Ravindran, P. N., Nirmal, B. Okay. & Sivaraman, Okay. Turmeric: The Genus Curcuma 11 (CRC Press, 2007).
Sasikumar, B. Genetic sources of Curcuma: Range, characterization and utilization. Plant Genet. Resour. 3(2), 230–251. https://doi.org/10.1079/PGR200574 (2005).
Charles, S. V., Elias, U. M., Ramachandram, T. R. & Kamada, T. Secondary metabolites from rhizome of Curcuma caesia Roxb. (Zingiberaceae). Biochem. Syst. Ecol. 48, 107–110. https://doi.org/10.1016/J.BSE.2012.11.008 (2013).
Mahato, D. & Sharma, H. P. Kali Haldi, an ethnomedicinal plant of Jharkhand state: A evaluate. Indian J. Tradit. Knowl. 17(2), 322–326. https://doi.org/10.4103/1477-3163.133520 (2018).
Devi, H. P., Mazumder, P. B. & Devi, L. P. Antioxidant and antimutagenic exercise of Curcuma caesia Roxb. rhizome extracts. Toxicol. Rep. 2, 423–428. https://doi.org/10.1016/j.toxrep.2014.12.018 (2015).
Baghel, S. S., Baghel, R. S., Sharma, Okay. & Sikarwar, I. Pharmacological actions of Curcuma caesia. Int. J. Inexperienced Pharm. 7(1), 1–5. https://doi.org/10.4103/0973-8258.111590 (2013).
Karmakar, I., Dolai, N., Bala, A. & Haldar, P. Okay. Anxiolytic and CNS depressant actions of methanol extract of Curcuma caesia rhizome. Pharmacology 2, 738–747. https://doi.org/10.1300/J157v06n03_06 (2011).
Arulmozhi, D. Okay., Sridhar, N., Veeranjaneyulu, A. & Arora, S. Okay. Preliminary mechanistic research on the graceful muscle relaxant impact of hydroalcoholic extract of Curcuma caesia. J. Herb. Pharmacother. 6, 117–124. https://doi.org/10.1080/j157v06n03_06 (2006).
Nationwide Medicinal Crops Board. Agro-Strategies if Chosen Medicinal Crops (The Vitality and Assets Institute Press, 2008).
Chiu, T. L. & Su, C. C. Curcumin inhibits proliferation and migration by growing the Bax to Bcl-2 ratio and lowering NF-kappaBp65 expression in breast most cancers MDA-MB-231 cells. Int. J. Mol. Med. 23, 469–475. https://doi.org/10.3892/ijmm_00000153 (2009).
Liu, Q., Bathroom, W. T., Sze, S. C. & Tong, Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast most cancers cells mediated by down-regulation of NFkappaB, cyclinD and MMP-1 transcription. Phytomedicine 16, 916–922. https://doi.org/10.1016/j.phymed.2009.04.008 (2009).
Mohammad, A. A., Eltayeb, N. M., Khairuddean, M. & Salhimia, S. M. Bioactive chemical constituents from Curcuma caesia Roxb. rhizomes and inhibitory impact of curcuzederone on the migration of triple-negative breast most cancers cell line MDA-MB-231. Nat. Res. Prod. 35(18), 3166–3170. https://doi.org/10.1080/14786419.2019.1690489 (2019).
Liu, H. T. & Ho, Y. S. Anticancer impact of curcumin on breast most cancers and stem cells. Meals Sci. Hum. Wellness 7(2), 134–137. https://doi.org/10.1016/j.fshw.2018.06.001 (2018).
Krmakar, L., Dolai, N., Suresh, Okay. R. B. & Halder, P. Okay. Antitumer exercise and antioxidant property of Curcuma caesia in opposition to Ehrlich ascites carcinoma bearing mice. Pharma Biol. 51(6), 753–759. https://doi.org/10.3109/13880209.2013.764538 (2013).
Kumar, S., Dubey, Okay. Okay., Tripathi, S., Fujii, M. & Misra, Okay. Design and synthesis of curcumin-bioconjugates to enhance systemic supply. Nucleic Acids Symp. Ser. 44, 75–76. https://doi.org/10.1093/nass/44.1.75 (2000).
Hadem, Okay. L. H., Sharan, R. N. & Kma, L. Phytochemicals of Aristolochiatagala and Curcuma caesia exert anticancer impact by tumor necrosis factor-α-mediated lower in nuclear issue kappa B binding exercise. J Fundamental Clin. Pharm. 7(1), 1–11. https://doi.org/10.4103/0976-0105.170585 (2015).
Prasad, R.; Patnaik, S. Conservation Evaluation and Administration Planning. Continuing of the Conservation Evaluation and Administration Planning (CAMP) Workshop for Non timber forest merchandise in Madhya Pradesh 1–99 (Indian Institute of Forest Administration, 1998).
Salem, S. S. A mini evaluate on inexperienced nanotechnology and its improvement in organic results. Arch. Microbiol. 205, 128. https://doi.org/10.1007/s00203-023-03467-2 (2023).
Ventola, C. L. The nanomedicine revolution: Half 1: Rising ideas. Pharm. Ther. 37(9), 512–525 (2012).
Afzal, O., Altamimi, A. S. A. & Nadeem, M. S. Nanoparticles in drug supply: From historical past to therapeutic functions. Nanomaterials (Basel). 12(24), 4494. https://doi.org/10.3390/nano12244494 (2022).
Vollath, D., Fischer, F. D. & Holec, D. Floor power of nanoparticles: Affect of particle dimension and construction. Beilstein J. Nanotechnol. 9, 2265–2276. https://doi.org/10.3762/bjnano.9.211 (2018).
Sharma, Okay. P. et al. Nanotechnology and its utility: A evaluate nanotechnology. In Most cancers Administration Exact Diagnostics Towards Customized Well being Care 1–33 (Elsevier, 2021).
Das, A. Okay. et al. Papaya latex mediated synthesis of prism formed proteolytic gold nanozymes. Sci. Rep. 13, 5965. https://doi.org/10.1038/s41598-023-32409-7 (2023).
Oberdörster, G., Oberdörster, E. & Oberdörster, J. Nanotoxicology: An rising self-discipline evolving from research of ultrafine particles. Environ. Well being Perspect. 113, 823–839. https://doi.org/10.1289/ehp.7339 (2005).
Cui, D., Tian, F., Ozkan, C. S., Wang, M. & Gao, H. Impact of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155, 73–85. https://doi.org/10.1016/j.toxlet.2004.08.015 (2005).
Gupta, D., Yadav, P., Garg, D. & Gupta, T. Okay. Pathways of nanotoxicity: Modes of detection, impression, and challenges. Entrance. Mater. Sci. 15, 512–542 (2021).
Li, J. J., Hartono, D., Ong, C. N., Bay, B. H. & Yung, L. Y. Autophagy and oxidative stress related to gold nanoparticles. Biomaterials 31(23), 5996–6003. https://doi.org/10.1016/j.biomaterials.2010.04.014 (2010).
Wei, P., Zhang, L., Lu, Y., Man, N. & Wen, L. C60(Nd) nanoparticles improve chemotherapeutic susceptibility of most cancers cells by modulation of autophagy. Nanotechnology 21(49), 495101. https://doi.org/10.1088/0957-4484/21/49/495101 (2010).
Yamawaki, H. & Iwai, N. Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am. J. Physiol. Cell Physiol. 290, 1495. https://doi.org/10.1152/ajpcell.00481.2005 (2006).
Zhang, Q. et al. Autophagy-mediated chemosensitization in most cancers cells by fullerene C60 nanocrystal. Autophagy 5(8), 1107–1117. https://doi.org/10.4161/auto.5.8.9842 (2009).
Seleverstov, O. et al. Quantum dots for human mesenchymal stem cells labelling. A size-dependent autophagy activation. Nano Lett. 6, 2826–2832. https://doi.org/10.1021/nl0619711 (2006).
Stern, S. T. et al. McNeil induction of autophagy in porcine kidney cells by quantum dots: A standard mobile response to nanomaterials?. Toxicol. Sci. 106(1), 140–152. https://doi.org/10.1093/toxsci/kfn137 (2008).
Ankamwar, B. et al. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays utilizing regular, glia and breast most cancers cells. Nanotechnology 21, 075102. https://doi.org/10.1088/0957-4484/21/7/075102 (2010).
Hong, H. et al. Most cancers-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Lett. 11(9), 3744–3750. https://doi.org/10.1021/nl201782m (2011).
Dreaden, E. C., Mackey, M. A., Huang, X., Kang, B. & El-Sayed, M. A. Beating most cancers in a number of methods utilizing nanogold. Chem. Soc. Rev. 40, 3391–3404. https://doi.org/10.1039/C0CS00180E (2011).
El-Sayed, M. A. Some attention-grabbing properties of metals confined in time and nanometer area of various shapes. AccChem Res. 34(4), 257–264. https://doi.org/10.1021/ar960016n (2001).
Pan, Y. et al. Gold nanoparticles of diameter 1.4 Nm set off necrosis by oxidative stress and mitochondrial harm. Small 5, 2067–2076. https://doi.org/10.1002/smll.200900466 (2009).
Chen, Y. S., Hung, Y. C., Liau, I. & Huang, G. S. Evaluation of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett. 4, 858. https://doi.org/10.1007/s11671-009-9334-6 (2009).
Sani, A., Cao, C. & Cui, D. Toxicity of gold nanoparticles (AuNPs): A evaluate. Biochem. Biophys. Rep. 26, 10991. https://doi.org/10.1016/j.bbrep.2021.100991 (2021).
Zhang, X. D. et al. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 33, 4628–4638. https://doi.org/10.1016/j.biomaterials.2012.03.020 (2012).
Meng, J. et al. Utilizing gold nanorods core/silver shell nanostructures as mannequin materials to probe biodistribution and poisonous results of silver nanoparticles in mice. Nanotoxicology. 8, 686–696. https://doi.org/10.3109/17435390.2013.822593 (2014).
Chan, H. & Král, P. Nanoparticles self-assembly inside lipid bilayers. ACS Omega 3, 10631–10637. https://doi.org/10.1021/acsomega.8b01445 (2018).
Joshi, P. et al. The anticancer exercise of chloroquine-gold nanoparticles in opposition to MCF-7 breast most cancers cells. Colloids Surf. B 95, 195–200. https://doi.org/10.1016/j.colsurfb.2012.02.039 (2012).
Das, R. Okay., Sharma, P., Nahar, P. & Bora, U. Synthesis of gold nanoparticles utilizing aqueous extract of Calotropisprocera latex. Mater. Lett. 65, 610–613. https://doi.org/10.1016/j.matlet.2010.11.040 (2011).
Bar, H. et al. synthesis of silver nanoparticles utilizing latex of Jatropha curcas. Colloids Surf. A 339, 134–139. https://doi.org/10.1016/j.colsurfa.2009.02.008 (2009).
Khan, F. et al. Inexperienced nanotechnology: Plant-mediated nanoparticle synthesis and utility. Nanomaterials 12, 673. https://doi.org/10.3390/nano12040673 (2022).
Swilam, N. & Khaled, A. N. Polyphenols profile of pomegranate leaves and their position in inexperienced synthesis of silver nanoparticles. Sci. Rep. 10, 14851. https://doi.org/10.1038/s41598-020-71847-5 (2020).
Glusker, J., Katz, A., Bock, C. & Rigaku, J. Steel ions in organic techniques. Chem. Biol. 16(2), 8–16 (1999).
Si, S. & Mandal, T. Okay. Tryptophan-based peptides to synthesize gold and silver nanoparticles: A mechanistic and kinetic examine. Chemistry 13(11), 3160–3168. https://doi.org/10.1002/chem.200601492 (2007).
Akinfenwa, A. O. & Hussein, A. A. Phyto-metallic nanoparticles: Biosynthesis, mechanism, therapeutics, and cytotoxicity. In Toxicity of Nanoparticles: Current Advances and New Views (IntechOpen, 2023).
Kavaz, D., Huzaifa, U. & Zimuto, T. Biosynthesis of Gold nanoparticles utilizing Scytosiphon lomentaria (Brown algae) and Spyridia filamentosa (Purple algae) from Kyrenia Area and analysis of their antimicrobial and antioxidant exercise. Hacettepe J. Biol. Chem. 47(4), 367–382 (2019).
Bharadwaj, Okay. Okay. et al. Inexperienced synthesis of gold nanoparticles utilizing plant extracts as useful prospect for most cancers theranostics. Molecules 26, 6389. https://doi.org/10.3390/molecules26216389 (2021).
Rahimi, H. R., Nedaeinia, R., Shamloo, A. S., Nikdoust, S. & Oskuee, R. Okay. Novel supply system for pure merchandise: Nano-curcumin formulations. Avicenna J. Phytomed. 6(4), 383–398. https://doi.org/10.22038/AJP.2016.6187 (2016).
Lesner, S. & Cotran, R. Breast most cancers. In Robbins Pathologic Foundation of Ailments (eds Cotran, R. et al.) 1093–1120 (. Sounders, 1999).
World Most cancers Report. Worldwide Company for Analysis on Most cancers (2008).
Ferlay, J. et al. Estimates of the most cancers incidence and mortality in Europe in 2006. Ann. Oncol. 18(3), 581–592. https://doi.org/10.1093/annonc/mdl498 (2007).
Abdelhamed, S. et al. Identification of plant extracts sensitizing breast most cancers cells to TRAIL. Oncol. Rep 29(5), 1991–1998. https://doi.org/10.3892/or.2013.2293 (2013).
Umar, H. et al. Prediction of cell migration potential on human breast most cancers cells handled with Albizia lebbeck ethanolic extract utilizing excessive machine studying. Sci. Rep. 13(1), 22242. https://doi.org/10.1038/s41598-023-49363-z (2023).
Hadisaputri, Y. E. et al. Antiproliferation exercise and apoptotic mechanism of soursop (Annona muricata L.) leaves extract and fractions on MCF7 breast most cancers cells. Breast Most cancers 16(13), 447–457. https://doi.org/10.2147/BCTT.S317682 (2021).
Pal, A., Sanyal, S., Das, S. & Sengupta, T. Okay. Impact of Lantana camara ethanolic leaf extract on survival and migration of MDA-MB-231 triple-negative breast most cancers cell line. J. Herb. Med. 43, 100837. https://doi.org/10.1016/j.hermed.2023.100837 (2024).
Omrani, V. F. et al. Results of sambucus ebulus extract on cell proliferation and viability of triple-negative breast most cancers: An in vitro and in vivo examine. Anticancer Brokers Med. Chem. 22(7), 1386–1396. https://doi.org/10.2174/1871520621666210412113944 (2022).
Suffness, M. & Pezzuto, J. M. Assays associated to most cancers drug discovery. In Assays for Bioactivity (Strategies in Plant Biochemistry Vol. 6 (ed. Hostettmann, Okay.) 71–133 (Tutorial Press, 1990).
Abdel-Hameed, E. S., Salih, A., Bazaid, S. A. & El-Sayed, M. M. Phytochemical research and analysis of antioxidant, anticancer and antimicrobial properties of Conocarpus erectus L. rising in Taif. Saudi Arabia. Eur. J. Med. Crops 2, 93–112. https://doi.org/10.9734/EJMP/2012/1040 (2012).
Abdelhamed, S. et al. Identification of plant extracts sensitizing breast most cancers cells to TRAIL. Oncol. Rep. 29(5), 2293. https://doi.org/10.3892/or.2013.2293 (2013).
Umar, H. & Aliyu, M. R. Moringa oleifera-mediated iron oxide nanoparticles, characterization and their anti-proliferative potential on MDA-MB 231 human breast most cancers cells. Pak. J. Pharm. Sci. 36(6), 1875–1883 (2023).
Abed, S. A., Mohammed, M. A. & Khalaf, H. Y. Novel photothermal remedy utilizing platinum nanoparticles in synergy with near-infrared radiation (NIR) in opposition to human breast most cancers MCF-7 cell line. Outcomes Chem. 4(1–2), 100591. https://doi.org/10.1016/j.rechem.2022.100591 (2022).