Martinez-Ferriz A, Ferrando A, Fathinajafabadi A, Farras R. Ubiquitin-mediated mechanisms of translational management. Semin Cell Dev Biol. 2022;132:146–54.
Roberts JZ, Crawford N, Longley DB. The function of ubiquitination in apoptosis and necroptosis. Cell Loss of life Differ. 2022;29:272–84.
Weber A, Heinlein M, Dengjel J, Alber C, Singh PK, Häcker G. The deubiquitinase Usp27x stabilizes the BH3-only protein Bim and enhances apoptosis. EMBO Rep. 2016;17:724–38.
Dong L, Yu L, Bai C, Liu L, Lengthy H, Shi L, et al. USP27-mediated Cyclin E stabilization drives cell cycle development and hepatocellular tumorigenesis. Oncogene. 2018;37:2702–13.
Lambies G, Miceli M, Martinez-Guillamon C, Olivera-Salguero R, Pena R, Frias CP, et al. TGFbeta-activated USP27X deubiquitinase regulates cell migration and chemoresistance through stabilization of Snail1. Most cancers Res. 2019;79:33–46.
Alam S, Zunic A, Venkat S, Feigin ME, Atanassov BS. Regulation of Cyclin D1 degradation by ubiquitin-specific protease 27X is crucial for most cancers cell proliferation and tumor progress. Mol Most cancers Res. 2022;20:1751–62.
Zou T, Wang Y, Dong L, Che T, Zhao H, Yan X, et al. Stabilization of SETD3 by deubiquitinase USP27 enhances cell proliferation and hepatocellular carcinoma development. Cell Mol Life Sci. 2022;79:70.
Dold MN, Ng X, Alber C, Light IE, Häcker G, Weber A. The deubiquitinase Usp27x as a novel regulator of cFLIP(L) protein expression and sensitizer to death-receptor-induced apoptosis. Apoptosis. 2022;27:112–32.
Das SK, Lewis BA, Levens D. MYC: a fancy drawback. Tendencies Cell Biol. 2022;33:235–46.
Donati G, Amati BMYC. and remedy resistance in most cancers: dangers and alternatives. Mol Oncol. 2022;16:3828–54.
Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. The MYC oncogene – the grand orchestrator of most cancers progress and immune evasion. Nat Rev Clin Oncol. 2022;19:23–36.
Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV. MYC and metabolism on the trail to most cancers. Semin Cell Dev Biol. 2015;43:11–21.
Zimmerli D, Brambillasca CS, Talens F, Bhin J, Linstra R, Romanens L, et al. MYC promotes immune-suppression in triple-negative breast most cancers through inhibition of interferon signaling. Nat Commun. 2022;13:6579.
Morishita D, Katayama R, Sekimizu Ok, Tsuruo T, Fujita N. Pim kinases promote cell cycle development by phosphorylating and down-regulating p27 on the transcriptional and posttranscriptional ranges. Most cancers Res. 2008;68:5076–85.
Zhang Y, Wang Z, Li X, Magnuson NS. Pim kinase-dependent inhibition of c-Myc degradation. Oncogene. 2008;27:4809–19.
Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J, et al. Direct activation of TERT transcription by c-MYC. Nat Genet. 1999;21:220–4.
Tsuneoka M, Nakano F, Ohgusu H, Mekada E. c-myc prompts RCC1 gene expression by way of E-box parts. Oncogene. 1997;14:2301–11.
Li C, Hong S, Hu H, Liu T, Yan G, Solar D. MYC-induced upregulation of Lncrna ELFN1-AS1 contributes to tumor progress in colorectal most cancers through epigenetically silencing TPM1. Mol Most cancers Res. 2022;20:1697–708.
Hao YH, Lafita-Navarro MC, Zacharias L, Borenstein-Auerbach N, Kim M, Barnes S, et al. Induction of LEF1 by MYC prompts the WNT pathway and maintains cell proliferation. Cell Commun Sign. 2019;17:129.
Yue M, Jiang J, Gao P, Liu H, Qing G. Oncogenic MYC prompts a feedforward regulatory loop selling important amino acid metabolism and tumorigenesis. Cell Rep. 2017;21:3819–32.
Wang Q, Zhou Y, Rychahou P, Harris JW, Zaytseva YY, Liu J, et al. Deptor is a novel goal of Wnt/beta-Catenin/c-Myc and contributes to colorectal most cancers cell progress. Most cancers Res. 2018;78:3163–75.
Dong Y, Tu R, Liu H, Qing G. Regulation of most cancers cell metabolism: oncogenic MYC within the driver’s seat. Sign Transduct Goal Ther. 2020;5:124.
Harrington CT, Sotillo E, Dang CV, Thomas-Tikhonenko A. Tilting MYC towards most cancers cell loss of life. Tendencies Most cancers. 2021;7:982–94.
Lourenco C, Resetca D, Redel C, Lin P, MacDonald AS, Ciaccio R, et al. MYC protein interactors in gene transcription and most cancers. Nat Rev Most cancers. 2021;21:579–91.
Wang C, Zhang J, Yin J, Gan Y, Xu S, Gu Y, et al. Various approaches to focus on Myc for most cancers remedy. Sign Transduct Goal Ther. 2021;6:117.
Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: from mechanisms to their inhibition by small molecules. Mol Cell. 2022;82:15–29.
Basar MA, Beck DB, Werner A. Deubiquitylases in developmental ubiquitin signaling and congenital ailments. Cell Loss of life Differ. 2021;28:538–56.
Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Ubiquitination within the regulation of inflammatory cell loss of life and most cancers. Cell Loss of life Differ. 2021;28:591–605.
Deng L, Meng T, Chen L, Wei W, Wang P. The function of ubiquitination in tumorigenesis and focused drug discovery. Sign Transduct Goal Ther. 2020;5:11.
Xing Y, Ba-Tu J, Dong C, Cao X, Li B, Jia X, et al. Phosphorylation of USP27X by GSK3β maintains the steadiness and oncogenic capabilities of CBX2. Cell Loss of life Dis. 2023;14:023–06304.
Szydłowski M, Garbicz F, Jabłońska E, Górniak P, Komar D, Pyrzyńska B, et al. Inhibition of PIM kinases in DLBCL targets MYC transcriptional program and augments the efficacy of anti-CD20 antibodies. Most cancers Res. 2021;81:6029–43.
Ciscato F, Ferrone L, Masgras I, Laquatra C, Rasola A. Hexokinase 2 in most cancers: a prima donna taking part in a number of characters. Int J Mol Sci. 2021;22:4716.
Xu S, Herschman HR. A tumor agnostic therapeutic technique for hexokinase 1-Null/Hexokinase 2-positive cancers. Most cancers Res. 2019;79:5907–14.
Guo D, Tong Y, Jiang X, Meng Y, Jiang H, Du L, et al. Cardio glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IkappaBalpha. Cell Metab. 2022;34:1312–24.e6.
Han X, Ren C, Lu C, Qiao P, Yang T, Yu Z. Deubiquitination of MYC by OTUB1 contributes to HK2 mediated glycolysis and breast tumorigenesis. Cell Loss of life Differ. 2022;29:1864–73.
Ren C, Han X, Lu C, Yang T, Qiao P, Solar Y, et al. Ubiquitination of NF-kappaB p65 by FBXW2 suppresses breast most cancers stemness, tumorigenesis, and paclitaxel resistance. Cell Loss of life Differ. 2022;29:381–92.
Han X, Ren C, Jiang A, Solar Y, Lu J, Ling X, et al. Arginine methylation of ALKBH5 by PRMT6 promotes breast tumorigenesis through LDHA-mediated glycolysis. Entrance Med. 2024;18:344–56.
Lu C, Ren C, Yang T, Solar Y, Qiao P, Han X, et al. Fructose-1, 6-bisphosphatase 1 interacts with NF-kappaB p65 to control breast tumorigenesis through PIM2 induced phosphorylation. Theranostics. 2020;10:8606–18.
Lu C, Ren C, Yang T, Solar Y, Qiao P, Wang D, et al. A noncanonical function of fructose-1, 6-bisphosphatase 1 is crucial for inhibition of Notch1 in breast most cancers. Mol Most cancers Res. 2020;18:787–96.
Lu C, Qiao P, Solar Y, Ren C, Yu Z. Optimistic regulation of PFKFB3 by PIM2 promotes glycolysis and paclitaxel resistance in breast most cancers. Clin Transl Med. 2021;11:e400.
Han X, Ren C, Yang T, Qiao P, Wang L, Jiang A, et al. Adverse regulation of AMPKalpha1 by PIM2 promotes cardio glycolysis and tumorigenesis in endometrial most cancers. Oncogene. 2019;38:6537–49.
Yang T, Ren C, Qiao P, Han X, Wang L, Lv S, et al. PIM2-mediated phosphorylation of hexokinase 2 is crucial for tumor progress and paclitaxel resistance in breast most cancers. Oncogene. 2018;37:5997–6009.