From biology to the clinic — exploring liver metastasis in prostate most cancers


  • Siegel, R. L., Miller, Okay. D., Wagle, N. S. & Jemal, A. Most cancers statistics, 2023. CA Most cancers J. Clin. 73, 17–48 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, B., Wells, A., Wei, L. & Zheng, J. Prostate most cancers liver metastasis: dormancy and resistance to remedy. Semin. Most cancers Biol. 71, 2–9 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsilimigras, D. I. et al. Liver metastases. Nat. Rev. Dis. Prim. 7, 27 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gandaglia, G. et al. Affect of the location of metastases on survival in sufferers with metastatic prostate most cancers. Eur. Urol. 68, 325–334 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Pond, G. R. et al. The prognostic significance of metastatic web site in males with metastatic castration-resistant prostate most cancers. Eur. Urol. 65, 3–6 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Halabi, S. et al. Meta-analysis evaluating the influence of web site of metastasis on general survival in males with castration-resistant prostate most cancers. J. Clin. Oncol. 34, 1652–1659 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heck, M. M. et al. Remedy end result, toxicity, and predictive elements for radioligand remedy with (177)Lu-PSMA-I&T in metastatic castration-resistant prostate most cancers. Eur. Urol. 75, 920–926 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahbar, Okay. et al. PSMA focused radioligand remedy in metastatic castration resistant prostate most cancers after chemotherapy, abiraterone and/or enzalutamide. A retrospective evaluation of general survival. Eur. J. Nucl. Med. Mol. Imaging 45, 12–19 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beltran, H. et al. A section II trial of the Aurora kinase A inhibitor alisertib for sufferers with castration-resistant and neuroendocrine prostate most cancers: efficacy and biomarkers. Clin. Most cancers Res. 25, 43–51 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gandaglia, G. et al. Distribution of metastatic websites in sufferers with prostate most cancers: a population-based evaluation. Prostate 74, 210–216 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Haffner, M. C. et al. Monitoring the clonal origin of deadly prostate most cancers. J. Clin. Make investments. 123, 4918–4922 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Dessel, L. F. et al. Utility of circulating tumor DNA in potential scientific oncology trials — standardization of preanalytical situations. Mol. Oncol. 11, 295–304 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Eyben, F. E., Picchio, M., von Eyben, R., Rhee, H. & Bauman, G. 68Ga-labeled prostate-specific membrane antigen ligand positron emission tomography/computed tomography for prostate most cancers: a scientific evaluation and meta-analysis. Eur. Urol. Focus. 4, 686–693 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Damjanovic, J. et al. 68Ga-PSMA-PET/CT for the analysis of liver metastases in sufferers with prostate most cancers. Most cancers Imaging 19, 37 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roviello, G., Petrioli, R., Villari, D. & D’Angelo, A. Treating de novo metastatic castration-sensitive prostate most cancers with visceral metastases: an evolving subject. Clin. Genitourin. Most cancers 19, 83–86 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Khreish, F. et al. Response and end result of liver metastases in sufferers with metastatic castration-resistant prostate most cancers (mCRPC) present process 177Lu-PSMA-617 radioligand remedy. Eur. J. Nucl. Med. Mol. Imaging 48, 103–112 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bubendorf, L. et al. Metastatic patterns of prostate most cancers: an post-mortem examine of 1,589 sufferers. Hum. Pathol. 31, 578–583 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah, R. B. et al. Androgen-independent prostate most cancers is a heterogeneous group of ailments: classes from a speedy post-mortem program. Most cancers Res. 64, 9209–9216 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pezaro, C. et al. Visceral illness in castration-resistant prostate most cancers. Eur. Urol. 65, 270–273 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van den Bergh, G. P. A. et al. Incidence and survival of castration-resistant prostate most cancers sufferers with visceral metastases: outcomes from the Dutch CAPRI-registry. Prostate Most cancers Prostatic Dis. 26, 162–169 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Deng, Y. et al. A surveillance, epidemiology and finish outcomes database evaluation of the prognostic worth of organ-specific metastases in sufferers with superior prostatic adenocarcinoma. Oncol. Lett. 18, 1057–1070 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shou, J., Zhang, Q., Wang, S. & Zhang, D. The prognosis of various distant metastases sample in prostate most cancers: a inhabitants based mostly retrospective examine. Prostate 78, 491–497 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cotogno, P. M., Ranasinghe, L. Okay., Ledet, E. M., Lewis, B. E. & Sartor, O. Laboratory-based biomarkers and liver metastases in metastatic castration-resistant prostate most cancers. Oncologist 23, 791–797 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranasinghe, L. et al. Relationship between serum markers and quantity of liver metastases in castration-resistant prostate most cancers. Most cancers Deal with. Res. Commun. 20, 100151 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Rahbar, Okay. et al. German multicenter examine investigating 177Lu-PSMA-617 radioligand remedy in superior prostate most cancers sufferers. J. Nucl. Med. 58, 85–90 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmadzadehfar, H. et al. Prior therapies as prognostic elements of general survival in metastatic castration-resistant prostate most cancers sufferers handled with [177Lu]Lu-PSMA-617. A WARMTH multicenter examine (the 617 trial). Eur. J. Nucl. Med. Mol. Imaging 48, 113–122 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kessel, Okay. et al. Second line chemotherapy and visceral metastases are related to poor survival in sufferers with mCRPC receiving 177Lu-PSMA-617. Theranostics 9, 4841–4848 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luna-Gutierrez, M. et al. Bettering general survival and high quality of life in sufferers with prostate most cancers and neuroendocrine tumors utilizing 177Lu-iPSMA and 177Lu-DOTATOC: expertise after 905 therapy doses. Pharmaceutics 15, 1988 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fendler, W. P. et al. Prostate-specific membrane antigen ligand positron emission tomography in males with nonmetastatic castration-resistant prostate most cancers. Clin. Most cancers Res. 25, 7448–7454 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hofman, M. S. et al. Prostate-specific membrane antigen PET-CT in sufferers with high-risk prostate most cancers earlier than curative-intent surgical procedure or radiotherapy (proPSMA): a potential, randomised, multicentre examine. Lancet 395, 1208–1216 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maitland, N. J. Resistance to antiandrogens in prostate most cancers: is it inevitable, intrinsic or induced? Cancers 13, 327 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buxton, A. Okay., Abbasova, S., Bevan, C. L. & Leach, D. A. Liver microenvironment response to prostate most cancers metastasis and hormonal remedy. Cancers 14, 6189 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berry, W. R., Laszlo, J., Cox, E., Walker, A. & Paulson, D. Prognostic elements in metastatic and hormonally unresponsive carcinoma of the prostate. Most cancers 44, 763–775 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elements within the prognosis of carcinoma of the prostate: a cooperative examine. The Veterans Administration Cooperative Urological Analysis Group. J. Urol. 100, 59–65 (1968).


    Google Scholar
     

  • Petrylak, D. P., Scher, H. I., Li, Z., Myers, C. E. & Geller, N. L. Prognostic elements for survival of sufferers with bidimensionally measurable metastatic hormone-refractory prostatic most cancers handled with single-agent chemotherapy. Most cancers 70, 2870–2878 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chi, Okay. N. et al. A prognostic index mannequin for predicting general survival in sufferers with metastatic castration-resistant prostate most cancers handled with abiraterone acetate after docetaxel. Ann. Oncol. 27, 454–460 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conteduca, V. et al. Affect of visceral metastases on end result to abiraterone after docetaxel in castration-resistant prostate most cancers sufferers. Future Oncol. 11, 2881–2891 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vasil’eva, N. N. & Milievskaia, I. L. [Neurogenic stomach neoplasms induced by nitrosomethylures in Syrian hamsters]. Arkh Patol. 39, 66–71 (1977).

    PubMed 

    Google Scholar
     

  • Armstrong, A. J. et al. A up to date prognostic nomogram for males with hormone-refractory metastatic prostate most cancers: a TAX327 examine evaluation. Clin. Most cancers Res. 13, 6396–6403 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loriot, Y. et al. Enzalutamide in castration-resistant prostate most cancers sufferers with visceral illness within the liver and/or lung: outcomes from the randomized managed section 3 AFFIRM trial. Most cancers 123, 253–262 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alumkal, J. J. et al. Impact of visceral illness web site on outcomes in sufferers with metastatic castration-resistant prostate most cancers handled with enzalutamide within the PREVAIL trial. Clin. Genitourin. Most cancers 15, 610–617 e613 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Beer, T. M. et al. Enzalutamide in metastatic prostate most cancers earlier than chemotherapy. N. Engl. J. Med. 371, 424–433 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baciarello, G. et al. Affect of abiraterone acetate plus prednisone in sufferers with castration-sensitive prostate most cancers and visceral metastases over 4 years of follow-up: a post-hoc exploratory evaluation of the LATITUDE examine. Eur. J. Most cancers 162, 56–64 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Satapathy, S., Mittal, B. R. & Sood, A. Visceral metastases as predictors of response and survival outcomes in sufferers of castration-resistant prostate most cancers handled with 177Lu-labeled prostate-specific membrane antigen radioligand remedy: a scientific evaluation and meta-analysis. Clin. Nucl. Med. 45, 935–942 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Armstrong, A. J. et al. Improvement and validation of a prognostic mannequin for general survival in chemotherapy-naive males with metastatic castration-resistant prostate most cancers. Ann. Oncol. 29, 2200–2207 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akamatsu, S. et al. Improvement and validation of a novel prognostic mannequin for predicting general survival in treatment-naive castration-sensitive metastatic prostate most cancers. Eur. Urol. Oncol. 2, 320–328 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Gafita, A. et al. Nomograms to foretell outcomes after 177Lu-PSMA remedy in males with metastatic castration-resistant prostate most cancers: a global, multicentre, retrospective examine. Lancet Oncol. 22, 1115–1125 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Labrecque, M. P. et al. Molecular profiling stratifies various phenotypes of treatment-refractory metastatic castration-resistant prostate most cancers. J. Clin. Make investments. 129, 4492–4505 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aggarwal, R. et al. Scientific and genomic characterization of treatment-emergent small-cell neuroendocrine prostate most cancers: a multi-institutional potential examine. J. Clin. Oncol. 36, 2492–2503 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakht, M. Okay. et al. Panorama of prostate-specific membrane antigen heterogeneity and regulation in AR-positive and AR-negative metastatic prostate most cancers. Nat. Most cancers 4, 699–715 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, E. et al. Intrinsic molecular subtypes of metastatic castration-resistant prostate most cancers. Clin. Most cancers Res. 28, 5396–5404 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conteduca, V. et al. Scientific options of neuroendocrine prostate most cancers. Eur. J. Most cancers 121, 7–18 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thysell, E. et al. Gene expression profiles outline molecular subtypes of prostate most cancers bone metastases with totally different outcomes and morphology traceable again to the first tumor. Mol. Oncol. 13, 1763–1777 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ku, S. Y., Gleave, M. E. & Beltran, H. In the direction of precision oncology in superior prostate most cancers. Nat. Rev. Urol. 16, 645–654 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paschalis, A. et al. Prostate-specific membrane antigen heterogeneity and DNA restore defects in prostate most cancers. Eur. Urol. 76, 469–478 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, A. et al. Substantial interindividual and restricted intraindividual genomic range amongst tumors from males with metastatic prostate most cancers. Nat. Med. 22, 369–378 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alshalalfa, M. et al. Clinicogenomic characterization of prostate most cancers liver metastases. Prostate Most cancers Prostatic Dis. 25, 366–369 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samarzija, I. Website-specific and customary prostate most cancers metastasis genes as urged by meta-analysis of gene expression information. Life 11, 636 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faltermeier, C. M. et al. Practical display identifies kinases driving prostate most cancers visceral and bone metastasis. Proc. Natl Acad. Sci. USA 113, E172–E181 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. W. et al. Hepatocytes direct the formation of a pro-metastatic area of interest within the liver. Nature 567, 249–252 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eveno, C. et al. Proof of prometastatic area of interest induction by hepatic stellate cells. J. Surg. Res. 194, 496–504 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kopp, W. [Morphometric distribution of HLA-DR-coded immunocytes in gingiva biopsy specimens with periodontal disease]. Dtsch. Zahnarztl. Z. 45, 93–97 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Kondo, T. et al. The influence of hepatic fibrosis on the incidence of liver metastasis from colorectal most cancers. Br. J. Most cancers 115, 34–39 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohlund, D., Elyada, E. & Tuveson, D. Fibroblast heterogeneity within the most cancers wound. J. Exp. Med. 211, 1503–1523 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa-Silva, B. et al. Pancreatic most cancers exosomes provoke pre-metastatic area of interest formation within the liver. Nat. Cell Biol. 17, 816–826 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hintz, H. M. et al. Imaging fibroblast activation protein alpha improves analysis of metastatic prostate most cancers with positron emission tomography. Clin. Most cancers Res. 26, 4882–4891 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • James, N. D. et al. Abiraterone for prostate most cancers not beforehand handled with hormone remedy. N. Engl. J. Med. 377, 338–351 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colomba, E. et al. Liver assessments improve on abiraterone acetate in males with metastatic prostate most cancers: pure historical past, administration and end result. Eur. J. Most cancers 129, 117–122 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yun, G. Y. et al. Atypical onset of bicalutamide-induced liver harm. World J. Gastroenterol. 22, 4062–4065 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, O. H. et al. Fluid shear stress facilitates prostate most cancers metastasis by means of Piezo1-Src-YAP axis. Life Sci. 308, 120936 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akoto, T. & Saini, S. Position of exosomes in prostate most cancers metastasis. Int. J. Mol. Sci. 22, 3528 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vagner, T. et al. Giant extracellular vesicles carry many of the tumour DNA circulating in prostate most cancers affected person plasma. J. Extracell. Vesicles 7, 1505403 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teng, Y. et al. MVP-mediated exosomal sorting of miR-193a promotes colon most cancers development. Nat. Commun. 8, 14448 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S. et al. Tumour-derived exosomes in liver metastasis: a Pandora’s field. Cell Prolif. 56, e13452 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoshino, A. et al. Tumour exosome integrins decide organotropic metastasis. Nature 527, 329–335 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. hnRNPA2B1-mediated extracellular vesicles sorting of miR-122-5p probably promotes lung most cancers development. Int. Mol. J. Sci. 22, 12866 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, C. et al. Most cancers-derived exosomal HSPC111 promotes colorectal most cancers liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Loss of life Dis. 13, 57 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, Z. et al. Most cancers-derived exosomal miR-25-3p promotes pre-metastatic area of interest formation by inducing vascular permeability and angiogenesis. Nat. Commun. 9, 5395 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. et al. Three-dimensional human liver-chip emulating premetastatic area of interest formation by breast cancer-derived extracellular vesicles. ACS Nano 14, 14971–14988 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novizio, N. et al. ANXA1 contained in EVs regulates macrophage polarization in tumor microenvironment and promotes pancreatic most cancers development and metastasis. Int. J. Mol. Sci. 22, 11018 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baig, M. S. et al. Tumor-derived exosomes within the regulation of macrophage polarization. Inflamm. Res. 69, 435–451 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, Y. T. et al. Pancreatic cancer-derived small extracellular vesical Ezrin regulates macrophage polarization and promotes metastasis. Am. J. Most cancers Res. 10, 12–37 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, X. et al. MiR-26b-5p in small extracellular vesicles derived from dying tumor cells after irradiation enhances the metastasis selling microenvironment in esophageal squamous cell carcinoma. Most cancers Lett. 541, 215746 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, H. et al. Hypoxia-inducible exosomes facilitate liver-tropic premetastatic area of interest in colorectal most cancers. Hepatology 74, 2633–2651 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kmiec, Z. Cooperation of liver cells in well being and illness. Adv. Anat. Embryol. Cell Biol. 161, 1–151 (2001). III-XIII.


    Google Scholar
     

  • Matsumura, H. et al. Kupffer cells lower metastasis of colon most cancers cells to the liver within the early stage. Int. J. Oncol. 45, 2303–2310 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Condamine, T. & Gabrilovich, D. I. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and performance. Traits Immunol. 32, 19–25 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, W. et al. Hepatic stellate cells promote tumor development by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse mannequin. Lab. Make investments. 94, 182–191 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bu, P. et al. Aldolase B-mediated fructose metabolism drives metabolic reprogramming of colon most cancers liver metastasis. Cell Metab. 27, 1249–1262 e1244 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spratt, D. E. et al. Utility of FDG-PET in scientific neuroendocrine prostate most cancers. Prostate 74, 1153–1159 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yates, C. C., Shepard, C. R., Stolz, D. B. & Wells, A. Co-culturing human prostate carcinoma cells with hepatocytes results in elevated expression of E-cadherin. Br. J. Most cancers 96, 1246–1252 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wells, A., Yates, C. & Shepard, C. R. E-cadherin as an indicator of mesenchymal to epithelial reverting transitions throughout the metastatic seeding of disseminated carcinomas. Clin. Exp. Metastasis 25, 621–628 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, B. & Wells, A. The mitogen-activated protein (MAP) kinases p38 and extracellular signal-regulated kinase (ERK) are concerned in hepatocyte-mediated phenotypic switching in prostate most cancers cells. J. Biol. Chem. 289, 11153–11161 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, B. et al. Liver protects metastatic prostate most cancers from induced loss of life by activating E-cadherin signaling. Hepatology 64, 1725–1742 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, B., Khazali, A., Shao, H., Jiang, Y. & Wells, A. Expression of E-cadherin and particular CXCR3 isoforms influence one another in prostate most cancers. Cell Commun. Sign. 17, 164 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, H. Y. et al. Matriptase-2/NR4A3 axis switches TGF-β motion towards suppression of prostate most cancers cell invasion, tumor development, and metastasis. Oncogene 41, 2833–2845 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Q., Dhir, R. & Wells, A. Altered CXCR3 isoform expression regulates prostate most cancers cell migration and invasion. Mol. Most cancers 11, 3 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, W. B., Zhao, Z. F. & Zhou, X. AMD3100 inhibits epithelial-mesenchymal transition, cell invasion, and metastasis within the liver and the lung by means of blocking the SDF-1ɑ/CXCR4 signaling pathway in prostate most cancers. J. Cell Physiol. 234, 11746–11759 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steele, R., Mott, J. L. & Ray, R. B. MBP-1 upregulates miR-29b that represses Mcl-1, collagens, and matrix-metalloproteinase-2 in prostate most cancers cells. Genes. Most cancers 1, 381–387 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ru, P. et al. miRNA-29b suppresses prostate most cancers metastasis by regulating epithelial-mesenchymal transition signaling. Mol. Most cancers Ther. 11, 1166–1173 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. et al. The microRNA miR-34a inhibits prostate most cancers stem cells and metastasis by straight repressing CD44. Nat. Med. 17, 211–215 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon most cancers metastasis. Nature 554, 538–543 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Y. et al. Tumor immunoevasion by the conversion of effector NK cells into sort 1 innate lymphoid cells. Nat. Immunol. 18, 1004–1015 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Correia, A. L. et al. Hepatic stellate cells suppress NK cell-sustained breast most cancers dormancy. Nature 594, 566–571 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ducimetiere, L. et al. Typical NK cells and tissue-resident ILC1s be part of forces to regulate liver metastasis. Proc. Natl Acad. Sci. USA 118, e2026271118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donkor, M. Okay. et al. T cell surveillance of oncogene-induced prostate most cancers is impeded by T cell-derived TGF-β1 cytokine. Immunity 35, 123–134 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J. et al. Liver metastasis restrains immunotherapy efficacy by way of macrophage-mediated T cell elimination. Nat. Med. 27, 152–164 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ham, B. et al. TNF receptor-2 facilitates an immunosuppressive microenvironment within the liver to advertise the colonization and development of hepatic metastases. Most cancers Res. 75, 5235–5247 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, S. et al. Built-in multi-omics panorama of liver metastases. Gastroenterology 164, 407–423 e417 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J. B. et al. MAOA-dependent activation of Shh-IL6-RANKL signaling community promotes prostate most cancers metastasis by partaking tumor-stromal cell interactions. Most cancers Cell 31, 368–382 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wegiel, B. et al. A number of mobile mechanisms associated to cyclin A1 in prostate most cancers invasion and metastasis. J. Natl Most cancers Inst. 100, 1022–1036 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klezovitch, O. et al. Hepsin promotes prostate most cancers development and metastasis. Most cancers Cell 6, 185–195 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsin, F., Hsu, Y. C., Tsai, Y. F., Lin, S. W. & Liu, H. M. The transmembrane serine protease hepsin suppresses sort I interferon induction by cleaving STING. Sci. Sign 14, eabb4752 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, W. et al. The polycomb repressor complicated 1 drives double-negative prostate most cancers metastasis by coordinating stemness and immune suppression. Most cancers Cell 36, 139–155 e110 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sailer, V. et al. Experimental in vitro, ex vivo and in vivo fashions in prostate most cancers analysis. Nat. Rev. Urol. 20, 158–178 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, D. et al. Organoid cultures derived from sufferers with superior prostate most cancers. Cell 159, 176–187 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pauli, C. et al. Personalised in vitro and in vivo most cancers fashions to information precision drugs. Most cancers Discov. 7, 462–477 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsiao, A. Y. et al. Microfluidic system for formation of PC-3 prostate most cancers co-culture spheroids. Biomaterials 30, 3020–3027 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bock, N. et al. In vitro engineering of a bone metastases mannequin permits for examine of the consequences of antiandrogen therapies in superior prostate most cancers. Sci. Adv. 7, eabg2564 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lau, W. M. et al. Identification of potential elements selling osteotropism in breast most cancers: a possible function for CITED2. Int. J. Most cancers 126, 876–884 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, X. et al. An oncogenic hepatocyte-induced orthotopic mouse mannequin of hepatocellular most cancers arising within the setting of hepatic irritation and fibrosis. J. Vis. Exp. https://doi.org/10.3791/59368 (2019).

  • Liu, Okay. et al. A novel mouse mannequin for liver metastasis of prostate most cancers reveals dynamic tumour-immune cell communication. Cell Prolif. 54, e13056 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acevedo, V. D. et al. Inducible FGFR-1 activation results in irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Most cancers Cell 12, 559–571 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, H. et al. RapidCaP, a novel GEM mannequin for metastatic prostate most cancers evaluation and remedy, reveals myc as a driver of Pten-mutant metastasis. Most cancers Discov. 4, 318–333 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taranda, J. et al. Mixed whole-organ imaging at single-cell decision and immunohistochemical evaluation of prostate most cancers and its liver and mind metastases. Cell Rep. 37, 110027 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaporowska-Stachowiak, I. et al. Managing metastatic bone ache: new views, totally different options. Biomed. Pharmacother. 93, 1277–1284 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alderton, G. Okay. Metastasis: instructions to metastatic websites. Nat. Rev. Most cancers 15, 696–697 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, N. et al. Threat elements of creating visceral metastases at analysis in prostate most cancers sufferers. Transl. Most cancers Res. 8, 928–938 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steffens, J., Friedmann, W. & Lobeck, H. Immunohistochemical analysis of the metastasizing prostatic carcinoma. Eur. Urol. 11, 91–94 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitney, C. A. et al. In males with castration-resistant prostate most cancers, visceral metastases predict shorter general survival: what predicts visceral metastases? Outcomes from the SEARCH database. Eur. Urol. Focus. 3, 480–486 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Minami, Y. & Kudo, M. Hepatic malignancies: correlation between sonographic findings and pathological options. World J. Radiol. 2, 249–256 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahani, D. V., Bajwa, M. A., Andrabi, Y., Bajpai, S. & Cusack, J. C. Present standing of imaging and rising strategies to guage liver metastases from colorectal carcinoma. Ann. Surg. 259, 861–872 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Tanaka, T. et al. Present imaging strategies for and imaging spectrum of prostate most cancers recurrence and metastasis: a pictorial evaluation. Radiographics 40, 709–726 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Namasivayam, S., Martin, D. R. & Saini, S. Imaging of liver metastases: MRI. Most cancers Imaging 7, 2–9 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niekel, M. C., Bipat, S. & Stoker, J. Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of potential research together with sufferers who haven’t beforehand undergone therapy. Radiology 257, 674–684 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Floriani, I. et al. Efficiency of imaging modalities in analysis of liver metastases from colorectal most cancers: a scientific evaluation and meta-analysis. J. Magn. Reson. Imaging 31, 19–31 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Brimo, F. & Epstein, J. I. Immunohistochemical pitfalls in prostate pathology. Hum. Pathol. 43, 313–324 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Galiza Barbosa, F. et al. Nonprostatic ailments on PSMA PET imaging: a spectrum of benign and malignant findings. Most cancers Imaging 20, 23 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jadvar, H. Molecular imaging of prostate most cancers: PET radiotracers.AJR Am. J. Roentgenol. 199, 278–291 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jadvar, H. Positron emission tomography in prostate most cancers: abstract of systematic critiques and meta-analysis. Tomography 1, 18–22 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaz, C. V. et al. Androgens improve the glycolytic metabolism and lactate export in prostate most cancers cells by modulating the expression of GLUT1, GLUT3, PFK, LDH and MCT4 genes. J. Most cancers Res. Clin. Oncol. 142, 5–16 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jadvar, H. Molecular imaging of prostate most cancers with 18F-fluorodeoxyglucose PET. Nat. Rev. Urol. 6, 317–323 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Umbehr, M. H., Muntener, M., Hany, T., Sulser, T. & Bachmann, L. M. The function of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate most cancers: a scientific evaluation and meta-analysis. Eur. Urol. 64, 106–117 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Garcia, J. R. et al. [Low diagnostic yield of the 11C-choline PET/CT in the detection of liver metastasis from prostate cancer]. Rev. Esp. Med. Nucl. Imagen Mol. 33, 56–57 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Ghedini, P. et al. Liver metastases from prostate most cancers at 11C-Choline PET/CT: a multicenter, retrospective evaluation. Eur. J. Nucl. Med. Mol. Imaging 45, 751–758 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bianchi, D., Rizzo, A., Bonacina, M., Zaniboni, A. & Savelli, G. Penile metastasis from prostate most cancers detected by 18F-fluorocholine PET/CT. Clin. Nucl. Med. 46, e38–e39 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Dejust, S., Messaoud, L., Jallerat, P., Marical, V. & Morland, D. Hepatic metastases from prostatic adenocarcinoma with out elevated 18F-choline exercise. Clin. Nucl. Med. 43, 780–781 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Onner, H., Ozer, H., Celik, A. V., Yilmaz, F. & Kara Gedik, G. Remoted liver metastasis detected by 68Ga-PSMA PET/CT in newly recognized prostate most cancers. Clin. Nucl. Med. 48, 259–260 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • De Man, Okay. et al. 18F-PSMA-11 versus 68Ga-PSMA-11 positron emission tomography/computed tomography for staging and biochemical recurrence of prostate most cancers: a potential double-blind randomised cross-over trial. Eur. Urol. 82, 501–509 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Seniaray, N., Verma, R., Belho, E., Malik, D. & Mahajan, H. Diffuse pulmonary metastases from prostate most cancers on 68Ga PSMA PET/CT. Clin. Nucl. Med. 44, 898–900 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Soydal, C., Ozkan, E., Yerlikaya, H., Utkan, G. & Kucuk, O. N. Widespread metastatic prostate carcinoma proven by 68Ga-PSMA PET/CT. Clin. Nucl. Med. 41, e294–e295 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Chan, M., Hsiao, E. & Turner, J. Cerebellar metastases from prostate most cancers on 68Ga-PSMA PET/CT. Clin. Nucl. Med. 42, 193–194 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Seifert, R. et al. Second model of the prostate most cancers molecular imaging standardized analysis framework together with response analysis for scientific trials (PROMISE V2). Eur. Urol. 83, 405–412 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watt, F. et al. A tissue-specific enhancer of the prostate-specific membrane antigen gene, FOLH1. Genomics 73, 243–254 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noss, Okay. R., Wolfe, S. A. & Grimes, S. R. Upregulation of prostate particular membrane antigen/folate hydrolase transcription by an enhancer. Gene 285, 247–256 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beltran, H. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate most cancers. Nat. Med. 22, 298–305 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakht, M. Okay. et al. Neuroendocrine differentiation of prostate most cancers results in PSMA suppression. Endocr. Relat. Most cancers 26, 131–146 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Thang, S. P. et al. Poor outcomes for sufferers with metastatic castration-resistant prostate most cancers with low prostate-specific membrane antigen (PSMA) expression deemed ineligible for 177Lu-labelled PSMA radioligand remedy. Eur. Urol. Oncol. 2, 670–676 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Evans, M. J. et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc. Natl Acad. Sci. USA 108, 9578–9582 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shetty, D., Patel, D., Le, Okay., Bui, C. & Mansberg, R. Pitfalls in gallium-68 PSMA PET/CT interpretation-A pictorial evaluation. Tomography 4, 182–193 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ladron-de-Guevara, D., Canelo, A., Piottante, A. & Regonesi, C. False-positive 18F-prostate-specific membrane antigen-1007 PET/CT brought on by hepatic multifocal inflammatory foci. Clin. Nucl. Med. 46, e80–e83 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kesch, C. et al. Excessive fibroblast-activation-protein expression in castration-resistant prostate most cancers helps using FAPI-molecular theranostics. Eur. J. Nucl. Med. Mol. Imaging 49, 385–389 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kessel, Okay. et al. Prostate-specific membrane antigen and fibroblast activation protein distribution in prostate most cancers: preliminary information on immunohistochemistry and PET imaging. Ann. Nucl. Med. 36, 293–301 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bluemel, C. et al. 68Ga-PSMA-PET/CT in sufferers with biochemical prostate most cancers recurrence and destructive 18F-Choline-PET/CT. Clin. Nucl. Med. 41, 515–521 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakht, M. Okay. et al. Differential expression of glucose transporters and hexokinases in prostate most cancers with a neuroendocrine gene signature: a mechanistic perspective for 18F-FDG imaging of PSMA-suppressed tumors. J. Nucl. Med. 61, 904–910 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jadvar, H. The VISION ahead: recognition and implication of PSMA-/18F-FDG+ mCRPC. J. Nucl. Med. 63, 812–815 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ignatiadis, M., Sledge, G. W. & Jeffrey, S. S. Liquid biopsy enters the clinic – implementation points and future challenges. Nat. Rev. Clin. Oncol. 18, 297–312 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, L. et al. The novel affiliation of circulating tumor cells and circulating megakaryocytes with prostate most cancers prognosis. Clin. Most cancers Res. 23, 5112–5122 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast most cancers metastasis. Cell 158, 1110–1122 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hille, C. & Pantel, Okay. Prostate most cancers: circulating tumour cells in prostate most cancers. Nat. Rev. Urol. 15, 265–266 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. F. et al. Subclassification of prostate most cancers circulating tumor cells by nuclear measurement reveals very small nuclear circulating tumor cells in sufferers with visceral metastases. Most cancers 121, 3240–3251 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M. & Shendure, J. Cell-free DNA includes an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164, 57–68 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mouliere, F. et al. Enhanced detection of circulating tumor DNA by fragment measurement evaluation. Sci. Transl. Med. 10, eaat4921 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehra, N. et al. Plasma cell-free DNA focus and outcomes from taxane remedy in metastatic castration-resistant prostate most cancers from two section III trials (FIRSTANA and PROSELICA). Eur. Urol. 74, 283–291 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandekerkhove, G. et al. Circulating tumor DNA abundance and potential utility in de novo metastatic prostate most cancers. Eur. Urol. 75, 667–675 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wyatt, A. W. et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate most cancers. J. Natl Most cancers Inst. 109, djx118 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schweizer, M. T. et al. Concordance of DNA restore gene mutations in paired main prostate most cancers samples and metastatic tissue or cell-free DNA. JAMA Oncol. 7, 1–5 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beltran, H. et al. Circulating tumor DNA profile acknowledges transformation to castration-resistant neuroendocrine prostate most cancers. J. Clin. Make investments. 130, 1653–1668 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Re, M. et al. The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal remedy in metastatic prostate most cancers sufferers. Eur. Urol. 71, 680–687 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Lack of exosomal miR-146a-5p from cancer-associated fibroblasts after androgen deprivation remedy contributes to prostate most cancers metastasis. J. Exp. Clin. Most cancers Res. 39, 282 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhagirath, D. et al. microRNA-1246 is an exosomal biomarker for aggressive prostate most cancers. Most cancers Res. 78, 1833–1844 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, I. D. et al. Enzalutamide with commonplace first-line remedy in metastatic prostate most cancers. N. Engl. J. Med. 381, 121–131 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goodman, O. B. Jr et al. Exploratory evaluation of the visceral illness subgroup in a section III examine of abiraterone acetate in metastatic castration-resistant prostate most cancers. Prostate Most cancers Prostatic Dis. 17, 34–39 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berthold, D. R. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for superior prostate most cancers: up to date survival within the TAX 327 examine. J. Clin. Oncol. 26, 242–245 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Wit, R. et al. Cabazitaxel versus abiraterone or enzalutamide in metastatic prostate most cancers. N. Engl. J. Med. 381, 2506–2518 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Alabi, B. R., Liu, S. & Stoyanova, T. Present and rising therapies for neuroendocrine prostate most cancers. Pharmacol. Ther. 238, 108255 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT04709276 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT05413421 (2024).

  • Fizazi, Okay. et al. Abiraterone plus prednisone added to androgen deprivation remedy and docetaxel in de novo metastatic castration-sensitive prostate most cancers (PEACE-1): a multicentre, open-label, randomised, section 3 examine with a 2 x 2 factorial design. Lancet 399, 1695–1707 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hussain, M. et al. Darolutamide plus androgen-deprivation remedy and docetaxel in metastatic hormone-sensitive prostate most cancers by illness quantity and danger subgroups within the section III ARASENS trial. J. Clin. Oncol. 41, 3595–3607 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clarke, N. W. Abiraterone and olaparib for metastatic castration-resistant prostate most cancers. N. Engl. J. Med. Evid. 1, 9 (2022).


    Google Scholar
     

  • Agarwal, N. et al. Talazoparib plus enzalutamide in males with first-line metastatic castration-resistant prostate most cancers (TALAPRO-2): a randomised, placebo-controlled, section 3 trial. Lancet 402, 291–303 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Bono, J. S. et al. Talazoparib monotherapy in metastatic castration-resistant prostate most cancers with DNA restore alterations (TALAPRO-1): an open-label, section 2 trial. Lancet Oncol. 22, 1250–1264 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chi, Okay. N. et al. Niraparib plus abiraterone acetate with prednisone in sufferers with metastatic castration-resistant prostate most cancers and homologous recombination restore gene alterations: second interim evaluation of the randomized section III MAGNITUDE trial. Ann. Oncol. 34, 772–782 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abida, W. et al. Rucaparib in males with metastatic castration-resistant prostate most cancers harboring a BRCA1 or BRCA2 gene alteration. J. Clin. Oncol. 38, 3763–3772 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrylak, D. P. et al. Pembrolizumab plus docetaxel for sufferers with metastatic castration-resistant prostate most cancers (mCRPC): randomized, double-blind, section 3 KEYNOTE-921 examine. J. Clin. Oncol. 41, 19–19 (2023).

    Article 

    Google Scholar
     

  • Hennrich, U. & Eder, M. [177Lu]Lu-PSMA-617 (PluvictoTM): the primary FDA-approved radiotherapeutical for therapy of prostate most cancers. Prescribed drugs 15, 1292 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sartor, O. et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate most cancers. N. Engl. J. Med. 385, 1091–1103 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pouessel, D. et al. Liver metastases in prostate carcinoma: scientific traits and end result. BJU Int. 99, 807–811 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferdinandus, J. et al. Predictors of response to radioligand remedy of metastatic castrate-resistant prostate most cancers with 177Lu-PSMA-617. J. Nucl. Med. 58, 312–319 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Violet, J. et al. Dosimetry of 177Lu-PSMA-617 in metastatic castration-resistant prostate most cancers: correlations between pretherapeutic imaging and whole-body tumor dosimetry with therapy outcomes. J. Nucl. Med. 60, 517–523 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, I. Okay. et al. Impact of equine-assisted actions on cardiac autonomic operate in youngsters with cerebral palsy: a pilot randomized-controlled trial. J. Altern. Complement. Med. 27, 96–102 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kyte, J. A. Most cancers vaccination with telomerase peptide GV1001. Professional. Opin. Investig. Medication 18, 687–694 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. W. et al. Anti-metastatic impact of GV1001 on prostate most cancers cells; roles of GnRHR-mediated Gɑs-cAMP pathway and AR-YAP1 axis. Cell Biosci. 11, 191 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwal, N. et al. Cabozantinib together with atezolizumab in sufferers with metastatic castration-resistant prostate most cancers: outcomes from an growth cohort of a multicentre, open-label, section 1b trial (COSMIC-021). Lancet Oncol. 23, 899–909 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, N. et al. A section III, randomized, open-label examine (CONTACT-02) of cabozantinib plus atezolizumab versus second novel hormone remedy in sufferers with metastatic castration-resistant prostate most cancers. Future Oncol. 18, 1185–1198 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pang, Y. et al. Improvement of FAPI tetramers to enhance tumor uptake and efficacy of FAPI radioligand remedy. J. Nucl. Med. 64, 1449–1455 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feuerecker, B. et al. Exercise and antagonistic occasions of actinium-225-PSMA-617 in superior metastatic castration-resistant prostate most cancers after failure of lutetium-177-PSMA. Eur. Urol. 79, 343–350 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ballal, S. et al. Lengthy-term survival outcomes of salvage [225Ac]Ac-PSMA-617 focused alpha remedy in sufferers with PSMA-expressing end-stage metastatic castration-resistant prostate most cancers: a real-world examine. Eur. J. Nucl. Med. Mol. Imaging 50, 3777–3789 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sathekge, M. M., Bruchertseifer, F., Vorster, M., Morgenstern, A. & Lawal, I. O. World expertise with PSMA-based alpha remedy in prostate most cancers. Eur. J. Nucl. Med. Mol. Imaging 49, 30–46 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zang, J. et al. First-in-human examine of 177Lu-EB-PSMA-617 in sufferers with metastatic castration-resistant prostate most cancers. Eur. J. Nucl. Med. Mol. Imaging 46, 148–158 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, G. et al. A single-arm, low-dose, potential examine of 177Lu-EB-PSMA radioligand remedy in sufferers with metastatic castration-resistant prostate most cancers. J. Nucl. Med. 64, 611–617 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ost, P. et al. Metastasis-directed remedy of regional and distant recurrences after healing therapy of prostate most cancers: a scientific evaluation of the literature. Eur. Urol. 67, 852–863 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, S. C., McCarthy, L. P. & Mehdi, S. Remoted hepatic metastasis from prostate carcinoma. Urol. Case Rep. 10, 51–53 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Battaglia, A. et al. Metastasectomy for visceral and skeletal oligorecurrent prostate most cancers. World J. Urol. 37, 1543–1549 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zager, J. S. et al. FOCUS section 3 trial outcomes: percutaneous hepatic perfusion (PHP) with melphalan for sufferers with ocular melanoma liver metastases (PHP-OCM-301/301A). J. Clin. Oncol. 40, 9510–9510 (2022).

    Article 

    Google Scholar
     

  • Chalkidou, A. et al. Stereotactic ablative physique radiotherapy in sufferers with oligometastatic cancers: a potential, registry-based, single-arm, observational, analysis examine. Lancet Oncol. 22, 98–106 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, H., Li, X., Peng, R., Wang, Y. & Wang, J. Stereotactic ablative radiotherapy for colorectal most cancers liver metastasis. Semin. Most cancers Biol. 71, 21–32 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT02239900 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT02710253 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT02843165 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT02888743 (2024).

  • Corn, P. G. et al. Cabazitaxel plus carboplatin for the therapy of males with metastatic castration-resistant prostate cancers: a randomised, open-label, section 1–2 trial. Lancet Oncol. 20, 1432–1443 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT04592237 (2024).

  • Blum, A., Wang, P. & Zenklusen, J. C. SnapShot: TCGA analyzed tumors. Cell 173, 530 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cerami, E. et al. The cBio most cancers genomics portal: an open platform for exploring multidimensional most cancers genomics information. Most cancers Discov. 2, 401–404 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Robinson, D. et al. Integrative scientific genomics of superior prostate most cancers. Cell 161, 1215–1228 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fizazi, Okay. et al. Well being-related high quality of life and ache outcomes with [177Lu]Lu-PSMA-617 plus commonplace of care versus commonplace of care in sufferers with metastatic castration-resistant prostate most cancers (VISION): a multicentre, open-label, randomised, section 3 trial. Lancet Oncol. 24, 597–610 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chi, Okay. N. et al. Niraparib and abiraterone acetate for metastatic castration-resistant prostate most cancers. J. Clin. Oncol. 41, 3339–3351 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly, W. Okay. et al. Randomized, double-blind, placebo-controlled section III trial evaluating docetaxel and prednisone with or with out bevacizumab in males with metastatic castration-resistant prostate most cancers: CALGB 90401. J. Clin. Oncol. 30, 1534–1540 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chi, Okay. N. et al. Custirsen together with docetaxel and prednisone for sufferers with metastatic castration-resistant prostate most cancers (SYNERGY trial): a section 3, multicentre, open-label, randomised trial. Lancet Oncol. 18, 473–485 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saad, F. et al. Orteronel plus prednisone in sufferers with chemotherapy-naive metastatic castration-resistant prostate most cancers (ELM-PC 4): a double-blind, multicentre, section 3, randomised, placebo-controlled trial. Lancet Oncol. 16, 338–348 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oudard, S. et al. Cabazitaxel versus docetaxel as first-line remedy for sufferers with metastatic castration-resistant prostate most cancers: a randomized section III trial-FIRSTANA. J. Clin. Oncol. 35, 3189–3197 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vogelzang, N. J. et al. Efficacy and security of autologous dendritic cell-based immunotherapy, docetaxel, and prednisone vs placebo in sufferers with metastatic castration-resistant prostate most cancers: the VIABLE section 3 randomized scientific trial. JAMA Oncol. 8, 546–552 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saad, F. et al. Apalutamide plus abiraterone acetate and prednisone versus placebo plus abiraterone and prednisone in metastatic, castration-resistant prostate most cancers (ACIS): a randomised, placebo-controlled, double-blind, multinational, section 3 examine. Lancet Oncol. 22, 1541–1559 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris, M. J. et al. Randomized section III examine of enzalutamide in contrast with enzalutamide plus abiraterone for metastatic castration-resistant prostate most cancers (Alliance A031201 Trial). J. Clin. Oncol. 41, 3352–3362 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kellokumpu-Lehtinen, P. L. et al. 2-Weekly versus 3-weekly docetaxel to deal with castration-resistant superior prostate most cancers: a randomised, section 3 trial. Lancet Oncol. 14, 117–124 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beer, T. M. et al. Custirsen (OGX-011) mixed with cabazitaxel and prednisone versus cabazitaxel and prednisone alone in sufferers with metastatic castration-resistant prostate most cancers beforehand handled with docetaxel (AFFINITY): a randomised, open-label, worldwide, section 3 trial. Lancet Oncol. 18, 1532–1542 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fizazi, Okay. et al. Part III, randomized, double-blind, multicenter trial evaluating orteronel (TAK-700) plus prednisone with placebo plus prednisone in sufferers with metastatic castration-resistant prostate most cancers that has progressed throughout or after docetaxel-based remedy: ELM-PC 5. J. Clin. Oncol. 33, 723–731 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenberger, M. et al. Part III examine evaluating a diminished dose of cabazitaxel (20 mg/m2) and the at the moment authorized dose (25 mg/m2) in postdocetaxel sufferers with metastatic castration-resistant prostate cancer-PROSELICA. J. Clin. Oncol. 35, 3198–3206 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antonarakis, E. S. et al. Pembrolizumab plus olaparib for sufferers with beforehand handled and biomarker-unselected metastatic castration-resistant prostate most cancers: the randomized, open-label, section III KEYLYNK-010 trial. J. Clin. Oncol. 41, 3839–3850 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, M. et al. Part III examine of cabozantinib in beforehand handled metastatic castration-resistant prostate most cancers: COMET-1. J. Clin. Oncol. 34, 3005–3013 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gravis, G. et al. Androgen-deprivation remedy alone or with docetaxel in non-castrate metastatic prostate most cancers (GETUG-AFU 15): a randomised, open-label, section 3 trial. Lancet Oncol. 14, 149–158 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chi, Okay. N. et al. Apalutamide for metastatic, castration-sensitive prostate most cancers. N. Engl. J. Med. 381, 13–24 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, N. et al. Orteronel for metastatic hormone-sensitive prostate most cancers: a multicenter, randomized, open-label section III trial (SWOG-1216). J. Clin. Oncol. 40, 3301–3309 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT03179410 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT03582475 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT03910660 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT03896503 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT04702737 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT04848337 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT04926181 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT05582031 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT05605522 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT05652686 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT05988918 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT05691465 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/examine/NCT06094842 (2024).

  • Hot Topics

    Related Articles