39, 1404–1408. https://doi.org/10.1109/18.243457 (1993).

    Article 

    Google Scholar
     

  • Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep community coaching by lowering inner covariate shift. CoRR (2015). arXiv:1502.03167.

  • Szabó, S. et al. Classification evaluation instrument: a program to measure the uncertainty of classification fashions when it comes to class-level metrics. Utilized Delicate Computing 111468, https://doi.org/10.1016/j.asoc.2024.111468 (2024).

  • Aydin OU, H. A. Okay. A. G. I. F. J.-F. D. M. V., Taha AA. On the utilization of common hausdorff distance for segmentation efficiency evaluation: hidden error when used for rating. Eur Radiol Exp.5, 1–7, https://doi.org/10.1186/s41747-020-00200-2 (2021).

  • Wang, G., Li, W., Ourselin, S. & Vercauteren, T. Automated mind tumor segmentation utilizing convolutional neural networks with test-time augmentation. In Crimi, A. et al. (eds.) Brainlesion: Glioma, A number of Sclerosis, Stroke and Traumatic Mind Accidents, 61–72, https://doi.org/10.1007/978-3-030-11726-9_6 (Springer Worldwide Publishing, Cham, 2019).

  • Le, H. T. & Pham, H.T.-T. Mind tumour segmentation utilizing U-Internet primarily based totally convolutional networks and very randomized timber. Vietnam J. Sci. Technol. Eng. 60, 19–25. https://doi.org/10.31276/VJSTE.60(3).19 (2018).

    Article 

    Google Scholar
     

  • Hot Topics

    Related Articles