Multi-omics and single cell characterization of most cancers immunosenescence panorama


  • Siegel, R. L. & Miller, Ok. D. Most cancers statistics, 2022. 72, 7-33 (2022).

  • de Magalhães, J. P. From cells to ageing: a overview of fashions and mechanisms of mobile senescence and their influence on human ageing. Exp Cell Res. 300, 1–10 (2004).

    PubMed 

    Google Scholar
     

  • Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp Cell Res. 25, 585–621 (1961).

    CAS 
    PubMed 

    Google Scholar
     

  • Aunan, J. R., Cho, W. C. & Søreide, Ok. The Biology of Growing old and Most cancers: A Temporary Overview of Shared and Divergent Molecular Hallmarks. Growing old Dis. 8, 628–642 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campisi, J. Growing old, mobile senescence, and most cancers. Annu Rev Physiol. 75, 685–705 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Coppé, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the darkish facet of tumor suppression. Annu Rev Pathol. 5, 99–118 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fane, M. & Weeraratna, A. T. How the ageing microenvironment influences tumour development. 20, 89-106 (2020).

  • DeNardo, D. G. et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Most cancers Cell. 16, 91–102 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruhland, M. Ok., Loza, A. J. & Capietto, A. H. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. 7, 11762 (2016).

  • Bavik, C. et al. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation by paracrine mechanisms. Most cancers Res. 66, 794–802 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Canino, C. et al. SASP mediates chemoresistance and tumor-initiating-activity of mesothelioma cells. Oncogene. 31, 3148–3163 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Schosserer, M., Grillari, J. & Breitenbach, M. The Twin Position of Mobile Senescence in Growing Tumors and Their Response to Most cancers Remedy. Entrance Oncol. 7, 278 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated irritation. Nature. 566, 73–78 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elias, R., Hartshorn, Ok., Rahma, O., Lin, N. & Snyder-Cappione, J. E. Growing old, immune senescence, and immunotherapy: A complete overview. Semin Oncol. 45, 187–200 (2018).

    PubMed 

    Google Scholar
     

  • Kugel, C. H. et al. Age Correlates with Response to Anti-PD1, Reflecting Age-Associated Variations in Intratumoral Effector and Regulatory T-Cell Populations. Clin Most cancers Res. 24, 5347–5356 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sceneay, J. et al. Interferon Signaling Is Diminished with Age and Is Related to Immune Checkpoint Blockade Efficacy in Triple-Damaging Breast Most cancers. 9, 1208-1227 (2019).

  • Courtois-Cox, S., Jones, S. L. & Cichowski, Ok. Many roads result in oncogene-induced senescence. Oncogene. 27, 2801–2809 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Wei, W., Hemmer, R. M. & Sedivy, J. M. Position of p14(ARF) in replicative and induced senescence of human fibroblasts. Mol Cell Biol. 21, 6748–6757 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berkovich, E., Lamed, Y. & Ginsberg, D. E2F and Ras synergize in transcriptionally activating p14ARF expression. Cell Cycle. 2, 127–133 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Raghuram, G. V. & Mishra, P. Ok. Stress induced untimely senescence: a brand new perpetrator in ovarian tumorigenesis? Indian J Med Res. 140(Suppl), S120–129 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Celli, G. B. & de Lange, T. DNA processing just isn’t required for ATM-mediated telomere harm response after TRF2 deletion. Nat Cell Biol. 7, 712–718 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Cipriano, R. et al. TGF-beta signaling engages an ATM-CHK2-p53-independent RAS-induced senescence and prevents malignant transformation in human mammary epithelial cells. Proc Natl Acad Sci USA 108, 8668–8673 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacobs, J. J. & de Lange, T. Important position for p16INK4a in p53-independent telomere-directed senescence. Curr Biol. 14, 2302–2308 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Gorgoulis, V. et al. Mobile Senescence: Defining a Path Ahead. Cell. 179, 813–827 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Annu Rev Genet. 42, 301–334 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • de Lange, T. Shelterin: the protein complicated that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    PubMed 

    Google Scholar
     

  • Benarroch-Popivker, D. et al. TRF2-Mediated Management of Telomere DNA Topology as a Mechanism for Chromosome-Finish Safety. Mol Cell. 61, 274–286 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shay, J. W. & Wright, W. E. Telomeres and telomerase: three many years of progress. 20, 299-309 (2019).

  • González-Suárez, E., Samper, E., Flores, J. M. & Blasco, M. A. Telomerase-deficient mice with brief telomeres are immune to pores and skin tumorigenesis. Nat Genet. 26, 114–117 (2000).

    PubMed 

    Google Scholar
     

  • Blasco, M. A. Telomeres and human illness: ageing, most cancers and past. Nat Rev Genet. 6, 611–622 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Gertler, R. et al. Telomere size and human telomerase reverse transcriptase expression as markers for development and prognosis of colorectal carcinoma. J Clin Oncol. 22, 1807–1814 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Salama, R., Sadaie, M., Hoare, M. & Narita, M. Mobile senescence and its effector packages. Genes Dev. 28, 99–114 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, A. S. L. & Narita, M. Brief-term achieve, long-term ache: the senescence life cycle and most cancers. 33, 127-143 (2019).

  • Zeng, Z., Wong, C. J., Yang, L., Ouardaoui, N. & Li, D. TISMO: syngeneic mouse tumor database to mannequin tumor immunity and immunotherapy response. 50, D1391-d1397 (2022).

  • Campisi, J. & d’Adda di Fagagna, F. Mobile senescence: when unhealthy issues occur to good cells. Nat Rev Mol Cell Biol. 8, 729–740 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Rodier, F. et al. DNA-SCARS: distinct nuclear buildings that maintain damage-induced senescence progress arrest and inflammatory cytokine secretion. J Cell Sci. 124, 68–81 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Baker, D. J. & Sedivy, J. M. Probing the depths of mobile senescence. J Cell Biol. 202, 11–13 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivanov, A. et al. Lysosome-mediated processing of chromatin in senescence. J Cell Biol. 202, 129–143 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tubbs, A. & Nussenzweig, A. Endogenous DNA Harm as a Supply of Genomic Instability in Most cancers. Cell. 168, 644–656 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milanovic, M. et al. Senescence-associated reprogramming promotes most cancers stemness. Nature. 553, 96–100 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanahan, D. & Weinberg, R. A. Hallmarks of most cancers: the following era. Cell. 144, 646–674 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Complete evaluation of mobile senescence within the tumor microenvironment. 23 (2022).

  • Wu, Z., Uhl, B., Gires, O. & Reichel, C. A. A transcriptomic pan-cancer signature for survival prognostication and prediction of immunotherapy response primarily based on endothelial senescence. J Biomed Sci. 30, 21 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. Complete pan-cancer evaluation identifies mobile senescence as a brand new therapeutic goal for most cancers: multi-omics evaluation and single-cell sequencing validation. Am J Most cancers Res. 12, 4103–4119 (2022).

    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dou, Z. et al. Cytoplasmic chromatin triggers irritation in senescence and most cancers. Nature. 550, 402–406 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, A. et al. Onco-fetal Reprogramming of Endothelial Cells Drives Immunosuppressive Macrophages in Hepatocellular Carcinoma. Cell. 183, 377–394.e321 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Aird, Ok. M., Iwasaki, O. & Kossenkov, A. V. HMGB2 orchestrates the chromatin panorama of senescence-associated secretory phenotype gene loci. 215, 325-334 (2016).

  • Capell, B. C. et al. MLL1 is crucial for the senescence-associated secretory phenotype. Genes Dev. 30, 321–336 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoare, M. et al. NOTCH1 mediates a swap between two distinct secretomes throughout senescence. Nat Cell Biol. 18, 979–992 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tasdemir, N. et al. BRD4 Connects Enhancer Transforming to Senescence Immune Surveillance. Most cancers Discov. 6, 612–629 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory community. Cell. 133, 1019–1031 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Orjalo, A. V., Bhaumik, D., Gengler, B. Ok., Scott, G. Ok. & Campisi, J. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine community. Proc Natl Acad Sci USA 106, 17031–17036 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acosta, J. C. et al. A fancy secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 15, 978–990 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thorsson, V., Gibbs, D. L., Brown, S. D., Wolf, D. & Mariamidze, A. The Immune Panorama of Most cancers. Immunity. 48 (2018).

  • Greten, F. R. & Grivennikov, S. I. Irritation and Most cancers: Triggers, Mechanisms, and Penalties. Immunity. 51, 27–41 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blatner, N. R. et al. Expression of RORγt marks a pathogenic regulatory T cell subset in human colon most cancers. Sci Transl Med. 4, 164ra159 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veglia, F. & Perego, M. Myeloid-derived suppressor cells coming of age. 19, 108-119 (2018).

  • Jiang, H., Hegde, S. & DeNardo, D. G. Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Most cancers Immunol Immunother. 66, 1037–1048 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moiseeva, O. et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Growing old Cell. 12, 489–498 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Herranz, N. et al. mTOR regulates MAPKAPK2 translation to regulate the senescence-associated secretory phenotype. Nat Cell Biol. 17, 1205–1217 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laberge, R. M. et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by selling IL1A translation. Nat Cell Biol. 17, 1049–1061 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 445, 656–660 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell. 153, 449–460 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCarthy, S. & Das, S. A reference panel of 64,976 haplotypes for genotype imputation. 48, 1279-1283 (2016).

  • Dees, S. & Ganesan, R. Regulatory T cell focusing on in most cancers: Rising methods in immunotherapy. 51, 280-291 (2021).

  • Wang, Y., Shi, T., Music, X., Liu, B. & Wei, J. Gene fusion neoantigens: Rising targets for most cancers immunotherapy. Most cancers Lett. 506, 45–54 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ruscetti, M. et al. Senescence-Induced Vascular Transforming Creates Therapeutic Vulnerabilities in Pancreas Most cancers. Cell. 181, 424–441.e421 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. 583, 127-132 (2020).

  • Saleh, T. et al. Clearance of therapy-induced senescent tumor cells by the senolytic ABT-263 by way of interference with BCL-X(L) -BAX interplay. 14, 2504-2519 (2020).

  • Fleury, H., Malaquin, N. & Tu, V. Exploiting interconnected artificial deadly interactions between PARP inhibition and most cancers cell reversible senescence. 10, 2556 (2019).

  • González-Gualda, E. et al. Galacto-conjugation of Navitoclax as an environment friendly technique to extend senolytic specificity and cut back platelet toxicity. 19, e13142 (2020).

  • Ritschka, B. et al. The senotherapeutic drug ABT-737 disrupts aberrant p21 expression to revive liver regeneration in grownup mice. Genes Dev. 34, 489–494 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoadley, Ok. A. et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Kinds of. Most cancers. Cell. 173, 291–304.e296 (2018).

    CAS 

    Google Scholar
     

  • Avelar, R. A. et al. A multidimensional methods biology evaluation of mobile senescence in growing older and illness. Genome Biol. 21, 91 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, S. et al. Complete analyses of m6A regulators and interactive coding and non-coding RNAs throughout 32 most cancers varieties. Mol Most cancers. 20, 67 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kodinariya, T. M. & Makwana, P. Evaluation on figuring out variety of Cluster in Ok-Means Clustering. Worldwide Journal. 1, 90–95 (2013).


    Google Scholar
     

  • Bhandari, V. & Hoey, C. Molecular landmarks of tumor hypoxia throughout most cancers varieties. 51, 308-318 (2019).

  • Chen, H. et al. A Pan-Most cancers Evaluation of Enhancer Expression in Almost 9000 Affected person Samples. Cell. 173, 386–399.e312 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, A. M. et al. Genomic and Purposeful Approaches to Understanding Most cancers Aneuploidy. Most cancers Cell. 33, 676–689.e673 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thorsson, V. et al. The Immune Panorama of Most cancers. Immunity. 48, 812–830.e814 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanchez-Vega, F. et al. Oncogenic Signaling Pathways in The Most cancers Genome Atlas. Cell. 173, 321–337.e310 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Charoentong, P. et al. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep. 18, 248–262 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Sieverling, L. & Hong, C. Genomic footprints of activated telomere upkeep mechanisms in most cancers. 11, 733 (2020).

  • Barthel, F. P., Wei, W. & Tang, M. Systematic evaluation of telomere size and somatic alterations in 31 most cancers varieties. 49, 349-357 (2017).

  • Meyers, R. M. et al. Computational correction of copy quantity impact improves specificity of CRISPR-Cas9 essentiality screens in most cancers cells. Nat Genet. 49, 1779–1784 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, J. et al. CancerSCEM: a database of single-cell expression map throughout varied human cancers. 50, D1147-d1155 (2022).

  • Korsunsky, I., Millard, N. & Fan, J. Quick, delicate and correct integration of single-cell knowledge with Concord. 16, 1289-1296 (2019).

  • Gribov, A. et al. SEURAT: visible analytics for the built-in evaluation of microarray knowledge. BMC Med Genomics. 3, 21 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Database Assets of the Nationwide Genomics Knowledge Middle, China Nationwide Middle for Bioinformation in 2021. Nucleic Acids Res. 49, D18-d28 (2021).

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression knowledge evaluation. Genome Biol. 19, 15 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Efremova, M., Vento-Tormo, M. & Teichmann, S. A. CellPhoneDB: inferring cell-cell communication from mixed expression of multi-subunit ligand-receptor complexes. 15, 1484-1506 (2020).

  • Hsu, C. L. et al. Exploring Markers of Exhausted CD8 T Cells to Predict Response to Immune Checkpoint Inhibitor Remedy for Hepatocellular Carcinoma. Liver Most cancers. 10, 346–359 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W. et al. Genomics of Drug Sensitivity in Most cancers (GDSC): a useful resource for therapeutic biomarker discovery in most cancers cells. Nucleic Acids Res. 41, D955–961 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Hot Topics

    Related Articles