Oskarsson T. Extracellular matrix elements in breast most cancers development and metastasis. Breast. 2013;22:566–72. https://doi.org/10.1016/j.breast.2013.07.012.
Lee J, Chaudhuri O. Regulation of breast most cancers development by extracellular matrix mechanics: insights from 3D tradition fashions. ACS Biomater Sci Eng.2018;4:302–13. https://doi.org/10.1021/acsbiomaterials.7b00071.
Papalazarou V, Salmeron-Sanchez M, Machesky LM. Tissue engineering the most cancers microenvironment-challenges and alternatives. Biophys Rev. 2018;10:1695–711. https://doi.org/10.1007/s12551-018-0466-8.
Walker C, Mojares E, del Río Hernández A. Function of extracellular matrix in growth and most cancers development. Int J Mol Sci. 2018;19:3028 https://doi.org/10.3390/ijms19103028.
Muncie JM, Weaver VM. The bodily and biochemical properties of the extracellular matrix regulate cell destiny. Curr Prime Dev Biol. 2018;130:1–37. https://doi.org/10.1016/bs.ctdb.2018.02.002.
Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a look. J Cell Sci. 2010;123:4195–200. https://doi.org/10.1242/jcs.023820.
Devi CU, Chandran RB, Vasu RM, Sood AK. Measurement of visco-elastic properties of breast-tissue mimicking supplies utilizing diffusing wave spectroscopy. J Biomed Decide. 2007;12:034035 https://doi.org/10.1117/1.2743081.
Chaudhuri PK, Low BC, Lim CT. Mechanobiology of tumor development. Chem Rev. 2018;118:6499–515. https://doi.org/10.1021/acs.chemrev.8b00042.
Charrier EE, Pogoda Ok, Wells RG, Janmey PA. Management of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nat Commun. 2018;9:449 https://doi.org/10.1038/s41467-018-02906-9.
Murrell M, Kamm R, Matsudaira P. Substrate viscosity enhances correlation in epithelial sheet motion. Biophys J. 2011;101:297–306. https://doi.org/10.1016/j.bpj.2011.05.048.
Gonzalez-Molina J, Zhang X, Borghesan M, da Silva JM, Awan M, Fuller B. et al. Extracellular fluid viscosity enhances liver most cancers cell mechanosensing and migration. Biomaterials . 2018;177:113–24. https://doi.org/10.1016/j.biomaterials.2018.05.058.
Cantini M, Donnelly H, Dalby MJ, Salmeron‐Sanchez M. The plot thickens: the rising function of matrix viscosity in cell mechanotransduction. Adv Healthcare Mater. 2019. https://doi.org/10.1002/adhm.201901259.
Poh PSP, Hege C, Chhaya MP, Balmayor ER, Foehr P, Burgkart RH, et al. Analysis of polycaprolactone−poly-D,L-lactide copolymer as biomaterial for breast tissue engineering. Polym Int. 2017;66:77–84. https://doi.org/10.1002/pi.5181.
Mano SS, Uto Ok, Aoyagi T, Ebara M. Fluidity of biodegradable substrate regulates carcinoma cell habits: a novel strategy to most cancers remedy. AIMS Mater Sci. 2016;3:66–82. https://doi.org/10.3934/matersci.2016.1.66.
Mano SS, Uto Ok, Ebara M. Materials-induced senescence (MIS): fluidity induces senescent sort cell demise of lung most cancers cells through insulin-like development issue binding protein 5. Theranostics. 2017;7:4658–70. https://doi.org/10.7150/thno.20582.
Uto Ok, Mano SS, Aoyagi T, Ebara M. Substrate fluidity regulates cell adhesion and morphology on poly (ε-caprolactone)-based supplies. ACS Biomater Sci Eng. 2016;2:446–53. https://doi.org/10.1021/acsbiomaterials.6b00058.
Uto Ok, Muroya T, Okamoto M, Tanaka H, Murase T, Ebara M, et al. Design of super-elastic biodegradable scaffolds with longitudinally oriented microchannels and optimization of the channel measurement for Schwann cell migration. Sci Technol Adv Mater. 2012;13:064207. https://doi.org/10.1088/1468-6996/13/6/064207.
Dzhoyashvili NA, Thompson Ok, Gorelov AV, Rochev YA. Movie thickness determines cell development and cell sheet detachment from spin-coated poly(N‑Isopropylacrylamide) substrates. ACS Appl Mater Interfaces. 2016;8:27564–572. https://doi.org/10.1021/acsami.6b09711.
Buxboim A, Rajagopal Ok, Brown AE, Discher DE. How deeply cells really feel: strategies for skinny gels. J Condens. 2010;22:194116. https://doi.org/10.1088/0953-8984/22/19/194116.
Chaudhuri PK, Pan CQ, Low BC, Lim CT. Differential depth sensing reduces most cancers cell proliferation through rho-rac-regulated invadopodia. ACS Nano. 2017;11:7336–48. https://doi.org/10.1021/acsnano.7b03452.
Chester D, Kathard R, Nortey J, Nellenbach Ok, Brown AC. Viscoelastic properties of microgel skinny movies management fibroblast modes of migration and pro-fibrotic responses. Biomaterials. 2018;185:371–82. https://doi.org/10.1016/j.biomaterials.2018.09.012.
Bennett M, Cantini M, Reboud J, Cooper JM, Roca-Cusachs P, Salmeron-Sanchez M. Molecular clutch drives cell response to floor viscosity. PNAS. 2018;115:1192–7. https://doi.org/10.1073/pnas.1710653115.
Kourouklis AP, Lerum RV, Bermudez H. Cell adhesion mechanisms on laterally cell polymer movies. Biomaterials. 2014;35:4827–34. https://doi.org/10.1016/j.biomaterials.2014.02.052.
Zheng JY, Han SP, Chiu YJ, Yip AK, Boichat N, Zhu SW, et al. Epithelial monolayers coalesce on a viscoelastic substrate by means of redistribution of vinculin. Biophys J. 2017;113:1585–98. https://doi.org/10.1016/j.bpj.2017.07.027.
Bell S, Terentjev EM. Focal adhesion kinase: the reversible molecular mechanosensor. Biophys J. 2017;112:2439–50. https://doi.org/10.1016/j.bpj.2017.04.048.
Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Mobile senescence: defining a path ahead. Cell. 2019;179:813–27. https://doi.org/10.1016/j.cell.2019.10.005.
Zhang W, Choi DS, Nguyen YH, Chang J, Qin L. Learning most cancers stem cell dynamics on PDMS surfaces for microfluidics gadget design. Sci Rep. 2013;3:2332. https://doi.org/10.1038/srep02332.

