ERIC suggestions for TP53 mutation evaluation in continual lymphocytic leukemia—2024 replace


  • Zenz T, Habe S, Denzel T, Mohr J, Winkler D, Buhler A, et al. Detailed evaluation of p53 pathway defects in fludarabine-refractory CLL: dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a potential scientific trial. Blood. 2009;114:2589–97.

  • Rossi D, Spina V, Deambrogi C, Rasi S, Laurenti L, Stamatopoulos Okay, et al. The genetics of Richter syndrome reveals illness heterogeneity and predicts survival after transformation. Blood. 2011;117:3391–401.

    CAS 
    PubMed 

    Google Scholar
     

  • Griffin R, Wiedmeier-Nutor JE, Parikh SA, McCabe CE, O’Brien DR, Boddicker NJ, et al. Differential prognosis of single and a number of TP53 abnormalities in high-count MBL and untreated CLL. Blood Adv. 2023;7:3169–79.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T, Pinyol M, et al. Medical affect of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in continual lymphocytic leukemia. Blood. 2016;127:2122–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi D, Khiabanian H, Spina V, Ciardullo C, Bruscaggin A, Famà R, et al. Medical affect of small TP53 mutated subclones in continual lymphocytic leukemia. Blood. 2014;123:2139–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malcikova J, Pavlova S, Barbara KV, Radova L, Plevova Okay, Kotaskova J, et al. Low-burden TP53 mutations in CLL: scientific affect and clonal evolution throughout the context of various therapy choices. Blood. 2021;138:2670–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bomben R, Rossi FM, Vit F, Bittolo T, D’Agaro T, Zucchetto A, et al. Mutations with low variant allele frequency predict quick survival in continual lymphocytic leukemia. Clin Most cancers Res. 2021;27:5566–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Blakemore SJ, Clifford R, Parker H, Antoniou P, Stec-Dziedzic E, Larrayoz M, et al. Medical significance of TP53, BIRC3, ATM and MAPK-ERK genes in continual lymphocytic leukaemia: knowledge from the randomised UK LRF CLL4 trial. Leukemia. 2020;34:1760–74.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brieghel C, Kinalis S, Yde CW, Schmidt AY, Jønson L, Andersen MA, et al. Deep focused sequencing of TP53 in continual lymphocytic leukemia: scientific affect at prognosis and at time of therapy. Haematologica. 2019;104:789–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Catherwood MA, Wren D, Chiecchio L, Cavalieri D, Donaldson D, Lawless S, et al. TP53 mutations recognized utilizing NGS comprise the overwhelming majority of TP53 disruptions in CLL: outcomes from a multicentre examine. Entrance Oncol. 2022;12:909615.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW, et al. p53 mutations in human lymphoid malignancies: affiliation with Burkitt lymphoma and continual lymphocytic leukemia. Proc Natl Acad Sci USA. 1991;88:5413–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • el Rouby S, Thomas A, Costin D, Rosenberg CR, Potmesil M, Silber R, et al. p53 gene mutation in B-cell continual lymphocytic leukemia is related to drug resistance and is unbiased of MDR1/MDR3 gene expression. Blood. 1993;82:3452–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Fenaux P, Preudhomme C, Lai JL, Quiquandon I, Jonveaux P, Vanrumbeke M, et al. Mutations of the p53 gene in B-cell continual lymphocytic leukemia: a report on 39 instances with cytogenetic evaluation. Leukemia. 1992;6:246–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Dohner H, Fischer Okay, Bentz M, Hansen Okay, Benner A, Cabot G, et al. p53 gene deletion predicts for poor survival and non-response to remedy with purine analogs in continual B-cell leukemias. Blood. 1995;85:1580–9.

    PubMed 

    Google Scholar
     

  • Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, et al. Genomic aberrations and survival in continual lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Zenz T, Krober A, Scherer Okay, Habe S, Buhler A, Benner A, et al. Monoallelic TP53 inactivation is related to poor prognosis in continual lymphocytic leukemia: outcomes from an in depth genetic characterization with long-term follow-up. Blood. 2008;112:3322–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Rossi D, Cerri M, Deambrogi C, Sozzi E, Cresta S, Rasi S, et al. The prognostic worth of TP53 mutations in continual lymphocytic leukemia is unbiased of Del17p13: implications for total survival and chemorefractoriness. Clin Most cancers Res. 2009;15:995–1004.

    CAS 
    PubMed 

    Google Scholar
     

  • Dicker F, Herholz H, Schnittger S, Nakao A, Patten N, Wu L, et al. The detection of TP53 mutations in continual lymphocytic leukemia independently predicts fast illness development and is very correlated with a posh aberrant karyotype. Leukemia. 2009;23:117–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Malcikova J, Smardova J, Rocnova L, Tichy B, Kuglik P, Vranova V, et al. Monoallelic and biallelic inactivation of TP53 gene in continual lymphocytic leukemia: choice, affect on survival, and response to DNA harm. Blood. 2009;114:5307–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Zenz T, Eichhorst B, Busch R, Denzel T, Häbe S, Winkler D, et al. TP53 mutation and survival in continual lymphocytic leukemia. J Clin Oncol. 2010;28:4473–9.

    PubMed 

    Google Scholar
     

  • Gonzalez D, Martinez P, Wade R, Hockley S, Oscier D, Matutes E, et al. Mutational standing of the TP53 gene as a predictor of response and survival in sufferers with continual lymphocytic leukemia: outcomes from the LRF CLL4 trial. J Clin Oncol. 2011;29:2223–9.

    PubMed 

    Google Scholar
     

  • Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Döhner Okay, et al. Gene mutations and therapy end result in continual lymphocytic leukemia: outcomes from the CLL8 trial. Blood. 2014;123:3247–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Hoechstetter MA, Busch R, Eichhorst B, Bühler A, Winkler D, Bahlo J, et al. Prognostic mannequin for newly identified CLL sufferers in Binet stage A: outcomes of the multicenter, potential CLL1 trial of the German CLL examine group. Leukemia. 2020;34:1038–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Hoechstetter MA, Busch R, Eichhorst B, Bühler A, Winkler D, Eckart MJ, et al. Early, risk-adapted therapy with fludarabine in Binet stage A continual lymphocytic leukemia sufferers: outcomes of the CLL1 trial of the German CLL examine group. Leukemia. 2017;31:2833–7.

    CAS 
    PubMed 

    Google Scholar
     

  • group IC-Iw. A world prognostic index for sufferers with continual lymphocytic leukaemia (CLL-IPI): a meta-analysis of particular person affected person knowledge. Lancet Oncol. 2016;17:779–90.


    Google Scholar
     

  • Brieghel C, Galle V, Agius R, da Cunha-Bang C, Andersen MA, Vlummens P, et al. Figuring out sufferers with continual lymphocytic leukemia with out want of therapy: Finish of countless watch and wait? Eur J Haematol. 2022;108:369–78.

    CAS 
    PubMed 

    Google Scholar
     

  • Condoluci A, Terzi di Bergamo L, Langerbeins P, Hoechstetter MA, Herling CD, De Paoli L, et al. Worldwide prognostic rating for asymptomatic early-stage continual lymphocytic leukemia. Blood. 2020;135:1859–69.

    PubMed 

    Google Scholar
     

  • Hu B, Patel KP, Chen HC, Wang X, Luthra R, Routbort MJ, et al. Affiliation of gene mutations with time-to-first therapy in 384 treatment-naive continual lymphocytic leukaemia sufferers. Br J Haematol. 2019;187:307–18.

    CAS 
    PubMed 

    Google Scholar
     

  • Mansouri, Thorvaldsdottir L, Sutton LA B, Karakatsoulis G, Meggendorfer M, Parker H, et al. Totally different prognostic affect of recurrent gene mutations in continual lymphocytic leukemia relying on IGHV gene somatic hypermutation standing: a examine by ERIC in HARMONY. Leukemia. 2023;37:339–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Tausch E, Schneider C, Robrecht S, Zhang C, Dolnik A, Bloehdorn J, et al. Prognostic and predictive affect of genetic markers in sufferers with CLL handled with obinutuzumab and venetoclax. Blood. 2020;135:2402–12.

    PubMed 

    Google Scholar
     

  • Munir T, Brown JR, O’Brien S, Barrientos JC, Barr PM, Reddy NM, et al. Ultimate evaluation from RESONATE: As much as six years of follow-up on ibrutinib in sufferers with beforehand handled continual lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol. 2019;94:1353–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghia P, Pluta A, Wach M, Lysak D, Šimkovič M, Kriachok I, et al. Acalabrutinib versus investigator’s selection in relapsed/refractory continual lymphocytic leukemia: ultimate ASCEND trial outcomes. Hemasphere. 2022;6:e801.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seymour JF, Kipps TJ, Eichhorst BF, D’Rozario J, Owen CJ, Assouline S, et al. Enduring undetectable MRD and up to date outcomes in relapsed/refractory CLL after fixed-duration venetoclax-rituximab. Blood. 2022;140:839–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brieghel C, Aarup Okay, Torp MH, Andersen MA, Yde CW, Tian X, et al. Medical outcomes in sufferers with multi-hit TP53 continual lymphocytic leukemia handled with ibrutinib. Clin Most cancers Res. 2021;27:4531–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bomben R, Rossi FM, Vit F, Bittolo T, Zucchetto A, Papotti R, et al. Medical affect of TP53 disruption in continual lymphocytic leukemia sufferers handled with ibrutinib: a campus CLL examine. Leukemia. 2023;37:914–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huber H, Tausch E, Schneider C, Edenhofer S, von Tresckow J, Robrecht S, et al. Ultimate evaluation of the CLL2-GIVe trial: obinutuzumab, ibrutinib, and venetoclax for untreated CLL with del(17p)/TP53mut. Blood. 2023;142:961–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Rigolin GM, Olimpieri PP, Summa V, Celant S, Scarfò L, Tognolo L, et al. Outcomes in sufferers with continual lymphocytic leukemia and TP53 aberration who acquired first-line ibrutinib: a nationwide registry examine from the Italian Medicines Company. Blood Most cancers J. 2023;13:99.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum Okay, et al. Ibrutinib therapy for first-line and relapsed/refractory continual lymphocytic leukemia: ultimate evaluation of the pivotal part Ib/II PCYC-1102 examine. Clin Most cancers Res. 2020;26:3918–27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, et al. Worldwide Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, scientific, and genomic knowledge. Blood. 2022;140:1200–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharman JP, Egyed M, Jurczak W, Skarbnik A, Pagel JM, Flinn IW, et al. Efficacy and security in a 4-year follow-up of the ELEVATE-TN examine evaluating acalabrutinib with or with out obinutuzumab versus obinutuzumab plus chlorambucil in treatment-naïve continual lymphocytic leukemia. Leukemia. 2022;36:1171–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woyach JA, Ruppert AS, Heerema NA, Zhao W, Sales space AM, Ding W, et al. Ibrutinib regimens versus chemoimmunotherapy in older sufferers with untreated CLL. N Engl J Med. 2018;379:2517–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Sawaf O, Zhang C, Jin HY, Robrecht S, Choi Y, Balasubramanian S, et al. Transcriptomic profiles and 5-year outcomes from the randomized CLL14 examine of venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab in continual lymphocytic leukemia. Nat Commun. 2023;14:2147.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno C, Greil R, Demirkan F, Tedeschi A, Anz B, Larratt L, et al. First-line therapy of continual lymphocytic leukemia with ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab: ultimate evaluation of the randomized, part III iLLUMINATE trial. Haematologica. 2022;107:2108–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H, et al. iwCLL tips for prognosis, indications for therapy, response evaluation, and supportive administration of CLL. Blood. 2018;131:2745–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Brown JR, Eichhorst B, Hillmen P, Jurczak W, Kaźmierczak M, Lamanna N, et al. Zanubrutinib or Ibrutinib in relapsed or refractory continual lymphocytic leukemia. N Engl J Med. 2023;388:319–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Byrd JC, Hillmen P, Ghia P, Kater AP, Chanan-Khan A, Furman RR, et al. Acalabrutinib Versus Ibrutinib in Beforehand Handled Persistent Lymphocytic Leukemia: Outcomes of the First Randomized Section III Trial. J Clin Oncol. 2021;39:3441–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghia P, Wierda WG, Barr PM, Kipps TJ, Siddiqi T, Allan JN, et al. Relapse after first-line fastened period ibrutinib + venetoclax: excessive response charges to ibrutinib retreatment and absence of BTK mutations in sufferers with continual lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) with as much as 5 years of follow-up within the part 2 captivate examine. Blood. 2023;142:633–633.


    Google Scholar
     

  • Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson Okay, Lawrence MS, et al. Evolution and affect of subclonal mutations in continual lymphocytic leukemia. Cell. 2013;152:714–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al. Mutations driving CLL and their evolution in development and relapse. Nature. 2015;526:525–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fürstenau M, Thus YJ, Robrecht S, Mellink CHM, van der Kevie-Kersemaekers AM, Dubois J, et al. Excessive karyotypic complexity is an unbiased prognostic think about sufferers with CLL handled with venetoclax mixtures. Blood. 2023;142:446–59.

    PubMed 

    Google Scholar
     

  • Bonfiglio S, Sutton LA, Ljungström V, Capasso A, Pandzic T, Weström S, et al. BTK and PLCG2 stay unmutated in a single third of sufferers with CLL relapsing on ibrutinib. Blood Adv. 2023;7:2794–806.

  • Landau DA, Solar C, Rosebrock D, Herman SEM, Fein J, Sivina M, et al. The evolutionary panorama of continual lymphocytic leukemia handled with ibrutinib focused remedy. Nat Commun. 2017;8:2185.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cafforio L, Raponi S, Cappelli LV, Ilari C, Soscia R, De Propris MS, et al. Therapy with ibrutinib doesn’t induce a TP53 clonal evolution in continual lymphocytic leukemia. Haematologica. 2022;107:334–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Gángó A, Alpár D, Galik B, Marosvári D, Kiss R, Fésüs V, et al. Dissection of subclonal evolution by temporal mutation profiling in continual lymphocytic leukemia sufferers handled with ibrutinib. Int J Most cancers. 2020;146:85–93.

    PubMed 

    Google Scholar
     

  • Jain N, Croner LJ, Allan JN, Siddiqi T, Tedeschi A, Badoux XC, et al. Absence of BTK, BCL2, and PLCG2 mutations in continual lymphocytic leukemia relapsing after first-line therapy with fixed-duration ibrutinib plus venetoclax. Clin Most cancers Res. 2024;30:498–505.

    CAS 
    PubMed 

    Google Scholar
     

  • Cherng HJ, Khwaja R, Kanagal-Shamanna R, Tang G, Burger J, Thompson P, et al. TP53-altered continual lymphocytic leukemia handled with firstline Bruton’s tyrosine kinase inhibitor-based remedy: a retrospective evaluation. Am J Hematol. 2022;97:1005–12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandzic T, Ladenvall C, Engvall M, Mattsson M, Hermanson M, Cavelier L, et al. 5 p.c variant allele frequency is a dependable reporting threshold for TP53 variants detected by subsequent era sequencing in continual lymphocytic leukemia within the scientific setting. Hemasphere. 2022;6:e761.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rack KA, van den Berg E, Haferlach C, Beverloo HB, Costa D, Espinet B, et al. European suggestions and high quality assurance for cytogenomic evaluation of haematological neoplasms. Leukemia. 2019;33:1851–67.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eichhorst B, Robak T, Montserrat E, Ghia P, Niemann CU, Kater AP, et al. Persistent lymphocytic leukaemia: ESMO Medical Follow Pointers for prognosis, therapy and follow-up. Ann Oncol. 2021;32:23–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Brieghel C, Aarup Okay, Torp MH, Andersen MA, Yde CW, Tian X, et al. Medical outcomes in sufferers with multi-hit. Clin Most cancers Res. 2021;27:4531–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pal Okay, Bystry V, Reigl T, Demko M, Krejci A, Touloumenidou T, et al. GLASS: assisted and standardized evaluation of gene variations from Sanger sequence hint knowledge. Bioinformatics. 2017;33:3802–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 people. Nature. 2020;581:434–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haque MM, Kowtal P, Sarin R. Identification and characterization of TP53 gene Allele Dropout in Li-Fraumeni syndrome and Oral most cancers cohorts. Sci Rep. 2018;8:11705.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malcikova J, Tausch E, Rossi D, Sutton LA, Soussi T, Zenz T, et al. ERIC suggestions for TP53 mutation evaluation in continual lymphocytic leukemia-update on methodological approaches and outcomes interpretation. Leukemia. 2018;32:1070–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis related to antagonistic outcomes. N Engl J Med. 2014;371:2488–98.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pavlova S, Malcikova J, Radova L, Bonfiglio S, Cowland JB, Brieghel C, et al. Laboratories can reliably detect clinically related variants within the TP53 gene under 10% allelic frequency: a multicenter examine of ERIC, the European Analysis Initiative on CLL. Blood. 2023;142:200–200.


    Google Scholar
     

  • Sujobert P, Le Bris Y, de Leval L, Gros A, Merlio JP, Pastoret C, et al. The necessity for a consensus next-generation sequencing panel for mature lymphoid malignancies. Hemasphere. 2019;3:e169.

    PubMed 

    Google Scholar
     

  • ISO. Worldwide Commonplace ISO 15189: Medical laboratories — Necessities for high quality and competence. Fourth version ed; 2022. Worldwide Group for Standardization, Geneva, Switzerland.

  • Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J, et al. Pointers for Validation of Subsequent-Era Sequencing-Primarily based Oncology Panels: A Joint Consensus Suggestion of the Affiliation for Molecular Pathology and Faculty of American Pathologists. J Mol Diagn. 2017;19:341–65.

    PubMed 

    Google Scholar
     

  • Medical and Laboratory Requirements Institute (CLSI). Human genetic and genomic testing utilizing conventional and high-throughput nucleic acid sequencing strategies. third ed. CLSI guideline MM09. USA: Medical and Laboratory Requirements Institute; 2023.

  • Petrackova A, Vasinek M, Sedlarikova L, Dyskova T, Schneiderova P, Novosad T, et al. Standardization of sequencing protection depth in NGS: suggestion for detection of clonal and subclonal mutations in most cancers diagnostics. Entrance Oncol. 2019;9:851.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of uncommon mutations with massively parallel sequencing. Proc Natl Acad Sci USA. 2011;108:9530–5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng S, Lira M, Huang D, Wang Okay, Valdez C, Kinong J, et al. TNER: a novel background error suppression methodology for mutation detection in circulating tumor DNA. BMC Bioinform. 2018;19:387.

    CAS 

    Google Scholar
     

  • Kim CS, Mohan S, Ayub M, Rothwell DG, Dive C, Brady G, et al. In silico error correction improves cfDNA mutation calling. Bioinformatics. 2019;35:2380–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Hynst J, Navrkalova V, Pal Okay, Pospisilova S. Bioinformatic methods for the evaluation of genomic aberrations detected by focused NGS panels with scientific utility. PeerJ. 2021;9:e10897.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy S, Coldren C, Karunamurthy A, Kip NS, Klee EW, Lincoln SE, et al. Requirements and tips for validating next-generation sequencing bioinformatics pipelines: a joint suggestion of the Affiliation for Molecular Pathology and the Faculty of American Pathologists. J Mol Diagn. 2018;20:4–27.

    CAS 
    PubMed 

    Google Scholar
     

  • Roy S. Rules and validation of bioinformatics pipeline for most cancers next-generation sequencing. Clin Lab Med. 2022;42:409–21.

    PubMed 

    Google Scholar
     

  • Vodák D, Lorenz S, Nakken S, Aasheim LB, Holte H, Bai B, et al. Pattern-index misassignment impacts tumour exome sequencing. Sci Rep. 2018;8:5307.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costello M, Fleharty M, Abreu J, Farjoun Y, Ferriera S, Holmes L, et al. Characterization and remediation of pattern index swaps by non-redundant twin indexing on massively parallel sequencing platforms. BMC Genomics. 2018;19:332.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konieczka P. Validation and regulatory points for pattern preparation. In: Complete sampling and pattern preparation. 2022. p. 699–711. Tutorial Press, Elsevier.

  • Mattocks CJ, Morris MA, Matthijs G, Swinnen E, Corveleyn A, Dequeker E, et al. A standardized framework for the validation and verification of scientific molecular genetic exams. Eur J Hum Genet. 2010;18:1276–88.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soussi T, Baliakas P. Panorama of TP53 alterations in continual lymphocytic leukemia. Entrance Oncol. 2022;12:808886.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, et al. HGVS suggestions for the outline of sequence variants: 2016 replace. Hum Mutat. 2016;37:564–9.


    Google Scholar
     

  • Lefter M, Vis JK, Vermaat M, den Dunnen JT, Taschner PEM, Laros JFJ. Mutalyzer 2: subsequent era HGVS nomenclature checker. Bioinformatics. 2021;37:2811–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tikkanen T, Leroy B, Fournier JL, Risques RA, Malcikova J, Soussi T. Seshat: an online service for correct annotation, validation, and evaluation of TP53 variants generated by standard and next-generation sequencing. Hum Mutat. 2018;39:925–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Morales J, Pujar S, Loveland JE, Astashyn A, Bennett R, Berry A, et al. A joint NCBI and EMBL-EBI transcript set for scientific genomics and analysis. Nature. 2022;604:310–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Requirements and tips for the interpretation of sequence variants: a joint consensus suggestion of the American Faculty of Medical Genetics and Genomics and the Affiliation for Molecular Pathology. Genet Med. 2015;17:405–24.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fortuno C, Lee Okay, Olivier M, Pesaran T, Mai PL, de Andrade KC, et al. Specs of the ACMG/AMP variant interpretation tips for germline TP53 variants. Hum Mutat. 2021;42:223–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Koeppel F, Muller E, Harlé A, Guien C, Sujobert P, Trabelsi Grati O, et al. Standardisation of pathogenicity classification for somatic alterations in strong tumours and haematologic malignancies. Eur J Most cancers. 2021;159:1–15.

    CAS 
    PubMed 

    Google Scholar
     

  • Horak P, Griffith M, Danos AM, Pitel BA, Madhavan S, Liu X, et al. Requirements for the classification of pathogenicity of somatic variants in most cancers (oncogenicity): Joint suggestions of Medical Genome Useful resource (ClinGen), Most cancers Genomics Consortium (CGC), and Variant Interpretation for Most cancers Consortium (VICC). Genet Med. 2022;24:986–98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Requirements and tips for the interpretation and reporting of sequence variants in most cancers: a joint consensus suggestion of the Affiliation for Molecular Pathology, American Society of Medical Oncology, and Faculty of American Pathologists. J Mol Diagn. 2017;19:4–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mateo J, Chakravarty D, Dienstmann R, Jezdic S, Gonzalez-Perez A, Lopez-Bigas N, et al. A framework to rank genomic alterations as targets for most cancers precision medication: the ESMO Scale for Medical Actionability of molecular Targets (ESCAT). Ann Oncol. 2018;29:1895–902.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Froyen G, Le Mercier M, Lierman E, Vandepoele Okay, Nollet F, Boone E, et al. Standardization of somatic variant classifications in strong and haematological tumours by a two-level strategy of organic and scientific lessons: an initiative of the Belgian ComPerMed Knowledgeable Panel. Cancers. 2019;11:2030.

  • Gao P, Zhang R, Li J. Complete elaboration of database sources utilized in next-generation sequencing-based tumor somatic mutation detection. Biochim Biophys Acta Rev Most cancers. 2019;1872:122–37.

    CAS 
    PubMed 

    Google Scholar
     

  • Kato S, Han SY, Liu W, Otsuka Okay, Shibata H, Kanamaru R, et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation evaluation. Proc Natl Acad Sci USA. 2003;100:8424–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, et al. Mutational processes form the panorama of TP53 mutations in human most cancers. Nat Genet. 2018;50:1381–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kotler E, Shani O, Goldfeld G, Lotan-Pompan M, Tarcic O, Gershoni A, et al. A Systematic p53 Mutation Library Hyperlinks Differential Purposeful Affect to Most cancers Mutation Sample and Evolutionary Conservation. Mol Cell. 2018;71:873.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Andrade KC, Lee EE, Tookmanian EM, Kesserwan CA, Manfredi JJ, Hatton JN, et al. The TP53 database: transition from the Worldwide Company for Analysis on Most cancers to the US Nationwide Most cancers Institute. Cell Dying Differ. 2022;29:1071–3.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leroy B, Anderson M, Soussi T. TP53 mutations in human most cancers: database reassessment and prospects for the following decade. Hum Mutat. 2014;35:672–88.

    CAS 
    PubMed 

    Google Scholar
     

  • Mandelker D, Donoghue M, Talukdar S, Bandlamudi C, Srinivasan P, Vivek M, et al. Germline-focussed evaluation of tumour-only sequencing: suggestions from the ESMO Precision Medication Working Group. Ann Oncol. 2019;30:1221–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Wert G, Dondorp W, Clarke A, Dequeker EMC, Cordier C, Deans Z, et al. Opportunistic genomic screening. Suggestions of the European Society of Human Genetics. Eur J Hum Genet. 2021;29:365–77.

    PubMed 

    Google Scholar
     

  • Roloff GW, Drazer MW, Godley LA. Inherited susceptibility to hematopoietic malignancies within the period of precision oncology. JCO Summary Oncol. 2021;5:107–22.

    PubMed 

    Google Scholar
     

  • Rasi S, Bruscaggin A, Rinaldi A, Cresta S, Fangazio M, De Paoli L, et al. Saliva is a dependable and sensible supply of germline DNA for genome-wide research in continual lymphocytic leukemia. Leuk Res. 2011;35:1419–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Voso MT, Pandzic T, Falconi G, Denčić-Fekete M, De Bellis E, Scarfo L, et al. Clonal haematopoiesis as a danger issue for therapy-related myeloid neoplasms in sufferers with continual lymphocytic leukaemia handled with chemo-(immuno)remedy. Br J Haematol. 2022;198:103–13.

    CAS 
    PubMed 

    Google Scholar
     

  • Deans ZC, Ahn JW, Carreira IM, Dequeker E, Henderson M, Lovrecic L, et al. Suggestions for reporting outcomes of diagnostic genomic testing. Eur J Hum Genet. 2022;30:1011–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marinelli M, Peragine N, Di Maio V, Chiaretti S, De Propris MS, Raponi S, et al. Identification of molecular and practical patterns of p53 alterations in continual lymphocytic leukemia sufferers in several phases of the illness. Haematologica. 2013;98:371–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hot Topics

    Related Articles