Androgen deprivation induces neuroendocrine phenotypes in prostate most cancers cells by way of CREB1/EZH2-mediated downregulation of REST


  • Davies A, Zoubeidi A, Selth LA. The epigenetic and transcriptional panorama of neuroendocrine prostate most cancers. Endocr Relat Most cancers. 2020;27:R35–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quintanal-Villalonga A, Chan JM, Yu HA, Pe’er D, Sawyers CL, Sen T, et al. Lineage plasticity in most cancers: a shared pathway of therapeutic resistance. Nat Rev Clin Oncol. 2020;17:360–71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies AH, Beltran H, Zoubeidi A. Mobile plasticity and the neuroendocrine phenotype in prostate most cancers. Nat Rev Urol. 2018;15:271–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aparicio A, Logothetis CJ, Maity SN. Understanding the deadly variant of prostate most cancers: energy of analyzing extremes. Most cancers Discov. 2011;1:466–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beltran H, Tomlins S, Aparicio A, Arora V, Rickman D, Ayala G, et al. Aggressive variants of castration-resistant prostate most cancers. Clin Most cancers Res. 2014;20:2846–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aggarwal R, Huang J, Alumkal JJ, Zhang L, Feng FY, Thomas GV, et al. Medical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate most cancers: a multi-institutional potential research. J Clin Oncol. 2018;36:2492–503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puca L, Vlachostergios PJ, Beltran H. Neuroendocrine differentiation in prostate most cancers: rising biology, fashions, and therapies. Chilly Spring Harb Perspect Med. 2019;9:a030593.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaarijarvi R, Kaljunen H, Ketola Ok. Molecular and purposeful hyperlinks between neurodevelopmental processes and treatment-induced neuroendocrine plasticity in prostate most cancers development. Cancers. 2021;13:692.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beltran H, Tagawa ST, Park Ok, MacDonald T, Milowsky MI, Mosquera JM, et al. Challenges in recognizing treatment-related neuroendocrine prostate most cancers. J Clin Oncol. 2012;30:e386–9.

    Article 
    PubMed 

    Google Scholar
     

  • Hirano D, Okada Y, Minei S, Takimoto Y, Nemoto N. Neuroendocrine differentiation in hormone refractory prostate most cancers following androgen deprivation remedy. Eur Urol. 2004;45:586–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papandreou CN, Daliani DD, Thall PF, Tu SM, Wang X, Reyes A, et al. Outcomes of a part II research with doxorubicin, etoposide, and cisplatin in sufferers with absolutely characterised small-cell carcinoma of the prostate. J Clin Oncol. 2002;20:3072–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laneve P, Gioia U, Andriotto A, Moretti F, Bozzoni I, Caffarelli E. A minicircuitry involving REST and CREB controls miR-9-2 expression throughout human neuronal differentiation. Nucleic Acids Res. 2010;38:6895–905.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qureshi IA, Gokhan S, Mehler MF. REST and CoREST are transcriptional and epigenetic regulators of seminal neural destiny choices. Cell Cycle. 2010;9:4477–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu J, Xie X. Comparative sequence evaluation reveals an intricate community amongst REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol. 2006;7:R85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Negrini S, Prada I, D’Alessandro R, Meldolesi J. REST: an oncogene or a tumor suppressor? Developments Cell Biol. 2013;23:289–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang H, Studach L, Hullinger RL, Xie J, Andrisani OM. Down-regulation of RE-1 silencing transcription issue (REST) in superior prostate most cancers by hypoxia-induced miR-106b~25. Exp Cell Res. 2014;320:188–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Svensson C, Ceder J, Iglesias-Gato D, Chuan YC, Pang ST, Bjartell A, et al. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate most cancers. Nucleic Acids Res. 2014;42:999–1015.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin TP, Chang YT, Lee SY, Campbell M, Wang TC, Shen SH, et al. REST discount is important for hypoxia-induced neuroendocrine differentiation of prostate most cancers cells by activating autophagy signaling. Oncotarget. 2016;7:26137–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang YT, Lin TP, Campbell M, Pan CC, Lee SH, Lee HC, et al. REST is a vital regulator for buying EMT-like and stemness phenotypes in hormone-refractory prostate most cancers. Sci Rep. 2017;7:42795.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Zheng D, Zhou T, Track H, Hulsurkar M, Su N, et al. Androgen deprivation promotes neuroendocrine differentiation and angiogenesis by way of CREB-EZH2-TSP1 pathway in prostate cancers. Nat Commun. 2018;9:4080.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng X, Liu H, Huang J, Cheng L, Keller ET, Parsons SJ, et al. Ionizing radiation induces prostate most cancers neuroendocrine differentiation by way of interaction of CREB and ATF2: implications for illness development. Most cancers Res. 2008;68:9663–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suarez CD, Deng X, Hu CD. Focusing on CREB inhibits radiation-induced neuroendocrine differentiation and will increase radiation-induced cell dying in prostate most cancers cells. Am J Most cancers Res. 2014;4:850–61.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu CD, Choo R, Huang J. Neuroendocrine differentiation in prostate most cancers: a mechanism of radioresistance and therapy failure. Entrance Oncol. 2015;5:90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA, et al. Repression of E-cadherin by the polycomb group protein EZH2 in most cancers. Oncogene. 2008;27:7274–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT, et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science. 2005;310:306–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Jin Q, Lee JE, Su IH, Ge Ok. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad Sci USA. 2010;107:7317–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamaguchi H, Hung MC. Regulation and position of EZH2 in Most cancers. Most cancers Res Deal with. 2014;46:209–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Function of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in most cancers epigenetics. Mutat Res. 2008;647:21–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, et al. The polycomb group protein EZH2 immediately controls DNA methylation. Nature. 2006;439:871–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crea F, Fornaro L, Bocci G, Solar L, Farrar WL, Falcone A, et al. EZH2 inhibition: concentrating on the crossroad of tumor invasion and angiogenesis. Most cancers Metastasis Rev. 2012;31:753–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedman JM, Liang G, Liu CC, Wolff EM, Tsai YC, Ye W, et al. The putative tumor suppressor microRNA-101 modulates the most cancers epigenome by repressing the polycomb group protein EZH2. Most cancers Res. 2009;69:2623–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kikuchi J, Takashina T, Kinoshita I, Kikuchi E, Shimizu Y, Sakakibara-Konishi J, et al. Epigenetic remedy with 3-deazaneplanocin A, an inhibitor of the histone methyltransferase EZH2, inhibits progress of non-small cell lung most cancers cells. Lung Most cancers. 2012;78:138–43.

    Article 
    PubMed 

    Google Scholar
     

  • Pal B, Bouras T, Shi W, Vaillant F, Sheridan JM, Fu N, et al. International modifications within the mammary epigenome are induced by hormonal cues and coordinated by Ezh2. Cell Rep. 2013;3:411–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin YJ, Kim JH. The position of EZH2 within the regulation of the exercise of matrix metalloproteinases in prostate most cancers cells. PloS one. 2012;7:e30393.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic lack of microRNA-101 results in overexpression of histone methyltransferase EZH2 in most cancers. Science. 2008;322:1695–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan L, Li X, Shen H, Bai X. Quantitative evaluation of EZH2 expression and its correlations with lung most cancers sufferers’ scientific pathological traits. Clin Transl Oncol. 2013;15:132–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang YA, Yu J. EZH2, an epigenetic driver of prostate most cancers. Protein Cell. 2013;4:331–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate most cancers. Nat. Med. 2016;22:298–305.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, et al. Rb1 and Trp53 cooperate to suppress prostate most cancers lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017;355:78–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clermont PL, Lin D, Crea F, Wu R, Xue H, Wang Y, et al. Polycomb-mediated silencing in neuroendocrine prostate most cancers. Clin Epigenetics. 2015;7:40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Ok, Wu ZJ, Groner AC, He HH, Cai C, Lis RT, et al. EZH2 oncogenic exercise in castration-resistant prostate most cancers cells is Polycomb-independent. Science. 2012;338:1465–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao JC, Yu J, Runkle C, Wu L, Hu M, Wu D, et al. Cooperation between Polycomb and androgen receptor throughout oncogenic transformation. Genome Res. 2012;22:322–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beltran H, Rickman DS, Park Ok, Chae SS, Sboner A, MacDonald TY, et al. Molecular characterization of neuroendocrine prostate most cancers and identification of recent drug targets. Most cancers Discov. 2011;1:487–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rockowitz S, Lien WH, Pedrosa E, Wei G, Lin M, Zhao Ok, et al. Comparability of REST cistromes throughout human cell sorts reveals widespread and context-specific features. PLoS Comput Biol. 2014;10:e1003671.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erkek S, Johann PD, Finetti MA, Drosos Y, Chou HC, Zapatka M, et al. Complete evaluation of chromatin states in atypical Teratoid/Rhabdoid Tumor Identifies Diverging Roles for SWI/SNF and polycomb in gene regulation. Most cancers Cell. 2019;35:95–110.e8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qadeer ZA, Valle-Garcia D, Hasson D, Solar Z, Prepare dinner A, Nguyen C, et al. ATRX in-frame fusion neuroblastoma is delicate to EZH2 inhibition by way of modulation of neuronal gene signatures. Most cancers Cell. 2019;36:512–527.e9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dietrich N, Lerdrup M, Landt E, Agrawal-Singh S, Bak M, Tommerup N, et al. REST-mediated recruitment of polycomb repressor complexes in mammalian cells. PLoS Genet. 2012;8:e1002494.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mozzetta C, Pontis J, Fritsch L, Robin P, Portoso M, Proux C, et al. The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive advanced 2-mediated gene silencing. Mol Cell. 2014;53:277–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Lengthy noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee SW, Oh YM, Lu YL, Kim WK, Yoo AS. MicroRNAs overcome cell destiny barrier by lowering EZH2-Managed REST Stability throughout neuronal conversion of human grownup fibroblasts. Dev Cell. 2018;46:73–84.e7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of scientific consequence in superior prostate most cancers. Proc Natl Acad Sci USA. 2019;116:11428–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tai S, Solar Y, Squires JM, Zhang H, Oh WK, Liang CZ, et al. PC3 is a cell line attribute of prostatic small cell carcinoma. Prostate. 2011;71:1668–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen WY, Zeng T, Wen YC, Yeh HL, Jiang KC, Chen WH, et al. Androgen deprivation-induced ZBTB46-PTGS1 signaling promotes neuroendocrine differentiation of prostate most cancers. Most cancers Lett. 2019;440-441:35–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dang Q, Li L, Xie H, He D, Chen J, Track W, et al. Anti-androgen enzalutamide enhances prostate most cancers neuroendocrine (NE) differentiation by way of altering the infiltrated mast cells -> androgen receptor (AR) -> miRNA32 indicators. Mol Oncol. 2015;9:1241–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu Y, Guo C, Wen S, Tian J, Luo J, Wang Ok, et al. ADT with antiandrogens in prostate most cancers induces adversarial impact of accelerating resistance, neuroendocrine differentiation and tumor metastasis. Most cancers Lett. 2018;439:47–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan TC, Veeramani S, Lin MF. Neuroendocrine-like prostate most cancers cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr Relat Most cancers. 2007;14:531–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sang M, Hulsurkar M, Zhang X, Track H, Zheng D, Zhang Y, et al. GRK3 is a direct goal of CREB activation and regulates neuroendocrine differentiation of prostate most cancers cells. Oncotarget. 2016;7:45171–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Graaf C, Rognan D. Selective structure-based digital screening for full and partial agonists of the beta2 adrenergic receptor. J Med Chem. 2008;51:4978–85.

    Article 
    PubMed 

    Google Scholar
     

  • Dishy V, Sofowora GG, Xie HG, Kim RB, Byrne DW, Stein CM, et al. The impact of widespread polymorphisms of the beta2-adrenergic receptor on agonist-mediated vascular desensitization. N. Engl J Med. 2001;345:1030–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heisler S, Reisine T. Forskolin stimulates adenylate cyclase exercise, cyclic AMP accumulation, and adrenocorticotropin secretion from mouse anterior pituitary tumor cells. J Neurochem. 1984;42:1659–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du Ok, Asahara H, Jhala US, Wagner BL, Montminy M. Characterization of a CREB gain-of-function mutant with constitutive transcriptional exercise in vivo. Mol Cell Biol. 2000;20:4320–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hulsurkar M, Li Z, Zhang Y, Li X, Zheng D, Li W. Beta-adrenergic signaling promotes tumor angiogenesis and prostate most cancers development by way of HDAC2-mediated suppression of thrombospondin-1. Oncogene. 2017;36:1525–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Donmez N, Sahinalp C, Xie N, Wang Y, Xue H, et al. SRRM4 Drives neuroendocrine transdifferentiation of prostate adenocarcinoma below androgen receptor pathway inhibition. Eur Urol. 2017;71:68–78.

  • Wagoner MP, Gunsalus KT, Schoenike B, Richardson AL, Friedl A, Roopra A. The transcription issue REST is misplaced in aggressive breast most cancers. PLoS Genet. 2010;6:e1000979.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Westbrook TF, Hu G, Ang XL, Mulligan P, Pavlova NN, Liang A, et al. SCFbeta-TRCP controls oncogenic transformation and neural differentiation by way of REST degradation. Nature. 2008;452:370–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Coleman IM, Brown LG, True LD, Kollath L, Lucas JM, et al. SRRM4 expression and the lack of REST exercise might promote the emergence of the neuroendocrine phenotype in castration-resistant prostate most cancers. Clin Most cancers Res. 2015;21:4698–708.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate most cancers. Science. 2017;355:84–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettaway CA, Pathak S, Greene G, Ramirez E, Wilson MR, Killion JJ, et al. Number of extremely metastatic variants of various human prostatic carcinomas utilizing orthotopic implantation in nude mice. Medical most cancers analysis : an official journal of the American Affiliation for. Most cancers Res. 1996;2:1627–36.

    CAS 

    Google Scholar
     

  • Yuan TC, Veeramani S, Lin FF, Kondrikou D, Zelivianski S, Igawa T, et al. Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells. Endocr Relat Most cancers. 2006;13:151–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleb B, Estecio MR, Zhang J, Tzelepi V, Chung W, Jelinek J, et al. Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas. Epigenetics. 2016;11:184–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, et al. A lentiviral RNAi library for human and mouse genes utilized to an arrayed viral high-content display screen. Cell. 2006;124:1283–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim KH, Kim W, Howard TP, Vazquez F, Tsherniak A, Wu JN, et al. SWI/SNF-mutant cancers rely upon catalytic and non-catalytic exercise of EZH2. Nat Med. 2015;21:1491–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pearlberg J, Degot S, Endege W, Park J, Davies J, Gelfand E, et al. Screens utilizing RNAi and cDNA expression as surrogates for genetics in mammalian tissue tradition cells. Chilly Spring Harb Symp Quant Biol. 2005;70:449–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Ai N, Wang S, Bhattacharya N, Vrbanac V, Collins M, et al. GRK3 is important for metastatic cells and promotes prostate tumor development. Proc Natl Acad Sci USA. 2014;111:1521–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Su N, Zhou T, Zheng D, Wang Z, Chen H, et al. Blended lineage kinase ZAK promotes epithelial-mesenchymal transition in most cancers development. Cell Dying Dis. 2018;9:143.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Hulsurkar M, Zhuo L, Xu J, Yang H, Naderinezhad S, et al. CKB inhibits epithelial-mesenchymal transition and prostate most cancers development by sequestering and inhibiting AKT activation. Neoplasia. 2021;23:1147–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio most cancers genomics portal: an open platform for exploring multidimensional most cancers genomics knowledge. Most cancers Discov. 2012;2:401–4.

    Article 
    PubMed 

    Google Scholar
     

  • Hot Topics

    Related Articles