Metabolic diversifications in prostate most cancers


  • Heinlein CA, Chang C. Androgen receptor in prostate most cancers. Endocr Rev. 2004;25:276–308.

    CAS 
    PubMed 

    Google Scholar
     

  • Gibson DA, Saunders PTK, McEwan IJ. Androgens and androgen receptor: above and past. Mol Cell Endocrinol. 2018;465:1–3.

    CAS 
    PubMed 

    Google Scholar
     

  • Dehm SM, Tindall DJ. Molecular regulation of androgen motion in prostate most cancers. J Cell Biochem. 2006;99:333–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Barfeld SJ, Itkonen HM, Urbanucci A, Mills IG. Androgen-regulated metabolism and biosynthesis in prostate most cancers. Endocr Relat Most cancers. 2014;21:T57–66.

    PubMed 

    Google Scholar
     

  • Warburg O, Wind F, Negelein E. The metabolism of tumors within the physique. J Gen Physiol. 1927;8:519–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeBerardinis RJ, Chandel NS. We have to speak in regards to the Warburg impact. Nat Metab. 2020;2:127–9.

    PubMed 

    Google Scholar
     

  • Luengo A, Li Z, Gui DY, Sullivan LB, Zagorulya M, Do BT, et al. Elevated demand for NAD(+) relative to ATP drives cardio glycolysis. Mol Cell. 2021;81:691–707.e6.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Stancliffe E, Fowle-Grider R, Wang R, Wang C, Schwaiger-Haber M, et al. Saturation of the mitochondrial NADH shuttles drives cardio glycolysis in proliferating cells. Mol Cell. 2022;82:3270–83.e9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaarwerk B, Breunis WB, Haveman LM, de Keizer B, Jehanno N, Borgwardt L, et al. Fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) computed tomography (CT) for the detection of bone, lung, and lymph node metastases in rhabdomyosarcoma. Cochrane Database Syst Rev. 2021;11:CD012325.

    PubMed 

    Google Scholar
     

  • Graham NA, Minasyan A, Lomova A, Cass A, Balanis NG, Friedman M, et al. Recurrent patterns of DNA copy quantity alterations in tumors mirror metabolic choice pressures. Mol Syst Biol. 2017;13:914.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei J, Huang Ok, Chen Z, Hu M, Bai Y, Lin S, et al. Characterization of glycolysis-associated molecules within the tumor microenvironment revealed by pan-cancer tissues and lung most cancers single cell knowledge. Cancers (Basel). 2020;12:1788.

    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell KG, Amini B, Wang Y, Carter BW, Godoy MCB, Parra ER, et al. 18)F-fluorodeoxyglucose positron emission tomography correlates with tumor immunometabolic phenotypes in resected lung most cancers. Most cancers Immunol Immunother. 2020;69:1519–34.

  • Mathews EH, Liebenberg L, Pelzer R. Excessive-glycolytic cancers and their interaction with the physique’s glucose demand and provide cycle. Med Hypotheses. 2011;76:157–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Uo T, Sprenger CC, Plymate SR. Androgen receptor signaling and metabolic and mobile plasticity throughout development to castration resistant prostate most cancers. Entrance Oncol. 2020;10:580617.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • White MA, Tsouko E, Lin C, Rajapakshe Ok, Spencer JM, Wilkenfeld SR, et al. GLUT12 promotes prostate most cancers cell development and is regulated by androgens and CaMKK2 signaling. Endocr Relat Most cancers. 2018;25:453–69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu M, Sakamoto S, Matsushima J, Kimura T, Ueda T, Mizokami A, et al. Up-regulation of LAT1 throughout antiandrogen remedy contributes to development in prostate most cancers cells. J Urol. 2016;195:1588–97.

    PubMed 

    Google Scholar
     

  • Wang J, Xu W, Wang B, Lin G, Wei Y, Abudurexiti M, et al. GLUT1 is an AR goal contributing to tumor development and glycolysis in castration-resistant and enzalutamide-resistant prostate cancers. Most cancers Lett. 2020;485:45–55.

    CAS 
    PubMed 

    Google Scholar
     

  • de Moist L, Williams A, Gillard M, Kregel S, Lamperis S, Gutgesell LC, et al. SOX2 mediates metabolic reprogramming of prostate most cancers cells. Oncogene. 2022;41:1190–202.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crowell PD, Giafaglione JM, Jones AE, Nunley NM, Hashimoto T, Delcourt AML, et al. MYC is a regulator of androgen receptor inhibition-induced metabolic necessities in prostate most cancers. Cell Rep. 2023;42:113221.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Zuckier LS, Ghesani NV. Dominant uptake of fatty acid over glucose by prostate cells: a possible new diagnostic and therapeutic method. Anticancer Res. 2010;30:369–74.

    PubMed 

    Google Scholar
     

  • Sadeghi RN, Karami-Tehrani F, Salami S. Focusing on prostate most cancers cell metabolism: impression of hexokinase and CPT-1 enzymes. Tumour Biol. 2015;36:2893–905.

    CAS 
    PubMed 

    Google Scholar
     

  • Twum-Ampofo J, Fu D-X, Passaniti A, Hussain A, Siddiqui MM. Metabolic targets for potential prostate most cancers therapeutics. Curr Opin Oncol. 2016;28:241–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jadvar H. PET of glucose metabolism and mobile proliferation in prostate most cancers. J Nucl Med. 2016;57:25S–9S.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaz CV, Alves MG, Marques R, Moreira PI, Oliveira PF, Maia CJ, et al. Androgen-responsive and nonresponsive prostate most cancers cells current a definite glycolytic metabolism profile. Int J Biochem Cell Biol. 2012;44:2077–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Granlund KL, Tee S-S, Vargas HA, Lyashchenko SK, Reznik E, Nice S, et al. Hyperpolarized MRI of human prostate most cancers reveals elevated lactate with tumor grade pushed by monocarboxylate transporter 1. Cell Metab. 2020;31:105–14.e3.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen M-L, Xu P-Z, Peng X, Chen WS, Guzman G, Yang X, et al. The deficiency of Akt1 is enough to suppress tumor improvement in Pten + /− mice. Genes Dev. 2006;20:1569–74.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational panorama of deadly castration-resistant prostate most cancers. Nature. 2012;487:239–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi SYC, Ettinger SL, Lin D, Xue H, Ci X, Nabavi N, et al. Focusing on MCT4 to scale back lactic acid secretion and glycolysis for therapy of neuroendocrine prostate most cancers. Most cancers Med. 2018;7:3385–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porporato PE, Filigheddu N, Pedro JMB-S, Kroemer G, Galluzzi L. Mitochondrial metabolism and most cancers. Cell Res. 2018;28:265–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Jia D, Lu M, Jung KH, Park JH, Yu L, Onuchic JN, et al. Elucidating most cancers metabolic plasticity by coupling gene regulation with metabolic pathways. Proc Natl Acad Sci USA. 2019;116:3909–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cassim S, Vučetić M, Ždralević M, Pouyssegur J. Warburg and past: the ability of mitochondrial metabolism to collaborate or substitute fermentative glycolysis in most cancers. Cancers (Basel). 2020;12:1119.

    CAS 
    PubMed 

    Google Scholar
     

  • Grasso D, Zampieri LX, Capelôa T, Van de Velde JA, Sonveaux P. Mitochondria in most cancers. Cell Stress. 2020;4:114–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roth KG, Mambetsariev I, Kulkarni P, Salgia R. The mitochondrion as an rising therapeutic goal in most cancers. Developments Mol Med. 2020;26:119–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Mosier JA, Schwager SC, Boyajian DA, Reinhart-King CA. Most cancers cell metabolic plasticity in migration and metastasis. Clin Exp Metastasis. 2021;38:343–59.

    CAS 
    PubMed 

    Google Scholar
     

  • Tan YQ, Zhang X, Zhang S, Zhu T, Garg M, Lobie PE, et al. Mitochondria: the metabolic change of mobile oncogenic transformation. Biochim Biophys Acta Rev Most cancers. 2021;1876:188534.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Su Q, Zhou J, Yang Z, Liu Z, Ji L, et al. To betray or to battle? The twin id of the mitochondria in most cancers. Future Oncol. 2021;17:723–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Uo T, Ojo KK, Sprenger CCT, Soriano Epilepsia Ok, Perera BGK, Damodarasamy, M et al. A Compound that Inhibits Glycolysis in Prostate Most cancers Controls Development of Superior Prostate Most cancers. Mol Most cancers Ther. 2024; https://doi.org/10.1158/1535-7163.MCT-23-0540.

  • Bartman CR, Weilandt DR, Shen Y, Lee WD, Han Y, TeSlaa T, et al. Sluggish TCA flux and ATP manufacturing in main strong tumours however not metastases. Nature. 2023;614:349–57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer GM, Jalali A, Kircher DA, Lee W-C, McQuade JL, Haydu LE, et al. Molecular profiling reveals distinctive immune and metabolic options of melanoma mind metastases. Most cancers Discov. 2019;9:628–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yap TA, Daver N, Mahendra M, Zhang J, Kamiya-Matsuoka C, Meric-Bernstam F, et al. Complicated I inhibitor of oxidative phosphorylation in superior strong tumors and acute myeloid leukemia: section I trials. Nat Med. 2023;29:115–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Mullen AR, Hu Z, Shi X, Jiang L, Boroughs LK, Kovacs Z, et al. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in most cancers cells with mitochondrial defects. Cell Rep. 2014;7:1679–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomlinson IPM, Alam NA, Rowan AJ, Barclay E, Jaeger EEM, Kelsell D, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, pores and skin leiomyomata and papillary renal cell most cancers. Nat Genet. 2002;30:406–10.

    CAS 
    PubMed 

    Google Scholar
     

  • Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, et al. Mutations in SDHD, a mitochondrial advanced II gene, in hereditary paraganglioma. Science. 2000;287:848–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Mullen AR, Wheaton WW, Jin ES, Chen P-H, Sullivan LB, Cheng T, et al. Reductive carboxylation helps development in tumour cells with faulty mitochondria. Nature. 2011;481:385–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, et al. Gene mutations within the succinate dehydrogenase subunit SDHB trigger susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet. 2001;69:49–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Killian JK, Kim SY, Miettinen M, Smith C, Merino M, Tsokos M, et al. Succinate dehydrogenase mutation underlies world epigenomic divergence in gastrointestinal stromal tumor. Most cancers Discov. 2013;3:648–57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niemann S, Müller U. Mutations in SDHC trigger autosomal dominant paraganglioma, sort 3. Nat Genet. 2000;26:268–70.

    CAS 
    PubMed 

    Google Scholar
     

  • Arnold PK, Jackson BT, Paras KI, Brunner JS, Hart ML, Newsom OJ, et al. A non-canonical tricarboxylic acid cycle underlies mobile id. Nature. 2022;603:477–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cutruzzolà F, Giardina G, Marani M, Macone A, Paiardini A, Rinaldo S, et al. Glucose metabolism within the development of prostate most cancers. Entrance Physiol. 2017;8:97.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costello LC, Franklin RB. Citrate metabolism of regular and malignant prostate epithelial cells. Urology. 1997;50:3–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Costello LC, Franklin RB. The scientific relevance of the metabolism of prostate most cancers; zinc and tumor suppression: connecting the dots. Mol Most cancers. 2006;5:17.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costello LC, Feng P, Milon B, Tan M, Franklin RB. Function of zinc within the pathogenesis and therapy of prostate most cancers: important points to resolve. Prostate Most cancers Prostatic Dis. 2004;7:111–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper JF, Farid I. The function of citric acid within the physiology of the prostate. 3. Lactate/citrate ratios in benign and malignant prostatic homogenates as an index of prostatic malignancy. J Urol. 1964;92:533–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Giafaglione JM, Crowell PD, Delcourt AML, Hashimoto T, Ha SM, Atmakuri A, et al. Prostate lineage-specific metabolism governs luminal differentiation and response to antiandrogen therapy. Nat Cell Biol. 2023;25:1821–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costello LC, Franklin RB, Feng P. Mitochondrial perform, zinc, and middleman metabolism relationships in regular prostate and prostate most cancers. Mitochondrion. 2005;5:143–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frégeau-Proulx L, Lacouture A, Berthiaume L, Weidmann C, Harvey M, Gonthier Ok, et al. A number of metabolic pathways gas the truncated tricarboxylic acid cycle of the prostate to maintain fixed citrate manufacturing and secretion. Mol Metab. 2022;62:101516.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou J, Milon BC, Desouki MM, Costello LC, Franklin RB. hZIP1 zinc transporter down-regulation in prostate most cancers includes the overexpression of ras responsive ingredient binding protein-1 (RREB-1). Prostate. 2011;71:1518–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milon BC, Agyapong A, Bautista R, Costello LC, Franklin RB. Ras responsive ingredient binding protein-1 (RREB-1) down-regulates hZIP1 expression in prostate most cancers cells. Prostate. 2010;70:288–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao Y, Ye G, Ren S, Piao H-L, Zhao X, Lu X, et al. Metabolomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and associated mechanisms in prostate most cancers. Int J Most cancers. 2018;143:396–407.

    CAS 
    PubMed 

    Google Scholar
     

  • Ahmad F, Cherukuri MK, Choyke PL. Metabolic reprogramming in prostate most cancers. Br J Most cancers. 2021;125:1185–96.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahmood M, Liu EM, Shergold AL, Tolla E, Tait-Mulder J, Huerta-Uribe A, et al. Mitochondrial DNA mutations drive cardio glycolysis to boost checkpoint blockade response in melanoma. Nat Most cancers. 2024. https://doi.org/10.1038/s43018-023-00721-w.

  • Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, et al. Metformin inhibits mitochondrial advanced I of most cancers cells to scale back tumorigenesis. Elife. 2014;3:e02242.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinz S, Freyberger A, Lawrenz B, Schladt L, Schmuck G, Ellinger-Ziegelbauer H. Mechanistic investigations of the mitochondrial advanced I inhibitor rotenone within the context of pharmacological and security analysis. Sci Rep. 2017;7:45465.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaidi S, Gandhi J, Joshi G, Smith NL, Khan SA. The anticancer potential of metformin on prostate most cancers. Prostate Most cancers Prostatic Dis. 2019;22:351–61.

    PubMed 

    Google Scholar
     

  • Naguib A, Mathew G, Reczek CR, Watrud Ok, Ambrico A, Herzka T, et al. Mitochondrial advanced I inhibitors expose a vulnerability for selective killing of Pten-null cells. Cell Rep. 2018;23:58–67.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bader DA, McGuire SE. Tumour metabolism and its distinctive properties in prostate adenocarcinoma. Nat Rev Urol. 2020;17:214–31.

    PubMed 

    Google Scholar
     

  • Bader DA, Hartig SM, Putluri V, Foley C, Hamilton MP, Smith EA, et al. Mitochondrial pyruvate import is a metabolic vulnerability in androgen receptor-driven prostate most cancers. Nat Metab. 2019;1:70–85.

    CAS 
    PubMed 

    Google Scholar
     

  • Patra KC, Hay N. The pentose phosphate pathway and most cancers. Developments Biochem Sci. 2014;39:347–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin L, Zhou Y. Essential function of the pentose phosphate pathway in malignant tumors. Oncol Lett. 2019;17:4213–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronquist G, Theodorsson E. Inherited, non-spherocytic haemolysis on account of deficiency of glucose-6-phosphate dehydrogenase. Scand J Clin Lab Make investments. 2007;67:105–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Mehta A, Mason PJ, Vulliamy TJ. Glucose-6-phosphate dehydrogenase deficiency. Baillieres Finest Pr Res Clin Haematol. 2000;13:21–38.

    CAS 

    Google Scholar
     

  • Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 2008;371:64–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Dore MP, Davoli A, Longo N, Marras G, Pes GM. Glucose-6-phosphate dehydrogenase deficiency and danger of colorectal most cancers in Northern Sardinia: a retrospective observational research. Drugs. 2016;95:e5254.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowalik MA, Columbano A, Perra A. Rising function of the pentose phosphate pathway in hepatocellular carcinoma. Entrance Oncol. 2017;7:87.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen M, Shen M, Li Y, Liu C, Zhou Ok, Hu W, et al. GC-MS-based metabolomic evaluation of human papillary thyroid carcinoma tissue. Int J Mol Med. 2015;36:1607–14.

    PubMed 

    Google Scholar
     

  • Cohen HJ, Elizalde A, Miller SP. Cytologic research of glucose-6-phosphate dehydrogenase in malignancy. Most cancers. 1968;21:1055–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Langbein S, Frederiks WM, zur Hausen A, Popa J, Lehmann J, Weiss C, et al. Metastasis is promoted by a bioenergetic change: new targets for progressive renal cell most cancers. Int J Most cancers. 2008;122:2422–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Lu M, Lu L, Dong Q, Yu G, Chen J, Qin L, et al. Elevated G6PD expression contributes to migration and invasion of hepatocellular carcinoma cells by inducing epithelial-mesenchymal transition. Acta Biochim Biophys Sin (Shanghai). 2018;50:370–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Dong T, Kang X, Liu Z, Zhao S, Ma W, Xuan Q, et al. Altered glycometabolism impacts each scientific options and prognosis of triple-negative and neoadjuvant chemotherapy-treated breast most cancers. Tumour Biol. 2016;37:8159–68.

    CAS 
    PubMed 

    Google Scholar
     

  • Pu H, Zhang Q, Zhao C, Shi L, Wang Y, Wang J, et al. Overexpression of G6PD is related to excessive dangers of recurrent metastasis and poor progression-free survival in main breast carcinoma. World J Surg Oncol. 2015;13:323.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zampella EJ, Bradley ELJ, Pretlow TG 2nd. Glucose-6-phosphate dehydrogenase: a potential scientific indicator for prostatic carcinoma. Most cancers. 1982;49:384–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Tsouko E, Khan AS, White MA, Han JJ, Shi Y, Service provider FA, et al. Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its function in prostate most cancers cell development. Oncogenesis. 2014;3:e103.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitburn J, Rao SR, Morris EV, Tabata S, Hirayama A, Soga T, et al. Metabolic profiling of prostate most cancers in skeletal microenvironments identifies G6PD as a key mediator of development and survival. Sci Adv. 2022;8:eabf9096.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gillis JL, Hinneh JA, Ryan NK, Irani S, Moldovan M, Quek L-E, et al. A suggestions loop between the androgen receptor and 6-phosphogluoconate dehydrogenase (6PGD) drives prostate most cancers development. Elife. 2021;10:e62592.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Function hexosamine biosynth induction insulin resistance. J Biol Chem. 1991;266:4706–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, et al. Oncogenic Kras maintains pancreatic tumors by regulation of anabolic glucose metabolism. Cell. 2012;149:656–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moloughney JG, Kim PK, Vega-Cotto NM, Wu C-C, Zhang S, Adlam M, et al. mTORC2 responds to glutamine catabolite ranges to modulate the hexosamine biosynthesis enzyme GFAT1. Mol Cell. 2016;63:811–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moloughney JG, Vega-Cotto NM, Liu S, Patel C, Kim PK, Wu C-C, et al. mTORC2 modulates the amplitude and period of GFAT1 Ser-243 phosphorylation to take care of flux by the hexosamine pathway throughout hunger. J Biol Chem. 2018;293:16464–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucena MC, Carvalho-Cruz P, Donadio JL, Oliveira IA, de Queiroz RM, Marinho-Carvalho MM, et al. Epithelial mesenchymal transition induces aberrant glycosylation by hexosamine biosynthetic pathway activation. J Biol Chem. 2016;291:12917–29.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S, et al. Nutrient sensor O-GlcNAc transferase regulates breast most cancers tumorigenesis by focusing on of the oncogenic transcription issue FoxM1. Oncogene. 2010;29:2831–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Champattanachai V, Netsirisawan P, Chaiyawat P, Phueaouan T, Charoenwattanasatien R, Chokchaichamnankit D, et al. Proteomic evaluation and abrogated expression of O-GlcNAcylated proteins related to main breast most cancers. Proteomics. 2013;13:2088–99.

    CAS 
    PubMed 

    Google Scholar
     

  • Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X, et al. O-GlcNAcylation is a novel regulator of lung and colon most cancers malignancy. Biochim Biophys Acta. 2011;1812:514–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Q, Zhou L, Yang Z, Lai M, Xie H, Wu L, et al. O-GlcNAcylation performs a job in tumor recurrence of hepatocellular carcinoma following liver transplantation. Med Oncol. 2012;29:985–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Krześlak A, Wójcik-Krowiranda Ok, Forma E, Bieńkiewicz A, Bryś M. Expression of genes encoding for enzymes related to O-GlcNAcylation in endometrial carcinomas: clinicopathologic correlations. Ginekol Pol. 2012;83:22–26.

    PubMed 

    Google Scholar
     

  • Kim MJ, Choi MY, Lee DH, Roh GS, Kim HJ, Kang SS, et al. O-linked N-acetylglucosamine transferase enhances secretory clusterin expression through liver X receptors and sterol response ingredient binding protein regulation in cervical most cancers. Oncotarget. 2018;9:4625–36.

    PubMed 

    Google Scholar
     

  • Ma Z, Vocadlo DJ, Vosseller Ok. Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-κB exercise in pancreatic most cancers cells. J Biol Chem. 2013;288:15121–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itkonen HM, Minner S, Guldvik IJ, Sandmann MJ, Tsourlakis MC, Berge V, et al. O-GlcNAc transferase integrates metabolic pathways to manage the soundness of c-MYC in human prostate most cancers cells. Most cancers Res. 2013;73:5277–87.

    CAS 
    PubMed 

    Google Scholar
     

  • Munkley J, Vodak D, Livermore KE, James Ok, Wilson BT, Knight B, et al. Glycosylation is an androgen-regulated course of important for prostate most cancers cell viability. EBioMedicine. 2016;8:103–16.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albitar M, Ma W, Lund L, Albitar F, Diep Ok, Fritsche HA, et al. Predicting prostate biopsy outcomes utilizing a panel of plasma and urine biomarkers mixed in a scoring system. J Most cancers. 2016;7:297–303.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itkonen HM, Engedal N, Babaie E, Luhr M, Guldvik IJ, Minner S, et al. UAP1 is overexpressed in prostate most cancers and is protecting towards inhibitors of N-linked glycosylation. Oncogene. 2015;34:3744–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Scott E, Hodgson Ok, Calle B, Turner H, Cheung Ok, Bermudez A, et al. Upregulation of GALNT7 in prostate most cancers modifies O-glycosylation and promotes tumour development. Oncogene. 2023;42:926–37.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi M, Altea-Manzano P, Demicco M, Doglioni G, Bornes L, Fukano M, et al. PHGDH heterogeneity potentiates most cancers cell dissemination and metastasis. Nature. 2022;605:747–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samaržija I. Put up-translational modifications that drive prostate most cancers development. Biomolecules. 2021;11:247.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itkonen HM, Gorad SS, Duveau DY, Martin SES, Barkovskaya A, Bathen TF, et al. Inhibition of O-GlcNAc transferase exercise reprograms prostate most cancers cell metabolism. Oncotarget. 2016;7:12464–76.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Queiroz RM, Madan R, Chien J, Dias WB, Slawson C. Adjustments in O-linked N-acetylglucosamine (O-GlcNAc) homeostasis activate the p53 pathway in ovarian most cancers cells. J Biol Chem. 2016;291:18897–914.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaushik AK, Shojaie A, Panzitt Ok, Sonavane R, Venghatakrishnan H, Manikkam M, et al. Inhibition of the hexosamine biosynthetic pathway promotes castration-resistant prostate most cancers. Nat Commun. 2016;7:11612.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baenke F, Peck B, Miess H, Schulze A. Hooked on fats: the function of lipid synthesis in most cancers metabolism and tumour improvement. Dis Mannequin Mech. 2013;6:1353–63.

  • Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt SM. Lipid metabolism in most cancers: new views and rising mechanisms. Dev Cell. 2021;56:1363–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Giunchi F, Fiorentino M, Loda M. The metabolic panorama of prostate most cancers. Eur Urol Oncol. 2019;2:28–36.

    PubMed 

    Google Scholar
     

  • Butler LM, Centenera MM, Swinnen JV. Androgen management of lipid metabolism in prostate most cancers: novel insights and future purposes. Endocr Relat Most cancers. 2016;23:R219–27.

    CAS 
    PubMed 

    Google Scholar
     

  • Swinnen JV, Verhoeven G. Androgens and the management of lipid metabolism in human prostate most cancers cells. J Steroid Biochem Mol Biol. 1998;65:191–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Pardo JC, de Porras VR, Gil J, Font A, Puig-Domingo M, Jordà M. Lipid metabolism and epigenetics crosstalk in prostate most cancers. Vitamins. 2022;14:851.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lounis MA, Péant B, Leclerc-Desaulniers Ok, Ganguli D, Daneault C, Ruiz M, et al. Modulation of de novo lipogenesis improves response to enzalutamide therapy in prostate most cancers. Cancers (Basel). 2020;12:1–21.


    Google Scholar
     

  • Butler LM, Mah CY, Machiels J, Vincent AD, Irani S, Mutuku SM, et al. Lipidomic profiling of scientific prostate most cancers reveals targetable alterations in membrane lipid composition. Most cancers Res. 2021;81:4981–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Mounier C, Bouraoui L, Rassart E. Lipogenesis in most cancers development (assessment). Int J Oncol. 2014;45:485–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang WC, Li X, Liu J, Lin J, Chung LWK. Activation of androgen receptor, lipogenesis, and oxidative stress converged by SREBP-1 is liable for regulating development and development of prostate most cancers cells. Mol Most cancers Res. 2012;10:133–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Lee MY, Moon JS, Park SW, Koh YK, Ahn YH, Kim KS. KLF5 enhances SREBP-1 motion in androgen-dependent induction of fatty acid synthase in prostate most cancers cells. Biochem J. 2009;417:313–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Hamada S, Horiguchi A, Kuroda Ok, Ito Ok, Asano T, Miyai Ok, et al. Elevated fatty acid synthase expression in prostate biopsy cores predicts greater Gleason rating in radical prostatectomy specimen. BMC Clin Pathol. 2014;14:3.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bastos DC, Ribeiro CF, Ahearn T, Nascimento J, Pakula H, Clohessy J, et al. Genetic ablation of FASN attenuates the invasive potential of prostate most cancers pushed by Pten loss. J Pathol. 2021;253:292–303.

    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Chen YT, Hu P, Huang WC. Fatostatin shows excessive antitumor exercise in prostate most cancers by blocking SREBP-regulated metabolic pathways and androgen receptor signaling. Mol Most cancers Ther. 2014;13:855–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt LJ, Ballman KV, Tindall DJ. Inhibition of fatty acid synthase exercise in prostate most cancers cells by dutasteride. Prostate. 2007;67:1111–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Rae C, Fragkoulis GI, Chalmers AJ. Cytotoxicity and radiosensitizing exercise of the fatty acid synthase inhibitor C75 is enhanced by blocking fatty acid uptake in prostate most cancers cells. Adv Radiat Oncol. 2020;5:994–1005.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chuang HY, Lee YP, Lin WC, Lin YH, Hwang JJ. Fatty acid inhibition sensitizes androgen-dependent and -independent prostate most cancers to radiotherapy through FASN/NF-κB pathway. Sci Rep. 2019;9:13284.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Centenera MM, Scott JS, Machiels J, Nassar ZD, Miller DC, Zinonos I, et al. ELOVL5 is a important and targetable fatty acid elongase in prostate most cancers. Most cancers Res. 2021;81:1704–18.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu H, Li S, Solar Y, Xu L, Hong X, Wang Z, et al. ELOVL5-mediated lengthy chain fatty acid elongation contributes to enzalutamide resistance of prostate most cancers. Cancers (Basel). 2021;13:1–12.


    Google Scholar
     

  • Kaini RR, Sillerud LO, Zhaorigetu S, Hu CAA. Autophagy regulates lipolysis and cell survival by lipid droplet degradation in androgen-sensitive prostate most cancers cells. Prostate. 2012;72:1412–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nomura DK, Lombardi DP, Chang JW, Niessen S, Ward AM, Lengthy JZ, et al. Monoacylglycerol lipase exerts twin management over endocannabinoid and fatty acid pathways to assist prostate most cancers. Chem Biol. 2011;18:846–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Awad D, Cao PHA, Pulliam TL, Spradlin M, Subramani E, Tellman TV, et al. Adipose triglyceride lipase is a therapeutic goal in superior prostate most cancers that promotes metabolic plasticity. Most cancers Res. 2024;84:703–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate most cancers. Prostate Most cancers Prostatic Dis. 2006;9:230–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Flaig TW, Salzmann-Sullivan M, Su LJ, Zhang Z, Joshi M, Gijón MA, et al. Lipid catabolism inhibition sensitizes prostate most cancers cells to antiandrogen blockade. Oncotarget. 2017;8:56051–65.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlaepfer IR, Rider L, Rodrigues LU, Gijón MA, Pac CT, Romero L, et al. Lipid catabolism through CPT1 as a therapeutic goal for prostate most cancers. Mol Most cancers Ther. 2014;13:2361–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blomme A, Ford CA, Mui E, Patel R, Ntala C, Jamieson LE, et al. 2,4-dienoyl-CoA reductase regulates lipid homeostasis in treatment-resistant prostate most cancers. Nat Commun. 2020;11:1–17.


    Google Scholar
     

  • Nassar ZD, Mah CY, Dehairs J, Burvenich IJG, Irani S, Centenera MM, et al. Human DECR1 is an androgen-repressed survival issue that regulates PUFA oxidation to guard prostate tumor cells from ferroptosis. Elife. 2020;9:1–34.


    Google Scholar
     

  • O’Sullivan SE, Kaczocha M. FABP5 as a novel molecular goal in prostate most cancers. Drug Discov At the moment. 2020;25:2056–61.


    Google Scholar
     

  • Hillowe A, Gordon C, Wang L, Rizzo RC, Trotman LC, Ojima I, et al. Fatty acid binding protein 5 regulates docetaxel sensitivity in taxane-resistant prostate most cancers cells. PLoS One. 2023;18:e0292483.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carbonetti G, Converso C, Clement T, Wang C, Trotman LC, Ojima I, et al. Docetaxel/cabazitaxel and fatty acid binding protein 5 inhibitors produce synergistic inhibition of prostate most cancers development. Prostate. 2020;80:88–98.

    CAS 
    PubMed 

    Google Scholar
     

  • M Swamynathan M, Mathew G, Aziz A, Gordon C, Hillowe A, Wang H, et al. FABP5 inhibition towards PTEN-mutant remedy resistant prostate most cancers. Cancers (Basel). 2023;16:60.

    PubMed 

    Google Scholar
     

  • Watt MJ, Clark AK, Selth LA, Haynes VR, Lister N, Rebello R, et al. Suppressing fatty acid uptake has therapeutic results in preclinical fashions of prostate most cancers. Sci Transl Med. 2019;11:1–12.

  • Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CSO, et al. Focusing on metastasis-initiating cells by the fatty acid receptor CD36. Nature. 2017;541:41–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Pascual G, Domínguez D, Elosúa-Bayes M, Beckedorff F, Laudanna C, Bigas C, et al. Dietary palmitic acid promotes a prometastatic reminiscence through Schwann cells. Nature. 2021;599:485–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Stopsack KH, Gerke TA, Sinnott JA, Penney KL, Tyekucheva S, Sesso HD, et al. Ldl cholesterol metabolism and prostate most cancers lethality. Most cancers Res. 2016;76:4785–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tibbo AJ, Hartley A, Vasan R, Shaw R, Galbraith L, Mui E, et al. MBTPS2 acts as a regulator of lipogenesis and ldl cholesterol synthesis by SREBP signalling in prostate most cancers. Br J Most cancers. 2023;128:1991–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang S, Wang X, Track D, Liu XJ, Gu Y, Xu Z, et al. Ldl cholesterol induces epithelial-to-mesenchymal transition of prostate most cancers cells by suppressing degradation of EGFR by APMAP. Most cancers Res. 2019;79:3063–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Solanki AA, Liauw SL. Function of HMG-CoA reductase inhibitors with healing radiotherapy in males with prostate most cancers. Open Entry J Urol. 2011;3:95–104.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dillard PR, Lin MF, Khan SA. Androgen-independent prostate most cancers cells purchase the whole steroidogenic potential of synthesizing testosterone from ldl cholesterol. Mol Cell Endocrinol. 2008;295:115–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Locke JA, Nelson CC, Adomat HH, Hendy SC, Gleave ME, Weapons EST. Steroidogenesis inhibitors alter however don’t remove androgen synthesis mechanisms throughout development to castration-resistance in LNCaP prostate xenografts. J Steroid Biochem Mol Biol. 2009;115:126–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Locke JA, Weapons ES, Lubik AA, Adomat HH, Hendy SC, Wooden CA, et al. Androgen ranges improve by intratumoral de novo steroidogenesis throughout development of castration-resistant prostate most cancers. Most cancers Res. 2008;68:6407–15.

    CAS 
    PubMed 

    Google Scholar
     

  • Raftopulos NL, Washaya TC, Niederprüm A, Egert A, Hakeem-Sanni MF, Varney B, et al. Prostate most cancers cell proliferation is influenced by LDL-cholesterol availability and cholesteryl ester turnover. Most cancers Metab. 2022;10:1–15.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murtola TJ, Siltari A. Statins for prostate most cancers: when and the way a lot? Clin Most cancers Res. 2021;27:4947–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Pan T, Lin SC, Lee YC, Yu G, Track JH, Pan J, et al. Statins scale back castration-induced bone marrow adiposity and prostate most cancers development in bone. Oncogene. 2021;40:4592–603.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoque A, Chen H, Xu XC. Statin induces apoptosis and cell development arrest in prostate most cancers cells. Most cancers Epidemiol Biomark Prev. 2008;17:88–94.

    CAS 

    Google Scholar
     

  • Caro-Maldonado A, Camacho L, Zabala-Letona A, Torrano V, Fernández-Ruiz S, Zamacola-Bascaran Ok, et al. Low-dose statin therapy will increase prostate most cancers aggressiveness. Oncotarget. 2017;9:1494–504.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shangguan X, Ma Z, Yu M, Ding J, Xue W, Qi J. Squalene epoxidase metabolic dependency is a targetable vulnerability in castration-resistant prostate most cancers. Most cancers Res. 2022;82:3032–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Kalogirou C, Linxweiler J, Schmucker P, Snaebjornsson MT, Schmitz W, Wach S, et al. MiR-205-driven downregulation of ldl cholesterol biosynthesis by SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate most cancers. Nat Commun. 2021;12:5066.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Kenawi A, Dominguez-Viqueira W, Liu M, Awasthi S, Abraham-Miranda J, Keske A, et al. Macrophage-derived ldl cholesterol contributes to therapeutic resistance in prostate most cancers. Most cancers Res. 2021;81:5477–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ducker GS, Rabinowitz JD. One-carbon metabolism in well being and illness. Cell Metab. 2017;25:27–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Islam A, Shaukat Z, Hussain R, Gregory SL. One-carbon and polyamine metabolism as most cancers remedy targets. Biomolecules. 2022;12:1902.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman AC, Maddocks ODK. One-carbon metabolism in most cancers. Br J Most cancers. 2017;116:1499–504.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang M, Vousden KH. Serine and one-carbon metabolism in most cancers. Nat Rev Most cancers. 2016;16:650–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Corbin JM, Ruiz-Echevarría MJ. One-carbon metabolism in prostate most cancers: the function of androgen signaling. Int J Mol Sci. 2016;17:1208.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inexperienced T, Chen X, Ryan S, Asch AS, Ruiz-Echevarría MJ. TMEFF2 and SARDH cooperate to modulate one-carbon metabolism and invasion of prostate most cancers cells. Prostate. 2013;73:1561–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Track YH, Shiota M, Kuroiwa Ok, Naito S, Oda Y. The essential function of glycine N-methyltransferase within the carcinogenesis and development of prostate most cancers. Mod Pathol. 2011;24:1272–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Khan AP, Rajendiran TM, Ateeq B, Asangani IA, Athanikar JN, Yocum AK, et al. The function of sarcosine metabolism in prostate most cancers development. Neoplasia. 2013;15:491–501.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jentzmik F, Stephan C, Lein M, Miller Ok, Kamlage B, Bethan B, et al. Sarcosine in prostate most cancers tissue is just not a differential metabolite for prostate most cancers aggressiveness and biochemical development. J Urol. 2011;185:706–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al. Metabolomic profiles delineate potential function for sarcosine in prostate most cancers development. Nature. 2009;457:910–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luka Z, Mudd SH, Wagner C. Glycine N-methyltransferase and regulation of S-adenosylmethionine ranges. J Biol Chem. 2009;284:22507–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ottaviani S, Brooke GN, O’Hanlon-Brown C, Waxman J, Ali S, Buluwela L. Characterisation of the androgen regulation of glycine N-methyltransferase in prostate most cancers cells. J Mol Endocrinol. 2013;51:301–12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulholland DJ, Tran LM, Li Y, Cai H, Morim A, Wang S, et al. Cell autonomous function of PTEN in regulating castration-resistant prostate most cancers development. Most cancers Cell. 2011;19:792–804.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. Reciprocal suggestions regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate most cancers. Most cancers Cell. 2011;19:575–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zabala-Letona A, Arruabarrena-Aristorena A, Fernandez-Ruiz S, Viera C, Carlevaris O, Ercilla A, et al. PI3K-regulated Glycine N-methyltransferase is required for the event of prostate most cancers. Oncogenesis. 2022;11:10.

  • Obata F, Miura M. Enhancing S-adenosyl-methionine catabolism extends Drosophila lifespan. Nat Commun. 2015;6:1–9.


    Google Scholar
     

  • Reina-Campos M, Linares JF, Duran A, Cordes T, L’Hermitte A, Badur MG, et al. Elevated serine and one-carbon pathway metabolism by PKCλ/ι deficiency promotes neuroendocrine prostate most cancers. Most cancers Cell. 2019;35:385–400.e9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang HF, Klein Geltink RI, Parker SJ, Sorensen PH. Transsulfuration, minor participant or essential for cysteine homeostasis in most cancers. Developments Cell Biol. 2022;32:800–14.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prudova A, Albin M, Bauman Z, Lin A, Vitvitsky V, Banerjee R. Testosterone regulation of homocysteine metabolism modulates redox standing in human prostate most cancers cells. Antioxid Redox Sign. 2007;9:1875–81.

    CAS 
    PubMed 

    Google Scholar
     

  • Guo H, Gai JW, Wang Y, Jin HF, Du JB, Jin J. Characterization of hydrogen sulfide and its synthases, cystathionine β-synthase and cystathionine γ-lyase, in human prostatic tissue and cells. Urology. 2012;79:483.e1–483.e5.

    PubMed 

    Google Scholar
     

  • Zhang W, Braun A, Bauman Z, Olteanu H, Madzelan P, Banerjee R. Expression profiling of homocysteine junction enzymes within the NCI60 panel of human most cancers cell traces. Most cancers Res. 2005;65:1554–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Stabler S, Koyama T, Zhao Z, Martinez-Ferrer M, Allen RH, Luka Z et al. Serum methionine metabolites are danger elements for metastatic prostate most cancers development. PLoS One 2011;6:8.

  • Saha A, Zhao S, Kindall A, Wilder C, Friedman CA, Clark R et al. Cysteine depletion sensitizes prostate most cancers cells to brokers that improve DNA harm and to immune checkpoint inhibition. J Exp Clin Most cancers Res. 2023;42:119.

  • Pegg AE. Capabilities of polyamines in mammals. J Biol Chem. 2016;291:14904–12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nowotarski SL, Woster PM, Casero RA Jr. Polyamines and most cancers: implications for chemoprevention and chemotherapy. Knowledgeable Rev Mol Med. 2014;15:1–28.


    Google Scholar
     

  • Jänne OA, Crozat A, Palvimo J, Eisenberg LM. Androgen-regulation of ornithine decarboxylase and S-adenosylmethionine decarboxylase genes. J Steroid Biochem Mol Biol. 1991;40:307–15.

    PubMed 

    Google Scholar
     

  • Fjösne HE, Strand H, Sunde A. Dose-dependent induction of ornithine decarboxylase and S-adenosyl-methionine decarboxylase exercise by testosterone within the accent intercourse organs of male rats. Prostate. 1992;21:239–45.

    PubMed 

    Google Scholar
     

  • Cohen RJ, Fujiwara Ok, Holland JW, McNeal JE. Polyamines in prostatic epithelial cells and adenocarcinoma; the results of androgen blockade. Prostate. 2001;49:278–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Bello-Fernandez C, Packham G, Cleveland JL. The ornithine decarboxylase gene is a transcriptional goal of c-Myc. Proc Natl Acad Sci USA. 1993;90:7804–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaminski L, Torrino S, Dufies M, Djabari Z, Haider R, Roustan FR, et al. PGC1α inhibits polyamine synthesis to suppress prostate most cancers aggressiveness. Most cancers Res. 2019;79:3268–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torrano V, Valcarcel-Jimenez L, Cortazar AR, Liu X, Urosevic J, Castillo-Martin M, et al. The metabolic co-regulator PGC1α suppresses prostate most cancers metastasis. Nat Cell Biol. 2016;18:645–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valcarcel-Jimenez L, Macchia A, Crosas-Molist E, Schaub-Clerigue A, Camacho L, Martín-Martín N, et al. PGC1α suppresses prostate most cancers cell invasion by ERRα transcriptional management. Most cancers Res. 2019;79:6153–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Zabala-Letona A, Arruabarrena-Aristorena A, Martín-Martín N, Fernandez-Ruiz S, Sutherland JD, Clasquin M, et al. MTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate most cancers. Nature. 2017;547:109–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monelli E, Villacampa P, Zabala-Letona A, Martinez-Romero A, Llena J, Beiroa D, et al. Angiocrine polyamine manufacturing regulates adiposity. Nat Metab. 2022;4:327–43.

    CAS 
    PubMed 

    Google Scholar
     

  • de Visser KE, Joyce JA. The evolving tumor microenvironment: from most cancers initiation to metastatic outgrowth. Most cancers Cell. 2023;41:374–403.

    PubMed 

    Google Scholar
     

  • Qin Y, Lu F, Lyu Ok, Chang AE, Li Q. Rising ideas relating to pro- and anti tumor properties of B cells in tumor immunity. Entrance Immunol. 2022;13:881427.

  • Chen S, Zhu G, Yang Y, Wang F, Xiao YT, Zhang N, et al. Single-cell evaluation reveals transcriptomic remodellings in distinct cell varieties that contribute to human prostate most cancers development. Nat Cell Biol. 2021;23:87–98.

    CAS 
    PubMed 

    Google Scholar
     

  • Wong HY, Sheng Q, Hesterberg AB, Croessmann S, Rios BL, Giri Ok, et al. Single cell evaluation of cribriform prostate most cancers reveals cell intrinsic and tumor microenvironmental pathways of aggressive illness. Nat Commun. 2022;13:6036.

  • Lopez-Bujanda ZA, Haffner MC, Chaimowitz MG, Chowdhury N, Venturini NJ, Patel RA, et al. Castration-mediated IL-8 promotes myeloid infiltration and prostate most cancers development. Nat Most cancers. 2021;2:803–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang C-H, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competitors within the tumor microenvironment is a driver of most cancers development. Cell. 2015;162:1229–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beckermann KE, Dudzinski SO, Rathmell JC. Dysfunctional T cell metabolism within the tumor microenvironment. Cytokine Development Issue Rev. 2017;35:7–14.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, et al. Acidity generated by the tumor microenvironment drives native invasion. Most cancers Res. 2013;73:1524–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liberti MV, Locasale JW. The Warburg impact: how does it profit most cancers cells? Developments Biochem Sci. 2016;41:211–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu D, Wu Y, Lei Z, Zhang M, Xie Z, Tang S. Lactic acid, a driver of tumor-stroma interactions. Int Immunopharmacol. 2022;106:108597.

    CAS 
    PubMed 

    Google Scholar
     

  • Fischer Ok, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory impact of tumor cell-derived lactic acid on human T cells. Blood. 2007;109:3812–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Inamdar S, Suresh AP, Mangal JL, Ng ND, Sundem A, Wu C, et al. Rescue of dendritic cells from glycolysis inhibition improves most cancers immunotherapy in mice. Nat Commun. 2023;14:5333.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang C-H, Curtis JD, Maggi LBJ, Faubert B, Villarino AV, O’Sullivan D, et al. Posttranscriptional management of T cell effector perform by cardio glycolysis. Cell. 2013;153:1239–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ, et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and unbiased pathways. J Immunol. 2008;180:4476–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Notarangelo G, Spinelli JB, Perez EM, Baker GJ, Kurmi Ok, Elia I, et al. Oncometabolite d-2HG alters T cell metabolism to impair CD8( + ) T cell perform. Science. 2022;377:1519–29.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim SA, Wei J, Nguyen TLM, Shi H, Su W, Palacios G, et al. Lipid signalling enforces purposeful specialization of Treg cells in tumours. Nature. 2021;591:306–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Discipline CS, Baixauli F, Kyle RL, Puleston DJ, Cameron AM, Sanin DE, et al. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for treg suppressive perform. Cell Metab. 2020;31:422–37.e5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang P, Qin H, Li Y, Xiao A, Zheng E, Zeng H, et al. CD36-mediated metabolic crosstalk between tumor cells and macrophages impacts liver metastasis. Nat Commun. 2022;13:5782.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nava Lauson CB, Tiberti S, Corsetto PA, Conte F, Tyagi P, Machwirth M, et al. Linoleic acid potentiates CD8 + T cell metabolic health and antitumor immunity. Cell Metab. 2023;35:633–50.e9.

    CAS 
    PubMed 

    Google Scholar
     

  • Rowe JH, Elia I, Shahid O, Gaudiano EF, Sifnugel NE, Johnson S, et al. Formate supplementation enhances antitumor CD8 + T-cell health and efficacy of PD-1 blockade. Most cancers Discov. 2023;13:2566–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng H, Qiu Y, Xu Y, Chen L, Ma Ok, Tao M, et al. Extracellular acidosis restricts one-carbon metabolism and preserves T cell stemness. Nat Metab. 2023;5:314–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurniawan H, Franchina DG, Guerra L, Bonetti L, Baguet LS, Grusdat M, et al. Glutathione restricts serine metabolism to protect regulatory T cell perform. Cell Metab. 2020;31:920–36.e7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valera PS, Plou J, García I, Astobiza I, Viera C, Aransay AM, et al. SERS evaluation of most cancers cell-secreted purines reveals a novel paracrine crosstalk in MTAP-deficient tumors. Proc Natl Acad Sci USA. 2023;120:52.

  • Terry AR, Nogueira V, Rho H, Ramakrishnan G, Li J, Kang S, et al. CD36 maintains lipid homeostasis through selective uptake of monounsaturated fatty acids throughout matrix detachment and tumor development. Cell Metab. 2023;35:2060–2076.e9.

    CAS 
    PubMed 

    Google Scholar
     

  • Kalaany NY, Sabatini DM. Tumours with PI3K activation are immune to dietary restriction. Nature. 2009;458:725–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lien EC, Westermark AM, Zhang Y, Yuan C, Li Z, Lau AN, et al. Low glycaemic diets alter lipid metabolism to affect tumour development. Nature. 2021;599:302–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vidal AC, Freedland SJ. Weight problems and prostate most cancers: a targeted replace on lively surveillance, race, and molecular subtyping. Eur Urol. 2017;72:78.

    PubMed 

    Google Scholar
     

  • Cantarutti A, Bonn SE, Adami HO, Grönberg H, Bellocco R, Bälter Ok. Physique mass index and mortality in males with prostate most cancers. Prostate. 2015;75:1129–36.

    PubMed 

    Google Scholar
     

  • Zhong S, Yan X, Wu Y, Zhang X, Chen L, Tang J, et al. Physique mass index and mortality in prostate most cancers sufferers: a dose-response meta-analysis. Prostate Most cancers Prostatic Dis. 2016;19:122–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Ramakrishnan SK, Khuder SS, Kaw MK, Muturi HT, Lester SG, et al. Excessive-calorie food plan exacerbates prostate neoplasia in mice with haploinsufficiency of Pten tumor suppressor gene. Mol Metab. 2015;4:186–98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Yan W, Solar Y, Yang CS. Excessive-fat diet-induced hyperinsulinemia promotes the event of prostate adenocarcinoma in prostate-specific Pten−/− mice. Carcinogenesis. 2022;43:504–16.

    CAS 
    PubMed 

    Google Scholar
     

  • Labbé DP, Uetani N, Vinette V, Lessard L, Aubry I, Migon E, et al. PTP1B deficiency permits the power of a high-fat food plan to drive the invasive character of PTEN-deficient prostate cancers. Most cancers Res. 2016;76:3130–5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayashi T, Fujita Ok, Nojima S, Hayashi Y, Nakano Ok, Ishizuya Y, et al. Excessive-fat diet-induced irritation accelerates prostate most cancers development through IL6 signaling. Clin Most cancers Res. 2018;24:4309–18.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen M, Zhang J, Sampieri Ok, Clohessy JG, Mendez L, Gonzalez-Billalabeitia E, et al. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate most cancers. Nat Genet. 2018;50:206.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carreño DV, Corro NBNB, Cerda-Infante JF, Echeverría CE, Asencio-Barría CA, Torres-Estay VAVA, et al. Dietary fructose promotes prostate most cancers development. Most cancers Res. 2021;81:2824–32.

    PubMed 

    Google Scholar
     

  • Hot Topics

    Related Articles