A number of omics ranges of continual lymphocytic leukemia


  • Kipps TJ, Stevenson FK, Wu CJ, Croce CM, Packham G, Wierda WG, et al. Power lymphocytic leukaemia. Nat Rev Dis Prim. 2017;3:16096.

    Article 
    PubMed 

    Google Scholar
     

  • Vosoughi T, Bagheri M, Hosseinzadeh M, Ehsanpour A, Davari N, Saki N. CD markers variations in continual lymphocytic leukemia: New insights into prognosis. J Cell Physiol. 2019;234:19420–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hallek M. Power lymphocytic leukemia: 2020 replace on prognosis, danger stratification and therapy. Am J Hematol. 2019;94:1266–87.

    Article 
    PubMed 

    Google Scholar
     

  • Eichhorst B, Robak T, Montserrat E, Ghia P, Niemann CU, Kater AP, et al. Power lymphocytic leukaemia: ESMO Scientific Follow Tips for prognosis, therapy and follow-up. Ann Oncol. 2021;32:23–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nabhan C, Chaffee KG, Slager SL, Galanina N, Achenbach SJ, Schwager SM, et al. Evaluation of racial variations in illness traits, therapy patterns, and outcomes of sufferers with continual lymphocytic leukemia. Am J Hematol. 2016;91:677–80.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Tschautscher MA, Rabe KG, Name TG, Leis JF, Kenderian SS, et al. Scientific traits and outcomes of Richter transformation: expertise of 204 sufferers from a single middle. Haematologica. 2020;105:765–73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Most cancers statistics, 2021. CA Most cancers J Clin. 2021;71:7–33.

    Article 
    PubMed 

    Google Scholar
     

  • Yao Y, Lin X, Li F, Jin J, Wang H. The worldwide burden and attributable danger components of continual lymphocytic leukemia in 204 nations and territories from 1990 to 2019: evaluation based mostly on the worldwide burden of illness examine 2019. Biomed Eng On-line. 2022;21:4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shanafelt TD, Rabe KG, Kay NE, Zent CS, Jelinek DF, Reinalda MS, et al. Age at prognosis and the utility of prognostic testing in sufferers with continual lymphocytic leukemia. Most cancers. 2010;116:4777–87.

    Article 
    PubMed 

    Google Scholar
     

  • Delgado J, Villamor N. Power lymphocytic leukemia in younger people revisited. Haematologica. 2014;99:4–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldin LR, Slager SL. Familial CLL: genes and atmosphere. Hematology. 2007;2007:339–45.

    Article 

    Google Scholar
     

  • Karakosta M, Delicha E-M, Kouraklis G, Manola KN. Affiliation of varied danger components with continual lymphocytic leukemia and its cytogenetic traits. Arch Environ Occup Well being. 2016;71:317–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore NS, Aldubayan SH, Taylor-Weiner A, Stilgenbauer S, Getz G, Wu CJ, et al. Inherited DNA restore and cell cycle gene defects in continual lymphocytic leukemia. J Clin Oncol. 2019;37:1508–1508.

    Article 

    Google Scholar
     

  • Brown JR. Inherited susceptibility to continual lymphocytic leukemia: proof and prospects for the longer term. Ther Adv Hematol. 2013;4:298–308.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ring A, Zenz T. Genetics of “high-risk” continual lymphocytic leukemia within the occasions of chemoimmunotherapy. Haematologica. 2020;105:1180–2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riches JC, O’Donovan CJ, Kingdon SJ, McClanahan F, Clear AJ, Neuberg DS, et al. Trisomy 12 continual lymphocytic leukemia cells exhibit upregulation of integrin signaling that’s modulated by NOTCH1 mutations. Blood. 2014;123:4101–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi D, Gaidano G. The scientific implications of gene mutations in continual lymphocytic leukaemia. Br J Most cancers. 2016;114:849–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xanthopoulos C, Kostareli E. Advances in epigenetics and epigenomics in continual lymphocytic leukemia. Curr Genet Med Rep. 2019;7:214–26.

    Article 

    Google Scholar
     

  • Mallm J, Iskar M, Ishaque N, Klett LC, Kugler SJ, Muino JM, et al. Linking aberrant chromatin options in continual lymphocytic leukemia to transcription issue networks. Mol Syst Biol. 2019;15. https://doi.org/10.15252/msb.20188339.

  • Griffen TL, Hoff FW, Qiu Y, Lillard JW, Ferrajoli A, Thompson P, et al. Proteomic profiling based mostly classification of CLL gives prognostication for contemporary remedy and identifies novel therapeutic targets. Blood Most cancers J. 2022;12:43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alsagaby SA. Transcriptomics-based validation of the relatedness of heterogeneous nuclear ribonucleoproteins to continual lymphocytic leukemia as potential biomarkers of the illness aggressiveness. Saudi Med J. 2019;40:328–38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayer RL, Schwarzmeier JD, Gerner MC, Bileck A, Mader JC, Meier-Menches SM, et al. Proteomics and metabolomics establish molecular mechanisms of ageing doubtlessly predisposing for continual lymphocytic leukemia. Mol Cell Proteom. 2018;17:290–303.

    Article 
    CAS 

    Google Scholar
     

  • Delgado J, Nadeu F, Colomer D, Campo E. Power lymphocytic leukemia: from molecular pathogenesis to novel therapeutic methods. Haematologica. 2020;105:2205–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molica S. Power lymphocytic leukemia prognostic fashions in actual life: nonetheless a good distance off. Knowledgeable Rev Hematol. 2021;14:137–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crombie J, Davids MS. IGHV mutational standing testing in continual lymphocytic leukemia. Am J Hematol. 2017;92:1393–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rozovski U, Keating MJ, Estrov Z. Why is the immunoglobulin heavy chain gene mutation standing a prognostic indicator in continual lymphocytic leukemia? Acta Haematol. 2018;140:51–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burns A, Alsolami R, Becq J, Stamatopoulos B, Timbs A, Bruce D, et al. Entire-genome sequencing of continual lymphocytic leukaemia reveals distinct variations within the mutational panorama between IgHVmut and IgHVunmut subgroups. Leukemia. 2018;32:332–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Awwad MHS, Kriegsmann Okay, Plaumann J, Benn M, Hillengass J, Raab MS, et al. The prognostic and predictive worth of IKZF1 and IKZF3 expression in T-cells in sufferers with a number of myeloma. OncoImmunology. 2018;7:e1486356.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ljungström V, Cortese D, Younger E, Pandzic T, Mansouri L, Plevova Okay, et al. Entire-exome sequencing in relapsing continual lymphocytic leukemia: scientific impression of recurrent RPS15 mutations. Blood. 2016;127:1007–16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Messina M, Del Giudice I, Khiabanian H, Rossi D, Chiaretti S, Rasi S, et al. Genetic lesions related to continual lymphocytic leukemia chemo-refractoriness. Blood. 2014;123:2378–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M, et al. Mutations of the SF3B1 splicing consider continual lymphocytic leukemia: affiliation with development and fludarabine-refractoriness. Blood. 2011;118:6904–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zenz T, Häbe S, Denzel T, Mohr J, Winkler D, Bühler A, et al. Detailed evaluation of p53 pathway defects in fludarabine-refractory continual lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a potential scientific trial. Blood. 2009;114:2589–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tausch E, Shut W, Dolnik A, Bloehdorn J, Chyla B, Bullinger L, et al. Venetoclax resistance and purchased BCL2 mutations in continual lymphocytic leukemia. Haematologica. 2019;104:e434–e437.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regulation PJ, Berndt SI, Speedy HE, Camp NJ, Sava GP, Skibola CF, et al. Genome-wide affiliation evaluation implicates dysregulation of immunity genes in continual lymphocytic leukaemia. Nat Commun. 2017;8:14175.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Speedy HE, Di Bernardo MC, Sava GP, Dyer MJS, Holroyd A, Wang Y, et al. A genome-wide affiliation examine identifies a number of susceptibility loci for continual lymphocytic leukemia. Nat Genet. 2014;46:56–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berndt SI, Skibola CF, Joseph V, Camp NJ, Nieters A, Wang Z, et al. Genome-wide affiliation examine identifies a number of danger loci for continual lymphocytic leukemia. Nat Genet. 2013;45:868–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berndt SI, Camp NJ, Skibola CF, Vijai J, Wang Z, Gu J, et al. Meta-analysis of genome-wide affiliation research discovers a number of loci for continual lymphocytic leukemia. Nat Commun. 2016;7:10933.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crowther-Swanepoel D, Houlston RS. The molecular foundation of familial continual lymphocytic leukemia. Haematologica. 2009;94:606–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin W-Y, Fordham SE, Sunter N, Elstob C, Rahman T, Willmore E, et al. Genome-wide affiliation examine identifies danger loci for progressive continual lymphocytic leukemia. Nat Commun. 2021;12:665.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan H, Tian S, Kleinstern G, Wang Z, Lee J-H, Boddicker NJ, et al. Power lymphocytic leukemia (CLL) danger is mediated by a number of enhancer variants inside CLL danger loci. Hum Mol Genet. 2020;29:2761–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet. 2011;12:363–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fillerova R, Petrackova A, Papajik T, Turcsanyi P, Behalek M, Gajdos P, et al. Subsequent-generation optical mapping reveals quite a few beforehand unrecognizable structural variants in continual lymphocytic leukemia. Blood. 2019;134:5450–5450.

    Article 

    Google Scholar
     

  • Durak Aras B, Isik S, Uskudar Teke H, Aslan A, Yavasoglu F, Gulbas Z, et al. Which prognostic marker is chargeable for the scientific heterogeneity in CLL with 13q deletion? Mol Cytogenetics. 2021;14:2.

    Article 
    CAS 

    Google Scholar
     

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in continual lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, et al. Concentrating on BCL2 with venetoclax in relapsed continual lymphocytic leukemia. N Engl J Med. 2016;374:311–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abruzzo LV, Herling CD, Calin GA, Oakes C, Barron LL, Banks HE, et al. Trisomy 12 continual lymphocytic leukemia expresses a novel set of activated and targetable pathways. Haematologica. 2018;103:2069–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Athanasiadou A, Stamatopoulos Okay, Tsompanakou A, Gaitatzi M, Kalogiannidis P, Anagnostopoulos A, et al. Scientific, immunophenotypic, and molecular profiling of trisomy 12 in continual lymphocytic leukemia and comparability with different karyotypic subgroups outlined by cytogenetic evaluation. Most cancers Genet Cytogenetics. 2006;168:109–19.

    Article 
    CAS 

    Google Scholar
     

  • Pepe F, Rassenti LZ, Pekarsky Y, Labanowska J, Nakamura T, Nigita G, et al. A big fraction of trisomy 12, 17p −, and 11q − CLL circumstances carry unidentified microdeletions of miR-15a/16-1. Proc Natl Acad Sci USA. 2022;119. https://doi.org/10.1073/pnas.2118752119.

  • Villamor N, Conde L, Martínez-Trillos A, Cazorla M, Navarro A, Beà S, et al. NOTCH1 mutations establish a genetic subgroup of continual lymphocytic leukemia sufferers with excessive danger of transformation and poor end result. Leukemia. 2013;27:1100–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Queirós AC, Villamor N, Clot G, Martinez-Trillos A, Kulis M, Navarro A, et al. A B-cell epigenetic signature defines three biologic subgroups of continual lymphocytic leukemia with scientific impression. Leukemia. 2015;29:598–605.

    Article 
    PubMed 

    Google Scholar
     

  • Kulis M, Heath S, Bibikova M, Queirós AC, Navarro A, Clot G, et al. Epigenomic evaluation detects widespread gene-body DNA hypomethylation in continual lymphocytic leukemia. Nat Genet. 2012;44:1236–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wojdacz TK, Amarasinghe HE, Kadalayil L, Beattie A, Forster J, Blakemore SJ, et al. Scientific significance of DNA methylation in continual lymphocytic leukemia sufferers: outcomes from 3 UK scientific trials. Blood Adv. 2019;3:2474–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kretzmer H, Biran A, Purroy N, Lemvigh CK, Clement Okay, Gruber M, et al. Preneoplastic alterations outline CLL DNA methylome and persist by illness development and remedy. Blood Most cancers Discov. 2021;2:54–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsagiopoulou M, Papakonstantinou N, Moysiadis T, Mansouri L, Ljungström V, Duran-Ferrer M, et al. DNA methylation profiles in continual lymphocytic leukemia sufferers handled with chemoimmunotherapy. Clin Epigenetics. 2019;11:177.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pastore A, Gaiti F, Lu SX, Model RM, Kulm S, Chaligne R, et al. Corrupted coordination of epigenetic modifications results in diverging chromatin states and transcriptional heterogeneity in CLL. Nat Commun. 2019;10:1874.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosmaczewska A, Ciszak L, Suwalska Okay, Wolowiec D, Frydecka I. CTLA-4 overexpression in CD19+/CD5+ cells correlates with the extent of cell cycle regulators and illness development in B-CLL sufferers. Leukemia. 2005;19:301–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Shalek AK, Lawrence M, Ding R, Gaublomme JT, Pochet N, et al. Somatic mutation as a mechanism of Wnt/β-catenin pathway activation in CLL. Blood. 2014;124:1089–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robertson LE, Plunkett W, McConnell Okay, Keating MJ, McDonnell TJ. Bcl-2 expression in continual lymphocytic leukemia and its correlation with the induction of apoptosis and scientific end result. Leukemia. 1996;10:456–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Yoo KH, Hennighausen L. EZH2 methyltransferase and H3K27 methylation in breast most cancers. Int J Biol Sci. 2012;8:59–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papakonstantinou N, Ntoufa S, Chartomatsidou E, Kotta Okay, Agathangelidis A, Giassafaki L, et al. The histone methyltransferase EZH2 as a novel prosurvival consider clinically aggressive continual lymphocytic leukemia. Oncotarget. 2016;7:35946–59.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puente XS, Beà S, Valdés-Mas R, Villamor N, Gutiérrez-Abril J, Martín-Subero JI, et al. Non-coding recurrent mutations in continual lymphocytic leukaemia. Nature. 2015;526:519–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodríguez D, Bretones G, Quesada V, Villamor N, Arango JR, López-Guillermo A, et al. Mutations in CHD2 trigger faulty affiliation with lively chromatin in continual lymphocytic leukemia. Blood. 2015;126:195–202.

    Article 
    PubMed 

    Google Scholar
     

  • Parker H, Rose-Zerilli MJJ, Larrayoz M, Clifford R, Edelmann J, Blakemore S, et al. Genomic disruption of the histone methyltransferase SETD2 in continual lymphocytic leukaemia. Leukemia. 2016;30:2179–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang P, Wu W, Chen Q, Chen M. Non-Coding RNAs and their Built-in Networks. J Integr Bioinform. 2019;16. https://doi.org/10.1515/jib-2019-0027.

  • Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, et al. microRNA-155 regulates the era of immunoglobulin class-switched plasma cells. Immunity. 2007;27:847–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532:1–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pekarsky Y, Balatti V, Croce CM. BCL2 and miR-15/16: from gene discovery to therapy. Cell Demise Differ. 2018;25:21–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin X, Guan H, Huang Z, Liu J, Li H, Wei G, et al. Downregulation of Bcl-2 expression by miR-34a mediates palmitate-induced min6 cells apoptosis. J Diab Res. 2014;2014:1–7.


    Google Scholar
     

  • Shanesazzade Z, Peymani M, Ghaedi Okay, Nasr Esfahani MH. miR-34a/BCL-2 signaling axis contributes to apoptosis in MPP + -induced SH-SY5Y cells. Mol Genet Genom Med. 2018;6:975–81.

    Article 
    CAS 

    Google Scholar
     

  • Ferracin M, Zagatti B, Rizzotto L, Cavazzini F, Veronese A, Ciccone M, et al. MicroRNAs involvement in fludarabine refractory continual lymphocytic leukemia. Mol Most cancers. 2010;9:123.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian Y, Shi L, Luo Z. Lengthy non-coding RNAs in most cancers: implications for prognosis, prognosis, and remedy. Entrance Med. 2020;7. https://doi.org/10.3389/fmed.2020.612393.

  • Marín-Béjar O, Mas AM, González J, Martinez D, Athie A, Morales X, et al. The human lncRNA LINC-PINT inhibits tumor cell invasion by a extremely conserved sequence component. Genome Biol. 2017;18:202.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blume CJ, Hotz-Wagenblatt A, Hüllein J, Sellner L, Jethwa A, Stolz T, et al. p53-dependent non-coding RNA networks in continual lymphocytic leukemia. Leukemia. 2015;29:2015–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dal Bo M, Rossi FM, Rossi D, Deambrogi C, Bertoni F, Del Giudice I, et al. 13q14 Deletion dimension and variety of deleted cells each affect prognosis in continual lymphocytic leukemia. Genes Chromosomes Most cancers. 2011;50:633–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garding A, Bhattacharya N, Claus R, Ruppel M, Tschuch C, Filarsky Okay, et al. Epigenetic upregulation of lncRNAs at 13q14.3 in leukemia is linked to the in cis downregulation of a gene cluster that targets NF-kB. PLoS Genet. 2013;9:e1003373.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin FJ, Amode MR, Aneja A, Austine-Orimoloye O, Azov AG, Barnes I, et al. Ensembl 2023. Nucleic Acids Res. 2023;51:D933–D941.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradner JE, Hnisz D, Younger RA. Transcriptional habit in most cancers. Cell. 2017;168:629–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burger JA, Chiorazzi N. B cell receptor signaling in continual lymphocytic leukemia. Tendencies Immunol. 2013;34:592–601.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pede V, Rombout A, Vermeire J, Naessens E, Mestdagh P, Robberecht N, et al. CLL cells reply to B-cell receptor stimulation with a microRNA/mRNA signature related to MYC activation and cell cycle development. PLoS ONE. 2013;8:e60275.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira PG, Jares P, Rico D, Gómez-López G, Martínez-Trillos A, Villamor N, et al. Transcriptome characterization by RNA sequencing identifies a serious molecular and scientific subdivision in continual lymphocytic leukemia. Genome Res. 2014;24:212–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffen TL, Dammer EB, Dill CD, Carey KM, Younger CD, Nunez SK, et al. Multivariate transcriptome evaluation identifies networks and key drivers of continual lymphocytic leukemia relapse danger and affected person survival. BMC Med Genomics. 2021;14:171.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sbarrato T, Horvilleur E, Pöyry T, Hill Okay, Chaplin LC, Spriggs RV, et al. A ribosome-related signature in peripheral blood CLL B cells is linked to decreased survival following therapy. Cell Demise Dis. 2016;7:e2249–e2249.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in most cancers. Nat Rev Most cancers. 2018;18:5–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA goal predictions. Nat Genet. 2005;37:495–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balatti V, Acunzo M, Pekarky Y, Croce CM. Novel mechanisms of regulation of miRNAs in CLL. Tendencies Most cancers. 2016;2:134–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi S, Shimizu M, Barbarotto E, Nicoloso MS, Dimitri F, Sampath D, et al. microRNA fingerprinting of CLL sufferers with chromosome 17p deletion establish a miR-21 rating that stratifies early survival. Blood. 2010;116:945–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui B, Chen L, Zhang S, Mraz M, Fecteau J-F, Yu J, et al. MicroRNA-155 influences B-cell receptor signaling and associates with aggressive illness in continual lymphocytic leukemia. Blood. 2014;124:546–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrà G, Panuzzo C, Torti D, Parvis G, Crivellaro S, Familiari U, et al. Therapeutic inhibition of USP7-PTEN community in continual lymphocytic leukemia: a method to beat TP53 mutated/deleted clones. Oncotarget. 2017;8:35508–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fathullahzadeh S, Mirzaei H, Honardoost MA, Sahebkar A, Salehi M. Circulating microRNA-192 as a diagnostic biomarker in human continual lymphocytic leukemia. Most cancers Gene Ther. 2016;23:327–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Moffett HF, Lu J, Werner L, Zhang H, Ritz J, et al. MicroRNA expression profiling identifies activated B cell standing in continual lymphocytic leukemia cells. PLoS ONE. 2011;6:e16956.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deneberg S, Kanduri M, Ali D, Bengtzen S, Karimi M, Qu Y, et al. microRNA-34b/c on chromosome 11q23 is aberrantly methylated in continual lymphocytic leukemia. Epigenetics. 2014;9:910–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by concentrating on BCL2. Proc Natl Acad Sci USA. 2005;102:13944–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, et al. MiR-15a and miR-16-1 cluster features in human leukemia. Proc Natl Acad Sci. 2008;105:5166–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Guo M, Wei H, Chen Y. Concentrating on MCL-1 in most cancers: present standing and views. J Hematol Oncol. 2021;14:67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: present standing, taxonomic enlargement, and practical annotation. Nucleic Acids Res. 2016;44:D733–D745.

    Article 
    PubMed 

    Google Scholar
     

  • Hanlon Okay, Rudin CE, Harries LW. Investigating the targets of MIR-15a and MIR-16-1 in sufferers with continual lymphocytic leukemia (CLL). PLoS ONE. 2009;4:e7169.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, et al. Transcripts focused by the MicroRNA-16 household cooperatively regulate cell cycle development. Mol Cell Biol. 2007;27:2240–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turk A, Calin GA, Kunej T. MicroRNAs in leukemias: a clinically annotated compendium. IJMS. 2022;23:3469.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Visone R, Veronese A, Rassenti LZ, Balatti V, Pearl DK, Acunzo M, et al. miR-181b is a biomarker of illness development in continual lymphocytic leukemia. Blood. 2011;118:3072–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zenz T, Mohr J, Eldering E, Kater AP, Bühler A, Kienle D, et al. miR-34a as a part of the resistance community in continual lymphocytic leukemia. Blood. 2009;113:3801–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, et al. Tcl1 expression in continual lymphocytic leukemia is regulated by miR-29 and miR-181. Most cancers Res. 2006;66:11590–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrajoli A, Shanafelt TD, Ivan C, Shimizu M, Rabe KG, Nouraee N, et al. Prognostic worth of miR-155 in people with monoclonal B-cell lymphocytosis and sufferers with B continual lymphocytic leukemia. Blood. 2013;122:1891–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiestner A. BCR pathway inhibition as remedy for continual lymphocytic leukemia and lymphoplasmacytic lymphoma. Hematology. 2014;2014:125–34.

    Article 
    PubMed 

    Google Scholar
     

  • Sandhu SK, Fassan M, Volinia S, Lovat F, Balatti V, Pekarsky Y, et al. B-cell malignancies in microRNA Eμ-miR-1792 transgenic mice. Proc Natl Acad Sci USA. 2013;110:18208–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagnara D, Kaufman MS, Calissano C, Marsilio S, Patten PEM, Simone R, et al. A novel adoptive switch mannequin of continual lymphocytic leukemia suggests a key function for T lymphocytes within the illness. Blood. 2011;117:5463–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmadi A, Kaviani S, Yaghmaie M, Pashaiefar H, Ahmadvand M, Jalili M, et al. Altered expression of MALAT1 lncRNA in continual lymphocytic leukemia sufferers, correlation with cytogenetic findings. Blood Res. 2018;53:320.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutschner T, Hämmerle M, Eißmann M, Hsu J, Kim Y, Hung G, et al. The noncoding RNA MALAT1 is a essential regulator of the metastasis phenotype of lung most cancers cells. Most cancers Res. 2013;73:1180–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang LQ, Wong KY, Li ZH, Chim CS. Epigenetic silencing of tumor suppressor lengthy non-coding RNA BM742401 in continual lymphocytic leukemia. Oncotarget. 2016;7:82400–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fabris L, Juracek J, Calin G. Non-coding RNAs as most cancers hallmarks in continual lymphocytic leukemia. IJMS. 2020;21:6720.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tschumper RC, Shanafelt TD, Kay NE, Jelinek DF. Function of lengthy non-coding RNAs in illness development of early stage unmutated continual lymphocytic leukemia. Oncotarget. 2019;10:60–75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Hu X, Xu H, Li Y, Zhang L, Feng L, et al. Complete profiling of the epitranscriptomic N6-methyladenosine RNA methylation in continual lymphocytic leukemia. Blood. 2020;136:17–18.

    Article 

    Google Scholar
     

  • Gassner FJ, Zaborsky N, Buchumenski I, Levanon EY, Gatterbauer M, Schubert M, et al. RNA modifying contributes to epitranscriptome range in continual lymphocytic leukemia. Leukemia. 2021;35:1053–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnston HE, Carter MJ, Larrayoz M, Clarke J, Garbis SD, Oscier D, et al. Proteomics profiling of CLL versus wholesome B-cells identifies putative therapeutic targets and a subtype-independent signature of spliceosome dysregulation. Mol Cell Proteom. 2018;17:776–91.

    Article 
    CAS 

    Google Scholar
     

  • Meier-Abt F, Lu J, Cannizzaro E, Pohly MF, Kummer S, Pfammatter S, et al. The protein panorama of continual lymphocytic leukemia. Blood. 2021;138:2514–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woyach JA, Johnson AJ, Byrd JC. The B-cell receptor signaling pathway as a therapeutic goal in CLL. Blood. 2012;120:1175–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fallah-Arani F, Schweighoffer E, Vanes L, Tybulewicz VLJ. Redundant function for Zap70 in B cell improvement and activation. Eur J Immunol. 2008;38:1721–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Widhopf G, Huynh L, Rassenti L, Rai KR, Weiss A, et al. Expression of ZAP-70 is related to elevated B-cell receptor signaling in continual lymphocytic leukemia. Blood. 2002;100:4609–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buchner M, Fuchs S, Prinz G, Pfeifer D, Bartholomé Okay, Burger M, et al. Spleen tyrosine kinase is overexpressed and represents a possible therapeutic goal in continual lymphocytic leukemia. Most cancers Res. 2009;69:5424–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro L, et al. Power lymphocytic leukemia B cells comprise anomalous Lyn tyrosine kinase, a putative contribution to faulty apoptosis. J Clin Investig. 2005;115:369–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiattone L, Ghia P, Scarfò L. The evolving therapy panorama of continual lymphocytic leukemia. Curr Opin Oncol. 2019;31:568–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mavridou D, Psatha Okay, Aivaliotis M. Proteomics and drug repurposing in CLL in direction of precision medication. Cancers. 2021;13:3391.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Q, Verma IM. NF-κB regulation within the immune system. Nat Rev Immunol. 2002;2:725–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loiarro M, Ruggiero V, Sette C. Concentrating on the Toll-like receptor/interleukin 1 receptor pathway in human ailments: rational design of MyD88 inhibitors. Clin Lymphoma Myeloma Leuk. 2013;13:222–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ngo VN, Younger RM, Schmitz R, Jhavar S, Xiao W, Lim Okay-H, et al. Oncogenically lively MYD88 mutations in human lymphoma. Nature. 2011;470:115–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Westin JR. Standing of PI3K/Akt/mTOR pathway inhibitors in lymphoma. Clin Lymphoma Myeloma Leuk. 2014;14:335–42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hus I, Puła B, Robak T. PI3K inhibitors for the therapy of continual lymphocytic leukemia: present standing and future views. Cancers. 2022;14:1571.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arruga F, Gizdic B, Serra S, Vaisitti T, Ciardullo C, Coscia M, et al. Purposeful impression of NOTCH1 mutations in continual lymphocytic leukemia. Leukemia. 2014;28:1060–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Music H, Liu D, Dong S, Zeng L, Wu Z, Zhao P, et al. Epitranscriptomics and epiproteomics in most cancers drug resistance: therapeutic implications. Sig Transduct Goal Ther. 2020;5:193.

    Article 

    Google Scholar
     

  • Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. Metabolomics in most cancers analysis and rising purposes in scientific oncology. CA A Most cancers J Clin. 2021;71:333–58.

    Article 

    Google Scholar
     

  • Piszcz J, Armitage EG, Ferrarini A, Rupérez FJ, Kulczynska A, Bolkun L, et al. To deal with or to not deal with: metabolomics reveals biomarkers for therapy indication in continual lymphocytic leukaemia sufferers. Oncotarget. 2016;7:22324–38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J-Y, Huang H-H, Yu S-Y, Wu S-J, Kannagi R, Khoo Okay-H. Concerted mass spectrometry-based glycomic method for precision mapping of sulfo sialylated N-glycans on human peripheral blood mononuclear cells and lymphocytes. Glycobiology. 2018;28:9–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thurgood LA, Dwyer ES, Decrease KM, Chataway TK, Kuss BJ. Altered expression of metabolic pathways in CLL detected by unlabelled quantitative mass spectrometry evaluation. Br J Haematol. 2019;185:65–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zalba S, ten Hagen TLM. Cell membrane modulation as adjuvant in most cancers remedy. Most cancers Deal with Rev. 2017;52:48–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larson R, Yachnin S. Mevalonic acid induces DNA synthesis in continual lymphocytic leukemia cells. Blood. 1984;64:257–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Podhorecka M, Halicka D, Klimek P, Kowal M, Chocholska S, Dmoszynska A. Simvastatin and purine analogs have a synergic impact on apoptosis of continual lymphocytic leukemia cells. Ann Hematol. 2010;89:1115–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bloehdorn J, Braun A, Taylor-Weiner A, Jebaraj BMC, Robrecht S, Krzykalla J, et al. Multi-platform profiling characterizes molecular subgroups and resistance networks in continual lymphocytic leukemia. Nat Commun. 2021;12:5395.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thijssen R, Tian L, Anderson MA, Flensburg C, Jarratt A, Garnham AL, et al. Single-cell multiomics reveal the size of multilayered diversifications enabling CLL relapse throughout venetoclax remedy. Blood. 2022;140:2127–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirayama AV, Zheng Y, Dowling MR, Sheih A, Phi T-D, Kirchmeier DR, et al. Lengthy-term follow-up and single-cell multiomics traits of infusion merchandise in sufferers with continual lymphocytic leukemia handled with CD19 CAR-T cells. Blood. 2021;138:1749–1749.

    Article 

    Google Scholar
     

  • Lu J, Cannizzaro E, Meier-Abt F, Scheinost S, Bruch P-M, Giles HAR, et al. Multi-omics reveals clinically related proliferative drive related to mTOR-MYC-OXPHOS exercise in continual lymphocytic leukemia. Nat Most cancers. 2021;2:853–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Largeot A, Klapp V, Viry E, Gonder S, Fernandez Botana I, Blomme A, et al. Inhibition of MYC translation by concentrating on of the newly recognized PHB-eIF4F complicated as therapeutic technique in CLL. Blood J. 2023;141:3166–83. blood.2022017839.

    CAS 

    Google Scholar
     

  • Elnair R, Ellithi M, Kallam A, Shostrom V, Bociek RG. Outcomes of Richter’s transformation of continual lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL): an evaluation of the SEER database. Ann Hematol. 2021;100:2513–9.

    Article 
    PubMed 

    Google Scholar
     

  • Briski R, Taylor J. Remedy of richter transformation of continual lymphocytic leukemia within the trendy period. Cancers. 2023;15:1857.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi D, Spina V, Gaidano G. Biology and therapy of Richter syndrome. Blood. 2018;131:2761–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chigrinova E, Rinaldi A, Kwee I, Rossi D, Rancoita PMV, Strefford JC, et al. Two primary genetic pathways result in the transformation of continual lymphocytic leukemia to Richter syndrome. Blood. 2013;122:2673–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fabbri G, Khiabanian H, Holmes AB, Wang J, Messina M, Mullighan CG, et al. Genetic lesions related to continual lymphocytic leukemia transformation to Richter syndrome. J Exp Med. 2013;210:2273–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Paoli L, Cerri M, Monti S, Rasi S, Spina V, Bruscaggin A, et al. MGA, a suppressor of MYC, is recurrently inactivated in excessive danger continual lymphocytic leukemia. Leuk Lymphoma. 2013;54:1087–90.

    Article 
    PubMed 

    Google Scholar
     

  • Rossi D, Spina V, Deambrogi C, Rasi S, Laurenti L, Stamatopoulos Okay, et al. The genetics of Richter syndrome reveals illness heterogeneity and predicts survival after transformation. Blood. 2011;117:3391–401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi D, Cerri M, Capello D, Deambrogi C, Rossi FM, Zucchetto A, et al. Organic and scientific danger components of continual lymphocytic leukaemia transformation to Richter syndrome. Br J Haematol. 2008;142:202–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Timár B, Fülöp Z, Csernus B, Angster C, Bognár Á, Szepesi Á, et al. Relationship between the mutational standing of VH genes and pathogenesis of diffuse massive B-cell lymphoma in Richter’s syndrome. Leukemia. 2004;18:326–30.

    Article 
    PubMed 

    Google Scholar
     

  • Rasi S, Spina V, Bruscaggin A, Vaisitti T, Tripodo C, Forconi F, et al. A variant of the LRP4 gene impacts the chance of continual lymphocytic leukaemia transformation to Richter syndrome: Host Genetic Background and Danger of Richter Transformation. Br J Haematol. 2011;152:284–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rinaldi A, Mensah AA, Kwee I, Forconi F, Orlandi EM, Lucioni M, et al. Promoter methylation patterns in Richter syndrome have an effect on stem-cell upkeep and cell cycle regulation and differ from de novo diffuse massive B-cell lymphoma. Br J Haematol. 2013;163:194–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Broséus J, Hergalant S, Vogt J, Tausch E, Kreuz M, Mottok A, et al. Molecular characterization of Richter syndrome identifies de novo diffuse massive B-cell lymphomas with poor prognosis. Nat Commun. 2023;14:309.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Roosbroeck Okay, Bayraktar R, Calin S, Bloehdorn J, Dragomir MP, Okubo Okay, et al. The involvement of microRNA within the pathogenesis of Richter syndrome. Haematologica. 2019;104:1004–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klintman J, Appleby N, Stamatopoulos B, Ridout Okay, Eyre TA, Robbe P, et al. Genomic and transcriptomic correlates of Richter transformation in continual lymphocytic leukemia. Blood. 2021;137:2800–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nadeu F, Royo R, Massoni-Badosa R, Playa-Albinyana H, Garcia-Torre B, Duran-Ferrer M, et al. Detection of early seeding of Richter transformation in continual lymphocytic leukemia. Nat Med. 2022;28:1662–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kohlhaas V, Blakemore SJ, Al-Maarri M, Nickel N, Pal M, Roth A, et al. Lively Akt signaling triggers CLL towards Richter transformation by way of overactivation of Notch1. Blood. 2021;137:646–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rozovski U, Hazan-Halevy I, Barzilai M, Keating MJ, Estrov Z. Metabolism pathways in continual lymphocytic leukemia. Leuk Lymphoma. 2016;57:758–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falchi L, Keating MJ, Marom EM, Truong MT, Schlette EJ, Sargent RL, et al. Correlation between FDG/PET, histology, traits, and survival in 332 sufferers with continual lymphoid leukemia. Blood. 2014;123:2783–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iyer P, Zhang B, Liu T, Jin M, Hart Okay, Music JY, et al. Disrupting MGA-MYC pushed metabolic reprogramming in Richter’s syndrome pre-clinical fashions by way of novel therapeutic approaches. Blood. 2022;140:9842–3.

    Article 

    Google Scholar
     

  • Hot Topics

    Related Articles