Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G, et al. Cyclin-dependent kinases: a household portrait. Nat Cell Biol. 2009;11:1275–6.
Lim S, Kaldis P. Cdks, cyclins and CKIs: roles past cell cycle regulation. Growth. 2013;140:3079–93.
Bregman DB, Pestell RG, Kidd VJ. Cell cycle regulation and RNA polymerase II. Entrance Biosci. 2000;5:244–57.
Oelgeschläger T. Regulation of RNA polymerase II exercise by CTD phosphorylation and cell cycle management. J Cell Physiol. 2002;190:160–9.
Matthews HK, Bertoli C, de Bruin RAM. Cell cycle management in most cancers. Nat Rev Mol Cell Biol. 2021;23:74–88.
Fischer M, Schade AE, Branigan TB, Müller GA, DeCaprio JA. Coordinating gene expression through the cell cycle. Traits Biochem Sci. 2022;47:1009–22.
Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21:204–24.
Nigg EA. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays. 1995;17:471–80.
Abreu Velez AM, Howard MS. Tumor-suppressor genes, cell cycle regulatory checkpoints, and the pores and skin. N Am J Med Sci. 2015;7:176–88.
Pennycook BR, Barr AR. Restriction level regulation on the crossroads between quiescence and cell proliferation. FEBS Lett. 2020;594:2046–60.
Rubin SM, Sage J, Skotheim JM. Integrating outdated and new paradigms of G1/S management. Mol Cell. 2020;80:183–92.
Zhang M, Zhang L, Hei R, Li X, Cai H, Wu X, et al. CDK inhibitors in most cancers remedy, an outline of current growth. Am J Most cancers Res. 2021;11:1913–35.
Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, et al. Biochemical and mobile results of roscovitine, a potent and selective inhibitor of the cyclin‐dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem. 1997;243:527–36.
Cicenas J, Kalyan Ok, Sorokinas A, Stankunas E, Levy J, Meskinyte I, et al. Roscovitine in most cancers and different ailments. Ann Transl Med. 2015;3:135–46.
Whittaker SR, Mallinger A, Workman P, Clarke PA. Inhibitors of cyclin-dependent kinases as most cancers therapeutics. Pharm Ther. 2017;173:83–105.
Bettayeb Ok, Tirado OM, Marionneau-Lambot S, Ferandin Y, Lozach O, Morris JC, et al. Meriolins, a brand new class of cell demise inducing kinase inhibitors with enhanced selectivity for cyclin-dependent kinases. Most cancers Res. 2007;67:8325–34.
Echalier A, Bettayeb Ok, Ferandin Y, Lozach O, Clement M, Valette A, et al. Meriolins (3-(pyrimidin-4-yl)-7-azaindoles): Synthesis, kinase inhibitory exercise, mobile results, and construction of a CDK2/cyclin A/meriolin advanced. J Med Chem. 2008;51:737–51.
Kruppa M, Müller TJJ. A survey on the synthesis of variolins, meridianins, and meriolins—naturally occurring marine (aza)indole alkaloids and their semisynthetic derivatives. Molecules. 2023;28:947.
Singh U, Chashoo G, Khan SU, Mahajan P, Nargotra A, Mahajan G, et al. Design of novel 3-pyrimidinylazaindole CDK2/9 inhibitors with potent in vitro and in vivo antitumor efficacy in a triple-negative breast most cancers mannequin. J Med Chem. 2017;60:9470–89.
Akue-Gedu R, Debiton E, Ferandin Y, Meijer L, Prudhomme M, Anizon F, et al. Synthesis and organic actions of aminopyrimidyl-indoles structurally associated to meridianins. Bioorg Med Chem. 2009;17:4420–4.
Lukasik PM, Elabar S, Lam F, Shao H, Liu X, Abbas AY, et al. Synthesis and organic analysis of imidazo[4,5-b]pyridine and 4-heteroaryl-pyrimidine derivatives as anti-cancer brokers. Eur J Med Chem. 2012;57:311–22.
Drießen D, Stuhldreier F, Frank A, Stark H, Wesselborg S, Stork B, et al. Novel meriolin derivatives as fast apoptosis inducers. Bioorg Med Chem. 2019;27:3463–8.
Skowron MA, Vermeulen M, Winkelhausen A, Becker TK, Bremmer F, Petzsch P, et al. CDK4/6 inhibition presents as a therapeutic possibility for paediatric and grownup germ cell tumours and induces cell cycle arrest and apoptosis by way of canonical and non-canonical mechanisms. Br J Most cancers. 2020;123:378–91.
Chashoo G, Singh U, Singh PP, Mondhe DM, Vishwakarma RA. A marine-based meriolin (3-pyrimidinylazaindole) by-product (4ab) targets PI3K/AKT/mTOR pathway inducing cell cycle arrest and apoptosis in Molt-4 cells. Clin Most cancers Medication. 2019;6:33–40.
Jarry M, Lecointre C, Malleval C, Desrues L, Schouft MT, Lejoncour V, et al. Affect of meriolins, a brand new class of cyclin-dependent kinase inhibitors, on malignant glioma proliferation and neo-angiogenesis. Neuro Oncol. 2014;16:1484–98.
Thatikonda T, Singh U, Ambala S, Vishwakarma RA, Singh PP. Metallic free C-H functionalization of diazines and associated heteroarenes with organoboron species and its software within the synthesis of a CDK inhibitor, meriolin 1. Org Biomol Chem. 2016;14:4312–20.
Motati DR, Amaradhi R, Ganesh T. Azaindole therapeutic brokers. Bioorg Med Chem. 2020;28:115830.
Schmitt L, Lechtenberg I, Drießen D, Flores-Romero H, Skowron MA, Sekeres M, et al. Novel meriolin derivatives activate the mitochondrial apoptosis pathway within the presence of antiapoptotic Bcl-2. Cell Loss of life Discov. 2024;10:125.
Chu X-J, DePinto W, Bartkovitz D, So S-S, Vu BT, Packman Ok, et al. Discovery of [4-amino-2-(1-methanesulfonylpi peridin-4-ylamino) pyrimidin-5-yl](2, 3-difluoro-6-methoxyphenyl) methanone (R547), a potent and selective cyclin-dependent kinase inhibitor with vital in vivo antitumor exercise. J Med Chem. 2006;49:6549–60.
Leroux AE, Schulze JO, Biondi RM. AGC kinases, mechanisms of regulation and progressive drug growth. Semin Most cancers Biol. 2018;48:1–17.
Morris MC, Gondeau C, Tainer JA, Divita G. Kinetic mechanism of activation of the Cdk2/cyclin A posh: key function of the C-lobe of the Cdk. J Biol Chem. 2002;277:23847–53.
Shoichet BK, Leach AR, Kuntz ID. Ligand solvation in molecular docking. Proteins Struct Funct Bioinforma. 1999;34:4–16.
Schulze-Gahmen U, De Bondt HL, Kim S-H. Excessive-resolution crystal buildings of human cyclin-dependent kinase 2 with and with out ATP: sure waters and pure ligand as guides for inhibitor design. J Med Chem. 1996;39:4540–6.
Wodicka LM, Ciceri P, Davis MI, Hunt JP, Floyd M, Salerno S, et al. Activation state-dependent binding of small molecule kinase inhibitors: structural insights from biochemistry. Chem Biol. 2010;17:1241–9.
Guterres H, Im W. Enhancing protein-ligand docking outcomes with high-throughput molecular dynamics simulations. J Chem Inf Mannequin. 2020;60:2189–98.
Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF. Cyclin D prompts the Rb tumor suppressor by mono-phosphorylation. eLife. 2014;3:e02872.
Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, et al. The roles of cyclin-dependent kinases in cell-cycle development and therapeutic methods in human breast most cancers. Int J Mol Sci. 2020;21:1960.
Zarkowska T, Mittnacht S. Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases. J Biol Chem. 1997;272:12738–46.
Adams PD, Li X, Sellers WR, Baker KB, Leng X, Harper JW, et al. Retinoblastoma protein comprises a C-terminal motif that targets it for phosphorylation by cyclin-cdk complexes. Mol Cell Biol. 1999;19:1068–80.
Peyressatre M, Prével C, Pellerano M, Morris MC. Focusing on cyclin-dependent kinases in human cancers: from small molecules to peptide inhibitors. Cancers. 2015;7:179–237.
Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A fast and easy technique for measuring thymocyte apoptosis by propidium iodide staining and movement cytometry. J Immunol Strategies. 1991;139:271–9.
Grana X, De Luca A, Sang N, Fu Y, Claudio P, Rosenblatt J, et al. PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc Natl Acad Sci USA 1994;91:3834–8.
Garriga J, Bhattacharya S, Calbó J, Marshall RM, Truongcao M, Haines DS, et al. CDK9 is constitutively expressed all through the cell cycle, and its steady-state expression is impartial of SKP2. Mol Cell Biol. 2003;23:5165–73.
Anshabo AT, Milne R, Wang S, Albrecht H. CDK9: a complete assessment of its biology, and its function as a possible goal for anti-cancer brokers. Entrance Oncol. 2021;11:678559.
Daina A, Michielin O, Zoete V. SwissADME: a free net software to judge pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.
Shapiro GI. Cyclin-dependent kinase pathways as targets for most cancers therapy. J Clin Oncol. 2006;24:1770–83.
Zhao MY, Auerbach A, D’Costa AM, Rapoport AP, Burger AM, Sausville EA, et al. Phospho-p70S6K/p85S6K and cdc2/cdk1 are novel targets for diffuse giant B-cell lymphoma mixture remedy. Clin Most cancers Res. 2009;15:1708–20.
Lapenna S, Giordano A. Cell cycle kinases as therapeutic targets for most cancers. Nat Rev Drug Discov. 2009;8:547–66.
Bruyère C, Meijer L. Focusing on cyclin-dependent kinases in anti-neoplastic remedy. Curr Opin Cell Biol. 2013;25:772–9.
Goga A, Yang D, Tward AD, Morgan DO, Bishop JM. Inhibition of CDK1 as a possible remedy for tumors over-expressing MYC. Nat Med. 2007;13:820–7.
Yuan J, Krämer A, Matthess Y, Yan R, Spänkuch B, Gätje R, et al. Secure gene silencing of cyclin B1 in tumor cells will increase susceptibility to taxol and results in development arrest in vivo. Oncogene. 2006;25:1753–62.
Morris MC, Gros E, Aldrian-Herrada G, Choob M, Archdeacon J, Heitz F, et al. A non-covalent peptide-based provider for in vivo supply of DNA mimics. Nucleic Acids Res. 2007;35:e49.
Androic I, Krämer A, Yan R, Rödel F, Gätje R, Kaufmann M, et al. Focusing on cyclin B1 inhibits proliferation and sensitizes breast most cancers cells to taxol. BMC Most cancers. 2008;8:391.
Crombez L, Morris MC, Dufort S, Aldrian-Herrada G, Nguyen Q, Mc Grasp G, et al. Focusing on cyclin B1 by peptide-based supply of siRNA prevents tumour development. Nucleic Acids Res. 2009;37:4559–69.
Sheppard KE, McArthur GA. The cell-cycle regulator CDK4: an rising therapeutic goal in melanoma. Clin Most cancers Res. 2013;19:5320–8.
Puyol M, Martín A, Dubus P, Mulero F, Pizcueta P, Khan G, et al. An artificial deadly interplay between Ok-Ras oncogenes and Cdk4 unveils a therapeutic technique for non-small cell lung carcinoma. Most cancers Cell. 2010;18:63–73.
Alexander A, Karakas C, Chen X, Carey JP, Yi M, Bondy M, et al. Cyclin E overexpression as a biomarker for mixture therapy methods in inflammatory breast most cancers. Oncotarget. 2017;8:14897–911.
Akli S, Van Pelt CS, Bui T, Meijer L, Keyomarsi Ok. Cdk2 is required for breast most cancers mediated by the low-molecular-weight isoform of cyclin E. Most cancers Res. 2011;71:3377–86.
Mou J, Chen D, Deng Y. Inhibitors of cyclin-dependent kinase 1/2 for anticancer therapy. Med Chem. 2020;16:307–25.
Huang S, Li R, Connolly PJ, Emanuel S, Middleton SA. Synthesis of 2-amino-4-(7-azaindol-3-yl) pyrimidines as cyclin dependent kinase 1 (CDK1) inhibitors. Bioorg Med Chem Lett. 2006;16:4818–21.
Uhl KL, Schultz CR, Geerts D, Bachmann AS. Harmine, a dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor induces caspase-mediated apoptosis in neuroblastoma. Most cancers Cell Int. 2018;18:82.
Pitsawong W, Buosi V, Otten R, Agafonov RV, Zorba A, Kern N, et al. Dynamics of human protein kinase Aurora A linked to drug selectivity. eLife. 2018;7:e36656.
Wilson C, Agafonov R, Hoemberger M, Kutter S, Zorba A, Halpin J, et al. Kinase dynamics. Utilizing historic protein kinases to unravel a contemporary most cancers drug’s mechanism. Science. 2015;347:882–6.
Wang JYJ. DNA harm and apoptosis. Cell Loss of life Differ. 2001;8:1047–8.
Hattori T, Uchida C, Takahashi H, Yamamoto N, Naito M, Taya Y. Distinct and site-specific phosphorylation of the retinoblastoma protein at serine 612 in differentiated cells. PLoS ONE. 2014;9:e86709.
Shapiro GI, Koestner DA, Matranga CB, Rollins BJ. Flavopiridol induces cell cycle arrest and p53-independent apoptosis in non-small cell lung most cancers cell strains. Clin Most cancers Res. 1999;5:2925–38.
Zhao H, Li S, Wang G, Zhao W, Zhang D, Wang F, et al. Examine of the mechanism by which dinaciclib induces apoptosis and cell cycle arrest of lymphoma Raji cells by a CDK1-involved pathway. Most cancers Med. 2019;8:4348–58.
Ni Z, Schwartz BE, Werner J, Suarez J-R, Lis JT. Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on warmth shock genes. Mol Cell. 2004;13:55–65.
Shim EY, Walker AK, Shi Y, Blackwell TK. CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription within the C. elegans embryo. Genes Dev. 2002;16:2135–46.
Czudnochowski N, Bösken CA, Geyer M. Serine-7 however not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Nat Commun. 2012;3:842.
Gregory GP, Hogg SJ, Kats LM, Vidacs E, Baker AJ, Gilan O, et al. CDK9 inhibition by dinaciclib potently suppresses Mcl-1 to induce sturdy apoptotic responses in aggressive MYC-driven B-cell lymphoma in vivo. Leukemia. 2015;29:1437–41.
Cidado J, Boiko S, Proia T, Ferguson D, Criscione SW, San Martin M, et al. AZD4573 is a extremely selective CDK9 inhibitor that suppresses MCL-1 and induces apoptosis in hematologic most cancers cells. Clin Most cancers Res. 2020;26:922–34.
Lemke J, von Karstedt S, Abd El Hay M, Conti A, Arce F, Montinaro A, et al. Selective CDK9 inhibition overcomes TRAIL resistance by concomitant suppression of cFlip and Mcl-1. Cell Loss of life Differ. 2014;21:491–502.
Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, however not Bcl-2, till displaced by BH3-only proteins. Genes Dev. 2005;19:1294–305.
Chen H-C, Kanai M, Inoue-Yamauchi A, Tu H-C, Huang Y, Ren D, et al. An interconnected hierarchical mannequin of cell demise regulation by the BCL-2 household. Nat Cell Biol. 2015;17:1270–81.
Soderquist RS, Eastman A. BCL2 inhibitors as anticancer medicine: a plethora of deceptive BH3 mimetics. Mol Most cancers Ther. 2016;15:2011–7.
Romano G. Deregulations within the cyclin-dependent kinase-9-related pathway in most cancers: implications for drug discovery and growth. ISRN Oncol. 2013;2013:305371.
Tong WG, Chen R, Plunkett W, Siegel D, Sinha R, Harvey RD, et al. Section I and pharmacologic examine of SNS-032, a potent and selective Cdk2, 7, and 9 inhibitor, in sufferers with superior persistent lymphocytic leukemia and a number of myeloma. J Clin Oncol. 2010;28:3015–22.
Bellan C, De Falco G, Lazzi S, Micheli P, Vicidomini S, Schürfeld Ok, et al. CDK9/CYCLIN T1 expression throughout regular lymphoid differentiation and malignant transformation. J Pathol. 2004;203:946–52.
Roider T, Brinkmann BJ, Dietrich S. Processing human lymph node samples for single-cell assays. STAR Protoc. 2021;2:100914.
Bruch PM, Giles HA, Kolb C, Herbst SA, Becirovic T, Roider T, et al. Drug‐microenvironment perturbations reveal resistance mechanisms and prognostic subgroups in CLL. Mol Syst Biol. 2022;18:e10855.
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and affect on digital screening enrichments. J Comput Aided Mol Des. 2013;27:221–34.
Olsson MHM. Protein electrostatics and pKa blind predictions; contribution from empirical predictions of inner ionizable residues. Proteins Struct Funct Bioinforma. 2011;79:3333–45.
Repasky MP, Shelley M, Friesner RA. Versatile ligand docking with Glide. Curr Protoc Bioinformatics. 2007;Chapter 8:Unit 8.12.
Frisch MJ, Vans GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16 Rev. C.01. Wallingford, CT: Gaussian, Inc; 2016.
Case DA, Aktulga HM, Belfon Ok, Cerutti DS, Cisneros GA, Cruzeiro VWD, et al. AmberTools. J Chem Inf Mannequin. 2023;63:6183–91.
Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Specific solvent particle mesh Ewald. J Chem Concept Comput. 2013;9:3878–88.
Roe DR, Cheatham TE III. PTRAJ and CPPTRAJ: software program for processing and evaluation of molecular dynamics trajectory information. J Chem Concept Comput. 2013;9:3084–95.

