Built-in analyses spotlight interactions between the three-dimensional genome and DNA, RNA and epigenomic alterations in metastatic prostate most cancers


  • Abeshouse, A. et al. The molecular taxonomy of major prostate most cancers. Cell 163, 1011–1025 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Pomerantz, M. M. et al. The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nat. Genet. 47, 1346–1351 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armenia, J. et al. The lengthy tail of oncogenic drivers in prostate most cancers. Nat. Genet. 50, 645–651 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quigley, D. A. et al. Genomic hallmarks and structural variation in metastatic prostate most cancers. Cell 174, 758–769 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, S. G. et al. The DNA methylation panorama of superior prostate most cancers. Nat. Genet. 52, 778–789 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sjöström, M. et al. The 5-hydroxymethylcytosine panorama of prostate most cancers. Most cancers Res. 82, 3888–3902 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, D. et al. Integrative medical genomics of superior prostate most cancers. Cell 161, 1215–1228 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grasso, C. S. et al. The mutational panorama of deadly castration-resistant prostate most cancers. Nature 487, 239–243 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, A. et al. Substantial interindividual and restricted intraindividual genomic range amongst tumors from males with metastatic prostate most cancers. Nat. Med. 22, 369–378 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pomerantz, M. M. et al. Prostate most cancers reactivates developmental epigenomic packages throughout metastatic development. Nat. Genet. 52, 790–799 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takeda, D. Y. et al. A somatically acquired enhancer of the androgen receptor is a noncoding driver in superior prostate most cancers. Cell 174, 422–432 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viswanathan, S. R. et al. Structural alterations driving castration-resistant prostate most cancers revealed by linked-read genome sequencing. Cell 174, 433–447 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krijger, P. H. & de Laat, W. Regulation of disease-associated gene expression within the 3D genome. Nat. Rev. Mol. Cell Biol. 17, 771–782 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ntziachristos, P., Abdel-Wahab, O. & Aifantis, I. Rising ideas of epigenetic dysregulation in hematological malignancies. Nat. Immunol. 17, 1016–1024 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lieberman-Aiden, E. et al. Complete mapping of long-range interactions reveals folding ideas of the human genome. Science 326, 289–293 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beagan, J. A. & Phillips-Cremins, J. E. On the existence and performance of topologically associating domains. Nat. Genet. 52, 8–16 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Javierre, B. M. et al. Lineage-specific genome structure hyperlinks enhancers and non-coding illness variants to focus on gene promoters. Cell 167, 1369–1384 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hawley, J. R. et al. Reorganization of the 3D genome pinpoints noncoding drivers of major prostate tumors. Most cancers Res. 81, 5833–5848 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunham, I. et al. An built-in encyclopedia of DNA parts within the human genome. Nature 489, 57–74 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Díaz, N. et al. Chromatin conformation evaluation of major affected person tissue utilizing a low enter Hello-C technique. Nat. Commun. 9, 4938 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, T. et al. Integrative evaluation of genome, 3D genome, and transcriptome alterations of medical lung most cancers samples. Genomics Proteomics Bioinformatics 19, 741–753 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Animesh, S. et al. Profiling of 3D genome group in nasopharyngeal most cancers needle biopsy affected person samples by a modified Hello-C strategy. Entrance. Genet. 12, 673530 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. Excessive-throughput chromosome conformation capture-based evaluation of higher-order chromatin construction in nasopharyngeal carcinoma. Ann. Transl. Med. 9, 1314 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Epigenomic panorama and 3D genome construction in pediatric high-grade glioma. Sci. Adv. 7, eabg4126 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kloetgen, A. et al. Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia. Nat. Genet. 52, 388–400 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. et al. 3D genome alterations related to dysregulated HOXA13 expression in high-risk T-lineage acute lymphoblastic leukemia. Nat. Commun. 12, 3708 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnstone, S. E. et al. Massive-scale topological adjustments restrain malignant development in colorectal most cancers. Cell 182, 1474–1489 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, J. et al. Subtype-specific 3D genome alteration in acute myeloid leukaemia. Nature 611, 387–398 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buitrago, D. et al. Impression of DNA methylation on 3D genome construction. Nat. Commun. 12, 3243 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, Q. et al. DNA methylation is required to keep up each DNA replication timing precision and 3D genome group integrity. Cell Rep. 36, 109722 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fortin, J.-P. & Hansen, Okay. D. Reconstructing A/B compartments as revealed by Hello-C utilizing long-range correlations in epigenetic knowledge. Genome Biol. 16, 180 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berman, B. P. et al. Areas of focal DNA hypermethylation and long-range hypomethylation in colorectal most cancers coincide with nuclear lamina-associated domains. Nat. Genet. 44, 40–46 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briand, N. & Collas, P. Lamina-associated domains: peripheral issues and inside affairs. Genome Biol. 21, 85 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makova, Okay. D. & Hardison, R. C. The consequences of chromatin group on variation in mutation charges within the genome. Nat. Rev. Genet. 16, 213–223 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuster-Böckler, B. & Lehner, B. Chromatin group is a serious affect on regional mutation charges in human most cancers cells. Nature 488, 504–507 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Akdemir, Okay. C. et al. Somatic mutation distributions in most cancers genomes fluctuate with three-dimensional chromatin construction. Nat. Genet. 52, 1178–1188 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. et al. Extrachromosomal DNA is related to oncogene amplification and poor consequence throughout a number of cancers. Nat. Genet. 52, 891–897 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keshavarzian, T. & Lupien, M. ecDNAs personify most cancers gangsters. Mol. Cell 82, 500–502 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prensner, J. R. et al. The lengthy noncoding RNA SChLAP1 promotes aggressive prostate most cancers and antagonizes the SWI/SNF complicated. Nat. Genet. 45, 1392–1398 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prensner, J. R. et al. RNA biomarkers related to metastatic development in prostate most cancers: a multi-institutional high-throughput evaluation of SChLAP1. Lancet Oncol. 15, 1469–1480 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Servant, N., Varoquaux, N., Heard, E., Barillot, E. & Vert, J.-P. Efficient normalization for copy quantity variation in Hello-C knowledge. BMC Bioinformatics 19, 313 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, S. et al. Round ecDNA promotes accessible chromatin and excessive oncogene expression. Nature 575, 699–703 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zivanovic, A. et al. Co-evolution of AR gene copy quantity and structural complexity in endocrine remedy resistant prostate most cancers. NAR Most cancers 5, zcad045 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aggarwal, R. et al. Prognosis related to luminal and basal subtypes of metastatic prostate most cancers. JAMA Oncol. 7, 1644–1652 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lancho, O. & Herranz, D. The MYC enhancer-ome: long-range transcriptional regulation of MYC in most cancers. Developments Most cancers 4, 810–822 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parolia, A. et al. Distinct structural courses of activating FOXA1 alterations in superior prostate most cancers. Nature 571, 413–418 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuijers, J. et al. Transcriptional dysregulation of MYC reveals frequent enhancer-docking mechanism. Cell Rep. 23, 349–360 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, S. W. et al. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary ingredient. Cell 173, 1398–1412 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramanand, S. G. et al. The panorama of RNA polymerase II-associated chromatin interactions in prostate most cancers. J. Clin. Make investments. 130, 3987–4005 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matejcic, M. et al. Germline variation at 8q24 and prostate most cancers danger in males of European ancestry. Nat. Commun. 9, 4616 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixon, J. R. et al. Integrative detection and evaluation of structural variation in most cancers genomes. Nat. Genet. 50, 1388–1398 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikiforova, M. N. et al. Proximity of chromosomal loci that take part in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Spatial group of the mouse genome and its position in recurrent chromosomal translocations. Cell 148, 908–921 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mani, R.-S. et al. Induced chromosomal proximity and gene fusions in prostate most cancers. Science 326, 1230 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • San Martin, R. et al. Chromosome compartmentalization alterations in prostate most cancers cell traces mannequin illness development. J. Cell Biol. 221, e202104108 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morton, A. R. et al. Useful enhancers form extrachromosomal oncogene amplifications. Cell 179, 1330–1341 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Leen, E., Brückner, L. & Henssen, A. G. The genomic and spatial mobility of extrachromosomal DNA and its implications for most cancers remedy. Nat. Genet. 54, 107–114 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oobatake, Y. & Shimizu, N. Double-strand breakage within the extrachromosomal double minutes triggers their aggregation within the nucleus, micronucleation, and morphological transformation. Genes Chromosomes Most cancers 59, 133–143 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shoshani, O. et al. Chromothripsis drives the evolution of gene amplification in most cancers. Nature 591, 137–141 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rhie, S. Okay. et al. A high-resolution 3D epigenomic map reveals insights into the creation of the prostate most cancers transcriptome. Nat. Commun. 10, 4154 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lourenco, C. et al. MYC protein interactors in gene transcription and most cancers. Nat. Rev. Most cancers 21, 579–591 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patange, S. et al. MYC amplifies gene expression via international adjustments in transcription issue dynamics. Cell Rep. 38, 110292 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amjadi-Moheb, F., Paniri, A. & Akhavan-Niaki, H. Insights into the hyperlinks between MYC and 3D chromatin construction and epigenetics regulation: implications for most cancers remedy. Most cancers Res. 81, 1925–1936 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hyle, J. et al. Acute depletion of CTCF immediately impacts MYC regulation via lack of enhancer-promoter looping. Nucleic Acids Res. 47, 6699–6713 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. S. et al. Germline polymorphisms related to impaired survival outcomes and somatic tumor alterations in superior prostate most cancers. Prostate Most cancers Prostatic Dis. 23, 316–323 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Servant, N. et al. HiC-Professional: an optimized and versatile pipeline for Hello-C knowledge processing. Genome Biol. 16, 259 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Quick gapped-read alignment with Bowtie 2. Nat. Strategies 9, 357–359 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imakaev, M. et al. Iterative correction of Hello-C knowledge reveals hallmarks of chromosome group. Nat. Strategies 9, 999–1003 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, H. et al. TopDom: an environment friendly and deterministic technique for figuring out topological domains in genomes. Nucleic Acids Res. 44, e70 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Servant, N. et al. HiTC: exploration of high-throughput ‘C’ experiments. Bioinformatics 28, 2843–2844 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boltsis, I., Grosveld, F., Giraud, G. & Kolovos, P. Chromatin conformation in growth and illness. Entrance. Cell Dev. Biol. 9, 723859 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic stable tumours. Nature 575, 210–216 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. et al. Strelka2: quick and correct calling of germline and somatic variants. Nat. Strategies 15, 591–594 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cibulskis, Okay. et al. Delicate detection of somatic level mutations in impure and heterogeneous most cancers samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Manta: fast detection of structural variants and indels for germline and most cancers sequencing purposes. Bioinformatics 32, 1220–1222 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shale, C. et al. Unscrambling most cancers genomes by way of built-in evaluation of structural variation and replica quantity. Cell Genom. 2, 100112 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadi, Okay. et al. Distinct courses of complicated structural variation uncovered throughout 1000’s of most cancers genome graphs. Cell 183, 197–210 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krueger, F. & Andrews, S. R. Bismark: a versatile aligner and methylation caller for Bisulfite-Seq purposes. Bioinformatics 27, 1571–1572 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burger, L., Gaidatzis, D., Schübeler, D. & Stadler, M. B. Identification of energetic regulatory areas from DNA methylation knowledge. Nucleic Acids Res. 41, e155 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic areas of the genome. Sci. Rep. 9, 9354 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Mannequin-based evaluation of ChIP–Seq (MACS). Genome Biol. 9, R137 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samb, R. et al. Utilizing informative Multinomial-Dirichlet prior in a t-mixture with reversible bounce estimation of nucleosome positions for genome-wide profiling. Stat. Appl. Genet. Mol. Biol. 14, 517–532 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. An AR-ERG transcriptional signature outlined by long-range chromatin interactomes in prostate most cancers cells. Genome Res. 29, 223–235 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hot Topics

    Related Articles