A comparative evaluation of CNN-based deep studying architectures for early analysis of bone most cancers utilizing CT photos


  • Boulehmi, H., Mahersia, H. & Hamrouni, Okay. Bone most cancers analysis utilizing GGD evaluation. In 2018 fifteenth Worldwide Multi-conference on Methods, Alerts & Gadgets 246–251. https://doi.org/10.1109/SSD.2018.8570658 (IEEE, 2018).

  • Shukla, A. & Patel, A. Bone most cancers detection from X-ray and MRI photos by picture segmentation methods. Int. J. Latest Technol. Eng. 8, 273–278. https://doi.org/10.35940/ijrte.F7159.038620 (2020).

    Article 

    Google Scholar
     

  • Sujatha, Okay. et al. Screening and determine the bone most cancers/tumor utilizing picture processing. In 2018 Worldwide Convention on Present Traits In direction of Converging Applied sciences 1–5. https://doi.org/10.1109/ICCTCT.2018.8550917 (IEEE, 2018).

  • Ibrahim, T., Mercatali, L. & Amadori, D. Bone and most cancers: The osteoncology. Clin. Circumstances Mineral Bone Metab. 10, 121 (2013).


    Google Scholar
     

  • Noguchi, S. et al. Deep learning-based algorithm improved radiologists’ efficiency in bone metastases detection on CT. Eur. Radiol. 32, 1–12. https://doi.org/10.1007/s00330-022-08741-3 (2022).

    Article 

    Google Scholar
     

  • Eweje, F. R. et al. Deep studying for classification of bone lesions on routine MRI. EBioMedicine 68, 103402. https://doi.org/10.1016/j.ebiom.2021.103402 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, S., Li, Y., Li, Y. & Zhao, M. Diagnostic efficacy of PET/CT in bone tumors. Oncol. Lett. 17, 4271–4276. https://doi.org/10.3892/ol.2019.10101 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, C. et al. SVM-based bone tumor detection through the use of the feel options of X-ray picture. In 2018 Worldwide Convention on Community Infrastructure and Digital Content material 130–134. https://doi.org/10.1109/ICNIDC.2018.8525806 (IEEE, 2018).

  • Zimbalist, T. et al. Detecting bone lesions in X-ray below numerous acquisition circumstances. https://doi.org/10.48550/arXiv.2212.07792 (2022).

  • Huo, Y. Okay., Wei, G., Zhang, Y. D., & Wu, L. N. An adaptive threshold for the Canny operator of edge detection. In 2010 Worldwide Convention on Picture Evaluation and Sign Processing 371–374. https://doi.org/10.1109/IASP.2010.5476095 (IEEE, 2010).

  • Hossain, E. & Rahaman, M. A. Comparative analysis of segmentation algorithms for tumor cells detection from bone MR scan imagery. In 2018 Worldwide Convention on Improvements in Science, Engineering and Know-how 361–366. https://doi.org/10.1109/ICISET.2018.8745612 (IEEE, 2018).

  • Kaur, E. C. & Garg, U. Bone most cancers detection methods utilizing machine studying. In 2022 Worldwide Convention on Computational Modelling, Simulation and Optimization 315–319. https://doi.org/10.1109/ICCMSO58359.2022.00068 (IEEE, 2022).

  • Pandey, A. & Shrivastava, S. Okay. A survey paper on calcaneus bone tumor detection utilizing completely different improved canny edge detector. In 2018 IEEE Worldwide Convention on System, Computation, Automation and Networking 1–5. https://doi.org/10.1109/ICSCAN.2018.8541194 (IEEE, 2018).

  • Ranjitha, M. M., Taranath, N. L., Arpitha, C. N. & Subbaraya, C. Okay. Bone most cancers detection utilizing Okay-means segmentation and Knn classification. In 2019 1st Worldwide Convention on Advances in Data Know-how 76–80. https://doi.org/10.1109/ICAIT47043.2019.8987328 (IEEE, 2019).

  • Mistry, Okay. D. & Talati, B. J. Built-in strategy for bone tumor detection from mri scan imagery. In 2016 Worldwide Convention on Sign and Data Processing 1–5. https://doi.org/10.1109/ICONSIP.2016.7857471 (IEEE, 2016).

  • Sharma, A. et al. Bone most cancers detection utilizing function extraction primarily based machine studying mannequin. Comput. Math. Strategies Med. https://doi.org/10.1155/2021/7433186 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, R. et al. Osteosarcoma sufferers classification utilizing plain X-rays and metabolomic knowledge. In 2018 fortieth Annual Worldwide Convention of the IEEE Engineering in Medication and Biology Society 690–693. https://doi.org/10.1109/EMBC.2018.8512338 (IEEE, 2018).

  • Zhao, Z. et al. Deep neural community primarily based synthetic intelligence assisted analysis of bone scintigraphy for most cancers bone metastasis. Sci. Rep. 10, 17046. https://doi.org/10.1038/s41598-020-74135-4 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Dong, M., Huang, X. & Xu, B. Unsupervised speech recognition by spike-timing-dependent plasticity in a convolutional spiking neural community. PLoS ONE 13, e0204596. https://doi.org/10.1371/journal.pone.0204596 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frank, D. A., Chrysochou, P., Mitkidis, P. & Ariely, D. Human decision-making biases within the ethical dilemmas of autonomous autos. Sci. Rep. 9, 13080. https://doi.org/10.1038/s41598-019-49411-7 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Xiong, C., Xu, X., Zhang, H. & Zeng, B. An evaluation of scientific values of MRI, CT and X-ray in differentiating benign and malignant bone metastases. Am. J. Transl. Res. 13, 7335 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asuntha, A. et al. Characteristic extraction to detect bone most cancers utilizing picture processing. Res. J. Pharm. Biol. Chem. Sci. 8, 434 (2018).


    Google Scholar
     

  • Georgeanu, V. A., Mămuleanu, M., Ghiea, S. & Selișteanu, D. Malignant bone tumors analysis utilizing magnetic resonance imaging primarily based on deep studying algorithms. Medicina 58, 636. https://doi.org/10.3390/medicina58050636 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra, A. & Suhas, M. V. Classification of benign and malignant bone lesions on CT photos utilizing random forest. In 2016 IEEE Worldwide Convention on Latest Traits in Electronics, Data & Communication Know-how 1807–1810. https://doi.org/10.1109/RTEICT.2016.7808146 (2016).

  • Kadhim, W. D. & Abdoon, R. S. Using k-means clustering to extract bone tumor in CT scan and MRI photos. J. Phys. Conf. Ser. 1591, 012010. https://doi.org/10.1088/1742-6596/1591/1/012010 (2020).

    Article 

    Google Scholar
     

  • Energy, S. et al. Computed tomography and affected person danger: Details, perceptions and uncertainties. World J. Radiol. 8, 902. https://doi.org/10.4329/wjr.v8.i12.902 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yarmish, G. et al. Imaging traits of main osteosarcoma: Nonconventional subtypes. Radiographics 30, 1653–1672. https://doi.org/10.1148/rg.306105524 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Ravish, V. N., Vinod Kumar, A. C. & Sen, G. Enchondroma—A case examine. Int. J. Sci. Res. 4, 2319–7064 (2015).


    Google Scholar
     

  • BinMohi, A. M., Alzahrani, A. A. & Reda, B. R. A case report of femur osteochondroma in 22 years outdated feminine affected person. Int. J. Adv. Res. 8, 1263–1267. https://doi.org/10.21474/IJAR01/11964 (2020).

    Article 

    Google Scholar
     

  • Papathanassiou, Z. G. et al. Parosteal osteosarcoma mimicking osteochondroma: A radio-histologic strategy on two instances. Clin. Sarcoma Res. 1, 1–8. https://doi.org/10.1186/2045-3329-1-2 (2011).

    Article 

    Google Scholar
     

  • Larousserie, F. et al. Parosteal osteoliposarcoma: A brand new bone tumor (from imaging to immunophenotype). Eur. J. Radiol. 82, 2149–2153. https://doi.org/10.1016/j.ejrad.2011.11.035 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrer-Santacreu, E. M., Ortiz-Cruz, E. J., Díaz-Almirón, M. & Pozo Kreilinger, J. J. Enchondroma versus chondrosarcoma in lengthy bones of appendicular skeleton: Medical and radiological standards—A follow-up. J. Oncol. https://doi.org/10.1155/2016/8262079 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tepelenis, Okay. et al. Osteochondromas: An up to date overview of epidemiology, pathogenesis, scientific presentation, radiological options and remedy choices. In Vivo 35, 681–691. https://doi.org/10.21873/invivo.12308 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinthia, P. & Sujatha, Okay. A novel strategy to detect bone most cancers utilizing k-means clustering algorithm and edge detection methodology. Asian Res. Publ. Netw. J. Eng. Appl. Sci. 11, 8002–8007 (2016).


    Google Scholar
     

  • Reis, H. C. Calcaneus benign tumor detection utilizing canny edge detector. Int. J. Oncol. Most cancers Ther. 2, 1 (2017).

    MathSciNet 

    Google Scholar
     

  • Heravi, E. J., Aghdam, H. H. & Puig, D. Classification of meals utilizing spatial pyramid convolutional neural community. In CCIA 163–168 (2016).

  • Canny, J. A computational strategy to edge detection. IEEE Trans. Sample Anal. Mach. Intell. 6, 679–698. https://doi.org/10.1109/TPAMI.1986.4767851 (1986).

    Article 

    Google Scholar
     

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Course of. Syst. 25, 386. https://doi.org/10.1145/3065386 (2012).

    Article 

    Google Scholar
     

  • Sunitha, M. R., Huda, R., Gopinath, C. B. & Sathyabhama, R. Bone most cancers detection utilizing AlexNet and VGG16. Int. Res. J. Eng. Technol. 9, 7 (2022).


    Google Scholar
     

  • Han, X., Zhong, Y., Cao, L. & Zhang, L. Pre-trained Alexnet structure with pyramid pooling and supervision for prime spatial decision distant sensing picture scene classification. Distant Sens. 9, 848. https://doi.org/10.3390/rs9080848 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Lin, C. J., Li, Y. C. & Lin, H. Y. Utilizing convolutional neural networks primarily based on a Taguchi methodology for face gender recognition. Electronics 9, 1227. https://doi.org/10.3390/electronics9081227 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pan, C., Lian, L., Chen, J. & Huang, R. FemurTumorNet: Bone tumor classification within the proximal femur utilizing DenseNet mannequin primarily based on radiographs. J. Bone Oncol. 42, 100504. https://doi.org/10.1016/j.jbo.2023.100504 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gawade, S., Bhansali, A., Patil, Okay. & Shaikh, D. Utility of the convolutional neural networks and supervised deep-learning strategies for osteosarcoma bone most cancers detection. Healthcare Anal. 3, 100153. https://doi.org/10.1016/j.well being.2023.100153 (2023).

    Article 

    Google Scholar
     

  • Mehmood, A. et al. SBXception: A shallower and broader xception structure for environment friendly classification of pores and skin lesions. Cancers 15, 3604. https://doi.org/10.3390/cancers15143604 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, C. W. et al. Synthetic intelligence-based classification of bone tumors within the proximal femur on plain radiographs: System improvement and validation. PLoS ONE 17(2), e0264140. https://doi.org/10.1371/journal.pone.0264140 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kingma, D. P. & Ba, J. Adam: A way for stochastic optimization. https://doi.org/10.48550/arXiv.1412.6980 (2014).

  • Anisuzzaman, D. M. et al. A deep studying examine on osteosarcoma detection from histological photos. Biomed. Sign Course of. Management 69, 102931. https://doi.org/10.48550/arXiv.2011.01177 (2021).

    Article 

    Google Scholar
     

  • Jmour, N., Zayen, S., & Abdelkrim, A. Convolutional neural networks for picture classification. In Worldwide Convention on Superior Methods and Electrical Applied sciences 397. https://doi.org/10.1109/ASET.2018.8379889 (2018).

  • Rajoub, B. Supervised and unsupervised studying. In Biomedical Sign Processing and Synthetic Intelligence in Healthcare (ed. Rajoub, B.) 51–89 (Elsevier, 2020).

    Chapter 

    Google Scholar
     

  • Hot Topics

    Related Articles